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Abstract

A huge class of nonlinear dynamic systems can be approximated by the Nonlinear AutoRegressive with

eXogenous inputs (NARX) models. This paper proposes a novel method, Sparse Augmented Lagrangian

(SAL), for NARX model variable selection and parameter estimation. Firstly, Split Augmented Lagrangian

Shrinkage Algorithm (SALSA) is applied to produce some intermediate models with subsampling technique,

and then only the model terms with high selecting probability are chosen into the final model, followed by

the model parameter estimation via SALSA. The model sparsity and algorithm convergence can be guaran-

teed through theoretical analysis. Two nonlinear examples and one real-world application from the process

industry are used to demