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Abstract

Parkinsonism is the second most common neurodegenerative disease in the world.

Its diagnosis usually relies on visual analysis of Emission Computed Tomography

(SPECT) images acquired using 123I − ioflupane radiotracer. This aims to detect

a deficit of dopamine transporters at the striatum. The use of Computer Aided tools

for diagnosis based on statistical data processing and machine learning methods have

significantly improved the diagnosis accuracy. In this paper we propose a classifica-

tion method based on Deep Ranking which learns an embedding function that projects

the source images into a new space in which samples belonging to the same class are

closer to each other, while samples from different classes are moved apart. Moreover,

the proposed approach introduces a new cost-sensitive loss function to avoid overfitting

due to class imbalance (an usual issue in practical biomedical applications), along with

label information to produce sparser embedding spaces. The experiments carried out in

this work demonstrate the superiority of the proposed method, improving the diagnosis

accuracy achieved by previous methodologies and validate our approach as an efficient

way to construct linear classifiers.
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1. Introduction

Parkinsonism (PD) is the second most common neurodegenerative disorder after

the Alzheimer’s disease, with a prevalence between 1% and 3% in the population over

65 years of age. It is characterized by different motor symtpoms such as tremor, hy-

pokinesia and rigidity [1], mainly related to the progressive loss of dopamine Trans-5

porters (DaT) of the nigrostriatal pathway.

Currently, diagnosis is commonly supported by nuclear imaging, specifically by

Single Photon Emission Tomography (SPECT) using the 123I − ioflupane radio-

tracer (also known by its tradename DaTSCAN). DaTSCAN binds to the dopaminergic

transporters at the striatum, allowing to measure quantitatively the amount of DaT in10

this region. This way, PD can be differentialy diagnosed by detecting a dopaminergic

deficit in PD patients with respect to Controls (CN) or other diseases presenting sim-

ilar symptoms. Different Computer Aided Diagnosis (CAD) tools based on statistical

techniques have been developed [2, 3, 4, 5, 6, 7]. These methods search statistical dif-

ferences between two groups, PD and CN, using statistical learning. However, the use15

of methods based on artificial neural networks (ANN) have gained popularity in the

last years, due to new frameworks for the development of complex neural architectures

and new effective training algorithms. This has enabled to use deep neural networks

(namely, deep learning) along with a great variety of layers in a wide range of applica-

tions [8]. In fact, different deep learning architectures have been proposed to deal with20

problems of different nature such as speech recognition [9], drug discovery [10] and

genomics [11]. Specifically, in the field of image processing and classiffication, Deep

Belief Networks (DBN) based on Restricted Boltzman Machines (RBM) [12] have

been applied to different image classification problems such as quantitative analysis of

gold immunochromatographic strip [13]. On the other hand, combinations of DBNs25

have been used in [14] for face image modelling, and [15] shows an ensemble archi-

tecture for feature extraction and classification of Magnetic Resonance Images (MRI).

Other architectures based on Deep Stacked Autoencoders (DAE) [16, 17] have been

used in [18] for facial expression recognition. Nevertheless, one of the fields in which
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the use of deep learning has drastically improved the classification results obtained30

by statistical learning or other machine learning methods is in computer vision and

image classification outperforming the state-of-the art methods [8]. In particular, ar-

chitectures based on convolutional neural networks (CNN) have reached human-level

performance [19] in object recognition applications. CNN is a biologically-inspired

model that resembles the human vision system, computing image features at different35

abstraction levels by means of the convolution operator, which is subsequently applied

to the response of the previous layer [20]. Simple architectures such as LeNet-5 [21]

or AlexNet [22] provided good results with respect to statistical learning approaches,

and many CNN-based architectures have been proposed to improve their classification

accuracy. Thus, deeper architectures such as Inception [23], for example, provide a40

high number of abstraction levels, allowing to compute complex features. Neverthe-

less, deeper networks are more difficult to train and tend to be overfitted. On the other

hand, accuracy degradation could appear when the number of layer increases, which

could not be necessary caused by overfitting but to the limitations of the training al-

gorithm [24]. Thus, the solution proposed in [24] to build and train deeper models45

efficiently consist in copying layers from the learned shallower model to be added at

the output of a convolution step, building the so-called residual blocks. This method is

used in ResNet [24]. Other recent CNN-based networks can capture the orientation of

detected objects [25].

All of the previous approaches aim to classify images into different categories, and50

outperforming baseline architectures such as LeNet-5 or AlexNet requires the use of

more complex and deeper architectures. In [26], a model composed of three multiscale

networks trained in parallel is proposed for image retrieval. Unfortunately, this archi-

tecture did not provide significantly better results than LeNet-5 or AlexNet [27] and

the training process implies a considerably higher computational burden.55

In this work we propose a deep ranking-based method that not only allows to clas-

sify the images but also to compute a similarity measure among them, outperforming,

at the same time, previous deep learning based approaches in PD. Moreover, this ap-

proach tackles one usual problem in biomedical applications: the prevalence of one

class in imbalanced datasets, by introducing a cost-sensitive loss function. Hence, the60
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main contributions of this work can be summarized in the following four points: 1)

a deep learning architecture is proposed to rank 3D DaTSCAN images according to

their similarity. Thus, unlike other Deep Learning approaches in which the outcome

is the predicted class, a similarity measurement is provided in this case. 2) The pro-

posed method can be used to embed a 3D image into a lower-dimensional subspace in65

which it is possible the computation of similarity metrics based on distance between

vectors (for instance, the Euclidean distance). 3) The Hinge loss function proposed in

the original Deep Ranking paper [26] has been modified to include labels information

in order to reinforce the learning. 4) A cost-sensitive loss function is used to deal with

imbalanced datasets, as it is the case of the PPMI database we are using in this work.70

The rest of the paper is organized as follows. Section 2 reviews the related work

on neuroimage classificataion. Section 3 describes the database used in this work and

the architecture of the proposed model, along with the techniques used to deal with

imbalanced datasets. Section 5 presents the classification results using data from the

Parkinson Progression Neuroimaging Initiative (PPMI) database and discuses these75

results. Regions of interests are also computed by means of the deep neural model and

shown in this section. Finally, Section 6 shows the conclusions drawn from this work

along with its practical applicability.

2. Related Work

Current neuroimaging systems provide high spatial and color resolution, and they80

have become the least invasive method for the diagnosis of brain disorders. However,

the diagnosis of neurodegenerative diseases such as PD by means of visual assessment

is a time consuming task and subject to the experience of the expert neurologist. On the

other hand, the vast amount of information contained in a 3D image requires the use

of computer aided tools to be exploited, allowing to find complex, disease-related pat-85

terns and thus increasing the diagnosis accuracy. This way, different computer-based

methods have been developed for the diagnosis of PD. Previous approaches use statisti-

cal learning techniques along with signal processing methods to reveal disease-related

patterns and to classify the images. Thus [2] proposes the use of 2D empical mode
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decomposition to split DaTSCAN images into different intrinsic mode functions, ac-90

counting for different frequency subbands. The components are used to select features

related to PD that clearly differentiate them from CN and allowing a easy visual inspec-

tion. Other proposals dealing with decomposition into components are [6] and [28].

[4] proposes the extraction of 3D textural-based features for the characterization of the

dopamine transporters concentration in the image and [29] decomposes the DaTSCAN95

images into statistically independent components which reveal patterns associated to

PD. Moreover, in this approach, image voxels are ranked by means of their statisti-

cal significance in class discrimination. A recent approach also based on multivariate

decomposition techniques is proposed in [28], where the use of functional principal

component analysis on 3D images is proposed. This is addressed by sampling the 3D100

images using fractal curves in order to transform the 3D DatSCAN images into 1D

signals, preserving the neighbourhood relationship among voxels. In addition, [5] uses

partial least squares (PLS) to extract features that are eventually used for classification

using linear support vector classifiers. In [7], the authors use univariate (voxel-wise)

statistical parametric mapping and multivariate pattern recognition using linear dis-105

criminant classifiers to differentiate among different Parkinsonian syndromes.

The previous works use statistical learning methods. As explained in the introduc-

tion, methods based on neural networks, especially deep learning-based methods, have

paved the way to discover complex patterns and, consequently, to outperform the di-

agnosis accuracy obtained by classical statistical methodologies [15, 30]. The use of110

models containing stacks of layers composed of a large number of units that individ-

ually perform simple operations allows to compute models containing a large number

of parameters. Moreover, these massively parallellize architectures are able to discover

very complex patterns in the data by a learning process formulated as an optimization

problem. Thus, [15] proposes the combination of Deep Belief Networks (DBN), each115

learning over data extracted from a different brain region, aiming to search for patterns

related to the Alzheimer’s Disease onset. Moreover, [30, 27] propose the use of Convo-

lutional Neural Networks (CNN) to discover patterns associated to PD. Increasing the

accuracy requires the use of deeper networks. However, the increment in the number

of parameters in simple CNN [30, 27] makes the network prone to overfitting and the120
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limitations of the training algorithms arise. Thus, architectures combining more elab-

orated blocks such as [24] are required to effectively increase the number of layers. In

this work, we propose the combined use of simple CNNs composed of 4 layers trained

in parallel, to outperform the accuracy provided by both, previous statistical learning

approaches and previous deep learning architectures. Moreover, the model used in this125

work has additional advantages; unlike previous CNN-based approaches, it not only

allows to classify the image but also to embed it into a lower dimensional subspace

where similarity measures can be computed by means of distance metrics. Moreover,

the deep ranking method has been improved including a label-aided loss function by

modifying the original Hinge loss proposed in [26] to produce better defined clusters.130

Additionally, the proposed loss function is cost-sensitive to address the imbalanced

database problem. As a result, a deep ranking model with simple CNNs composed of

4 layers outperforms the previous deep learning approaches as well as those based on

statistical learning.

3. Materials and Methods135

3.1. Database

Data used in the preparation of this article was obtained from the Parkinson’s

Progression Markers Initiative (PPMI) (www.ppmi-info.org/data). For up-

to-date information on the study, visit www.ppmi-info.org. The images in this

database were imaged 4 + 0.5 hours after the injection of between 111 and 185 MBq140

of DaTSCAN. Raw projection data are acquired into a 128× 128 matrix stepping each

3 degrees for a total of 120 projection into two 20% symmetric photopeak windows

centered on 159 KeV and 122 KeV with a total scan duration of approximately 30 - 45

minutes [31].

A total of N = 642 DaTSCAN images from this database were used in the prepa-145

ration of the article. Specifically, the baseline acquisition from 448 subjects suffering

from PD and 194 normal controls was used. More details on the demographics of this

dataset are given in Table 1.
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Table 1: Demographics of the PPMI dataset

Group Sex N Age [STD]

Control F 65 58.85 [11.95]

M 129 62.00 [10.74]

PD F 160 61.49 [9.96]

M 288 62.89 [9.71]

3.2. Spatial Normalization

Spatial normalization is frequently used in neuroimaging studies. It eliminates150

differences in shape and size of brain, as well as local inhomogeneities due to indi-

vidual anatomic particularities. It is particularly key in group analysis, where voxel-

wise differences are analysed and quantified[32]. In this procedure, individual images

are mapped from their individual subject space (image space) to a common reference

space, usually stated using a template. The mapping involves the minimization of a155

cost function that quantifies the differences between the individual image space and the

template. The most frequent template is the Montreal Neurological Institute (MNI), set

by the International Consortium for Brain Mapping (ICBM) as its standard template,

currently in its version ICBM152[33], an average of 152 normal MRI scans in a com-

mon space using a nine-parameter linear transformation. A particular case of affine160

transformation is the similarity transformation, where only scale, translation and rota-

tion are applied. This is often used for motion correction and reorientation of brain

images with respect to a reference, and is frequently performed automatically on many

imaging equipment. The DaTSCAN images from the PPMI dataset are roughly re-

aligned. We will refer to this as non-normalized (given that it is only a similarity165

transformation that preserves shape) or ‘original’. We further preprocessed the images

using the SPM12[34] New Normalize procedure with default parameters, which ap-

plied affine and local deformations to achieve the best warping of the images and a

custom DaTSCAN template defined in [35]. Finally, the images were linearly down-

resampled to a final size of (57,69,57), the input size of the network.170
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3.3. Intensity Normalization

Intensity normalization is a technique that changes the global or local intensity

values of an image in order to ensure that the same intensity levels correspond to similar

physical measures. In nuclear imaging, the use of intensity normalization is key in

order to compare brain activity or function between subjects. A similar intensity should175

indicate a similar drug uptake and therefore, differences in these values may be due to

different pathologies[36, 37, 38].

Global intensity normalization in neuroimaging usually follows the expression:

Îi = Ii/In,i (1)

where Ii is the image of the ith subject in the dataset, Îi is the normalized image, and

In is an intensity normalization value that is computed independently for each subject.

In this work, we used the Integral Normalization[39], which sets In to the average180

of all values in a certain volume of the image, in an approximation of the integral. In

Parkinson, this is often set to the average of the brain without the specific areas: the

striatum; although the influence of these areas is often small, and it can be approxi-

mated by the mean of the whole image.

4. Methods185

4.1. Deep Ranking

Deep Ranking [26] is a method originally proposed to find a similar set of images

in a given, usually large image database and for reverse image search applications. The

method aims to learn a similarity function that allows to compute a distance measure-

ment among images. Unlike classical approaches based on the computation of invariant190

features [40, 41], DR uses a combination of deep learning architectures to compute fea-

tures and also to learn an embedding function f(·) that projects the input images into a

new space in which images from different classes are clearly separable. Moreover, the

value returned by that function can be used as a similarity measure between images, as

it is proportional to the distance between images in the embedding space.195
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Figure 1: Structure of the Deep Ranking Model proposed in [26]. CNN blocks contains multiscale convolu-

tional networks

DR model consists in training three identical networks in a weight-sharing fashion.

This implies that parameters learned during backpropagation are the same in the three

neural networks. However, these three networks are fed using images belonging to

different classes: the first, named query (q) network, uses an image from the class

to be retrieved from the database. The other two networks are fed with images from200

the same class (q+) and images from a different class (q−), respectively. Thus, after

forward propagation of the inputs, each network will provide a different output, but

the weights in the backpropagation are shared during the updating process. Finally, the

uppermost level implement a ranking layer that computes the loss function

loss = max{0, λ+D(f(q), f(q+))−D(f(q), f(q−))} (2)

which is a form of Hinge loss, where f(x) is the embedding function, λ is a regular-205

ization parameter and D is the Euclidean defined as:

D(a,b) = ‖a− b‖2 (3)

.

As a result, the embedding function f(·) is learnt by minimizing the loss function
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in equation 2. The original DR model is shown in Figure 1, where CNN blocks contain

a specific multiscale network developed to be invariant under scale transformations in210

the input layer.

4.2. Learning non-linear classifiers from DeepRanking

Deep Ranking can be seen as a method to learn a classifier in a space in which

samples may not be linearly separable. For the sake of clarity, let (xi, yi) be a pair

composed of samples (xi ∈ Rd) and their corresponding labels (yi ∈ {−1,+1}),215

where i = {1, ...n}.

Then, a linear classifier can defined as

g(xi) = W>xi + b (4)

where the classification outcome is based on sign(g(xi)).

The training of the classifier consists in calculating W and b, which defines the best

separating hyperplane as xiW> + b = 0. The computation of the hyperplane can be220

formulated in different ways. In Support Vector Machines, the hyperplane is computed

by maximizing the margin 2
‖W‖ to the hyperplane as

max
W

2

‖W‖
subject to W>xi + b =

≥ +1, if yi = +1

≤ −1, if yi = −1
(5)

The optimization of this objective function can also be formulated as the cuadratic

programing problem

min
W,ξ,b

1

2
‖W‖22 + λ

N∑
i=1

ξi subject to yi(W
Txi+b) ≥ 1−ξi, ξi ≥ 0, i = 1, ..., N

(6)

The previous equations define a linear classifier. It means that only linear separable225

classes can be correctly classified using this method. Therefore, when input data are

not linearly separable, it is necessary to compute a non-linear decision boundary in the

input space. Basically, it consists in finding an embedding function F : R → RK to

map the original data into a new space in which f(x) is linearly separable.
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Using the distance measurement D, it is possible to define an scoring function F230

F (q, p+, p−) = D(f(q), f(p+))−D(f(q), f(p−)), p+ ∈ P, p− ∈ N (7)

where P and N are the two classes to be classified. Thus, the scoring function F :

F (q) =

≥ 0, if q ∈ N (yi = +1)

< 0, if q ∈ P (yi = −1)
(8)

since f(·) embeds the samples xi into a new space in which the distance between sim-

ilar samples is proportional to their similarity in the original space. Deep Ranking

allows using a Deep Learning architecture to learn the embedding function via a loss

function that increases whenever dissimilar points present larger distances in the em-235

bedding space. This way, the minimization of the loss function ensures that the learnt

embedding function F maps similar samples close together in the embedding space.

We propose a different loss function, regarding the original Deep Ranking method

[26], which includes label definition (and not only the distance measurement) in the

following way:240

loss
(
F (q, p+, p−), yi

)
= max{0, λ− yiF (q, p+, p−)}, λ > 0 (9)

where λ is again the regularization parameter.

Thus, the proposed loss function (in equation 9) returns 0 when F (q, p+, p−) and yi

have the same sign, while increases linearly with F (q, p+, p−) when they have opposite

sign. The result of the minimization of this loss function is the learning of the linear

classifier F (·).245

4.3. Quartet sampling

As explained in Section 4.1, the input to the model consists of triplets containing

three samples: the query sample, a sample of the same class that the query sample (also

called p+) and a sample of different class that the query sample (also called p−). This

way, each input sample can be represented as t = {q, p+, p−}. Each component of a250
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triplet is processed by the corresponding siamese network as shown in Figure 1 and the

distance between the embeddings provided by the last layer is computed as indicated

in Equation 7. In our implementation, the original triplets are extended to quartets,

sets of four values including the triplets previously described and the corresponding yi

containing label information. Quartet generation from the original samples is addressed255

in the following way:

Algorithm: Quartet sampling algorithm

for ( q in P ) {

extract k random samples p+ ∈ P , p+! = q→ P+;

for ( p+ in P+ ) {

extract k random samples p− ∈ N → P−;

quartet1={Q, P+, P−, -1}

for ( q in N ) {

extract k random samples n+ ∈ N , n+! = q→ N+;

for ( n+ in N+ ) {

extract k random samples n− ∈ P → N−;

quartet2={Q, N−, N+, +1}

Quartet=concatenate{quartet1, quartet2}

where Q is the set of query samples.

4.4. Dealing with class imbalance by cost-sensitive loss

Demographic data (Table 1) shows that the PPMI database is highly imbalanced.

Since the number of PD subjects is more than twice the number of Controls, this may260

cause an important bias in the learned model, known as the accuracy paradox [42, 43].

There are different ways to mitigate the undesirable effect of class imbalance. The first

one consists in oversampling the under-represented class (actually, sampling with re-

placement). Although this is a common practice, it presents an obvious drawback:

the database does not have new samples (which is what we really need), but pre-265

exisiting samples are simply replicated. The second way consists in undersampling

the over-represented class (actually, deleting samples). This approach also has a clear

flaw, since fewer samples, and consequently, less information, is available to learn
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the model. Thus, in practice, over and under-sampling methods can be used in actual

problems only when a very large amount of sample data are available. As a result,270

they cannot be applied in most practical biomedical problems, where that large data

sets are not commonly available. A third method compensates the class imbalance by

applying cost-sensitive learning [44]. This approach assigns different weights to miss-

classification of samples from different classes, making the loss function sensitive to

the class.275

loss
(
F (q, p+, p−), yi

)
= max{0, 1− yiF (q, p+, p−) · ωi} (10)

where ωi is the weight assigned to class i, computed as

ωi =


#Ci

#Cj
if #Ci > #Cj

1 otherwise

(11)

and #Ci is the number of samples of class i.

4.5. Label Aided Deeep Ranking

In this work, we modify the basic structure of the Deep Ranking model proposed

in [26]. More specifically, we define three identical networks containing a Multilayer280

AlexNet based architecture [22] instead of the multiscale convolutional network used

in the original model. The spatial normalization procedure performed on the images

(see Section 3.2) avoids dealing with different scales and the cost sensitive hinge loss,

described in 10, works better than the original with imbalanced datasets.

Each multimodal network in Figure 2 contains a CNN block, an Alexnet-type con-285

volutional network composed of five 3D convolutional layers with RelU activations.

Maxpooling is used to reduce the data size throughout the network. Moreover, batch

normalization layers are included to ease convergence and dropout in hidden layers

regularizes the corresponding outputs, making the network less sensitive to specific

weights, which aims to prevent overfitting and thus to improve the generalization per-290

formance. Eventually, the network contains three fully-connected layers, ending-up

with a 512-neuron dense layer, corresponding to the number of features extracted from
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Figure 2: Deep Ranking architecture used in this work. The ranking layer uses a cost-sensitive loss function

which is also aware of the labels during the training stage.

the images. The last layer (`2 normalization) normalizes the outputs to limit the bounds

of the output space.

Figure 3: Layers contained inside each block of the Deep Ranking architecture used in this work.

Figure 4 shows the embedding learnt by our deep ranking model when trained using295

DaTSCAN images from CN and PD subjects, where a non-linear boundary is defined.

It shows a 3D projection of the last dense layer of the DR model by means of the

t-distributed Stochastic Neighbor Embedding (T-SNE) algorithm [45]. T-SNE allows

visualizing high-dimensional data by converting similarities between data points in the

high-dimensional space in distances in a lower-dimensional space. As a result of this300

mapping, CN and PD samples are differently distributed (radially) and a new sample
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Figure 4: Embeddings of CN and PD subjects performed by deep ranking method. Distances are normalized

to [0,1]

can be classified by comparing the mean distance to CN and PD training samples. As

shown in this figure, different classes are grouped in different clusters clearly separated

in the DR embedding space. Hence, it is possible to distinguish between classes by

measuring the distance from a new sample to both clusters. In fact, classification is305

addressed by measuring the mean distance from a test sample to all the training CN

and PD samples in the embedding space.

5. Results and discussion

In this section, classification results using the deep ranking based proposal are

shown. Classification experiments between Controls and PD of the PPMI database310

have been performed. All the architectures in this work have been implemented using

Keras[46] and the Python API, and run in a cluster containing 8 Intel(R) Xeon(R) CPU

E5-2640v4 at 2.40GHz and 3 Nvidia GTX1080Ti GPUs.

Firstly in this part, we explore the output of the network once trained. As explained

in Section 4.1, deep ranking consists of three siamese networks, individually evaluated315

but jointly updated. This way, once the network is trained, we can use one network to

evaluate the output obtained when the network is fed with a specific sample (since the

other networks will provide the same output).

A 3D representation of the data manifold shown in Figure 4 demonstrates that the
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mapping generated by the network is able to separate the two classes efficiently. In320

fact, two clusters radially distributed can be observed when the dimension of the output

space is reduced to 3. These clusters corresponds to CN and PD subjects. In order to

continue exploring the properties of the embedding space, we also computed the mean

activation of the network when CN and PD test subjects are used as input. This is

graphed in Figure 5, clearly showing different activation values for different classes.325
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Figure 5: Mean normalized activation of the last dense layer when the network is fed with CN and PD

subjects.

Moreover, in order to assess the differences between PD and CN subjects, we

present a boxplot (Figure 6) of the activation of each subject using the trained network.

As shown in Figures 4, 5 and 6, the network clearly produces different embedding

values for different classes and therefore, these values can be used to classify samples.

On the other hand, Figure 7 shows the classification accuracy provided by the model330

for different number of neurons at the top layer, corresponding to the embedding di-

mension. Although good classification results are obtained from 128 neurons, the best

results are provided when the embedding layer generates 512-dimensional vectors.

5.1. Evaluation

Classification performance has been assessed using the accuracy, sensitivity and335

specificity metrics considering a binary classification problem (i.e. CN vs. PD). These
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Figure 6: Boxplot computed for the activations of CN and PD subjects

values are derived from the confusion matrix, and then, from the number of True Pos-

itives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN) of the

predictions of the trained model. The definitions of the mentioned metrics can be found

in equations 12, 13 and 14.340

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Sensitivity =
TP

TP + FN
(13)

Specificity =
TN

TN + FP
(14)

The performance has been computed within a cross-validation scheme; in partic-

ular, stratified K-fold (k=10) cross-validation is used. Is it worth noting that using

stratified cross-validation ensures keeping the class distribution among folds [47]. Re-

garding the training process, the network was trained during 35 epochs with a batch

training algorithm, using a batch size of 8 samples. Figure 8 shows the convergence345

process across 70 iterations for both training and validation sets.

Unlike methods based on the extraction of specific features from the image such as

[48] and [4], or methods that use statistical techniques to select the most discriminative

voxels [29], CNN-based methods compute specific features for classification as a re-
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Figure 7: Classification accuracy obtained for different number of neurons at the embedding layer.

Table 2: Classification results using different methods

Method Accuracy Sensitivity Specificity AUC

LeNet [21, 27] 0.96 ± 0.04 0.84 ± 0.30 0.98 ± 0.02 0.94

AlexNet [22, 27] 0.97 ± 0.01 0.92 ± 0.09 0.97 ± 0.01 0.97

SVC 0.97 ± 0.01 0.92 ± 0.09 0.97 ± 0.01 0.98

Significance M. [29] 0.92 0.95 0.89 0.90

Brahim et. al[48] 0.92 0.94 0.91 -

Textural Patterns[4] 0.95 0.95 0.94 -

EMD [49] 0.95 0.95 0.94 0.94

Label Aided Deep Ranking 0.99 ± 0.01 0.97 ± 0.03 0.99 ± 0.01 0.99

sult of the learning process. Moreover, CNN generates features at different abstraction350

levels, related to discriminative information retrieved from the images. In addition, our

proposal process the 3D images, instead of using representative layers as in [49] which

exploit all the information contained on the image. Classification using AlexNet net-

work [21, 27] provides an AUC up to 0.97. Our proposal using three siamese AlexNet

network outperform the best outcome previously obtained, providing an AUC of 0.99.355

On the other hand, since the three networks share the weights, the computational bur-
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Figure 8: Evolution of the loss function for training and validatgion sets.

den associated to the training process is only slightly increased.

5.1.1. ROC Analysis

ROC analysis depicts the true positive rate (sensitivity) vs. false negative rate (1-

specificity) for different thresholds used in the classifier’s output score to decide the360

predicted class. In our case, the neural network does not produce the predicted class,

but only the mapping of an input into the embedding space. The prediction is eventually

computed by distance measurements from the test sample to the center of the clusters

computed during the training. Thus, let dCN and dPD be the mean distances from the

test sample to all the CN and PD training samples, respectively. We define the score365

of the classifier as D = DCN − DPD. Hence, the ROC curve can be computed by

ranking the score values for each class, and depicting each point depending on whether

it is a TP or FP[50]. ROC curves provides a good visual comparison of the performance

among different methods, and it has been used in many works [51, 52, 53, 37, 54]. ROC

curves provide another interesting statistic, namely Area Under ROC curve (AUC).370

This value indicates the probability that the classifier will rank a randomly chosen

positive sample higher than a randomly chosen negative one. In other words, AUC=1.0

indicate a perfect classifier while AUC=0.5 indicates a random classifier. Figure 9

shows the ROC curves for the proposed deep ranking method along with the curves
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for an AlexNET convolutional network, a LeNET convolutional network and a linear375

Support Vector Classifier (SVC). It is noteworthy that the AlexNET architecture used

in this comparison is identical to the AlexNET network included in the Deep Ranking

architecture. Additionally, AUC metrics are also shown at Table 2.

Figure 9: ROC curves obtained using different Deep Learning classification methods. Results using a Sup-

port Vector Classifier are also shown for comparison.

Figure 9 and Table 2 show that Deep Ranking outperforms the other compared

methods, providing a classification performance close to AUC=1.0. Thus, although the380

training of the deep ranking architecture requires more computation (in this case, the

inputs are propagated through three networks), it achieves a higher accuracy, deserving

the higher computational burden.

5.2. Exploring the network insights

Deep learning architectures are frequently critizised, being considered black boxes385

that merely classify samples with high accuracy, while sometimes it is not clear which

features are used to differentiate between classes. Analyzing the network activation

on a specific input is a way to take a step beyond the classification results. One usual

way to reveal the features computed during the training stage consist in exploring the

activation that an input belonging to a specific class produces in different parts of the390

network. The most frequent procedure in CNNs is to analyze the raw features at the

input layer that activate specific neurons at the output layer, which helps to understand

the information the network is using to classify samples (i.e. to detect differences
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between CN and PD subjects). This is addressed here by computing the saliency maps

[55]. Saliency maps are a representation of changes in the network output with respect395

to small changes in the input, being able to highlight those regions of the image that

play a more important role in the output. In classical CNN for classification, saliency

is obtained by computing the gradient of an output category with respect to the input.

In our case, the output is a dense layer that computes the representation of an input

in the embedding space, rather than being a categorical output containing few neurons400

(i.e. containing as many neurons as output categories). Thus, saliency is obtained by

computing the gradient of the representation in the embedding space with respect to

the input.

Figure 10: Saliency maps computed for control and PD subjects. The coronal slice with maximum activation

values is shown. The gradient is calculated from the most activated filter at the embedding layer

Figure 10 shows the mean saliency map computed for a Controls and PD subjects,

indicating the raw features (i.e. the voxels on which the network is actually focusing to405

compute the embedding that discriminates effectively between classes). As Figure 10

shows, different regions are used to compute the embedding in Controls and in PD sub-

jects, according to different activity in the dopaminergic area revealed by DaTSCAN

imaging. In Figures 11 and 12 we overlap the saliency maps of controls and PD re-

spectively to its respective DaTSCAN images, in order to highlight the areas that have410

a larger influence to compute the embeddings.
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Figure 11: Saliency maps computed for control and PD subjects, overlaying the DaTSCAN imaging. Some

relevant slices in the axial plane are shown.

Figure 12: Saliency maps computed for control and PD subjects, overlaying the DaTSCAN imaging. Some

relevant slices in the coronal plane are shown.

6. Conclusions and future work

In this paper a deep ranking based method is used to compute the embedding of

3D DaTSCAN images. The method used in this work includes three siamese 3D con-

volutional networks and a normalization lambda layer at the output, aiming to classify415

DaTSCAN images. Deep ranking aims to produce an embedding space in which con-

trols are far enough from PD to be able to clearly discriminate betweem them. In our

model, we introduced a new loss function that includes label information in the op-

timization process that defines the embedding space. Experiments performed using

data from the PPMI database shows that the proposed method outperforms previous420

statistical proposals and also outperforms recently proposed deep learning convolu-

tional models. In order to take a further step in the comprehension of the results pro-
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vided by the proposed model, we analyze the activations of the neural model for a

specific input. This has been addressed by computing the saliency maps, which show

the group of voxels in the original image that most contribute to the output. Thus,425

saliency maps depict the regions related to the dopamine transporters that reveal dif-

ferences between Controls and PD. Due to the good results obtained with the former

proposal in DaTSCAN image classification, we plan to apply the same model to the

diagnosis of other neurodegenerative diseases such as the Alzheimer’s disease using

Positron Emision Tomograpgy (PET) or Magnetic Resonance Images (MRI).430
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Álvarez-Sánchez, F. de la Paz López, J. Toledo Moreo, H. Adeli (Eds.), Natural

27

http://dx.doi.org/10.1109/CVPR.2014.180
http://dx.doi.org/10.1109/CVPR.2014.180
http://dx.doi.org/10.1109/CVPR.2014.180
http://dx.doi.org/10.1109/CVPR.2014.180
http://dx.doi.org/10.1109/CVPR.2014.180
https://app.dimensions.ai/details/publication/pub.1105862616
https://app.dimensions.ai/details/publication/pub.1105862616
https://app.dimensions.ai/details/publication/pub.1105862616
https://app.dimensions.ai/details/publication/pub.1105862616
https://app.dimensions.ai/details/publication/pub.1105862616
http://dx.doi.org/10.1142/s0129065718500351
http://dx.doi.org/10.1142/s0129065718500351
http://dx.doi.org/10.1142/s0129065718500351
https://app.dimensions.ai/details/publication/pub.1105862616
https://app.dimensions.ai/details/publication/pub.1105862616
https://app.dimensions.ai/details/publication/pub.1105862616
https://doi.org/10.1142/S0129065718500405
https://doi.org/10.1142/S0129065718500405
https://doi.org/10.1142/S0129065718500405
http://dx.doi.org/10.1142/S0129065718500405
http://dx.doi.org/10.1142/S0129065718500405
http://dx.doi.org/10.1142/S0129065718500405
https://doi.org/10.1142/S0129065718500405
http://www.sciencedirect.com/science/article/pii/S0925231213007005
http://www.sciencedirect.com/science/article/pii/S0925231213007005
http://www.sciencedirect.com/science/article/pii/S0925231213007005
http://www.sciencedirect.com/science/article/pii/S0925231213007005
http://www.sciencedirect.com/science/article/pii/S0925231213007005
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2013.01.054
http://www.sciencedirect.com/science/article/pii/S0925231213007005
http://www.sciencedirect.com/science/article/pii/S0925231213007005
http://www.sciencedirect.com/science/article/pii/S0925231213007005


and Artificial Computation for Biomedicine and Neuroscience, Springer Interna-

tional Publishing, Cham, 2017, pp. 324–333.

[31] P. The Parkinson Progression Markers Initiative, Imaging technical operations

manual, 2 edn (June 2010).565
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[51] A. Ortiz, F. Lozano, J. Górriz, J. Ramı́rez, F. Martı́nez-Murcia, Discriminative

sparse features for Alzheimer’s disease diagnosis using multimodal image data,635

Current Alzheimer Research 15 (1) (2018) 1–24.
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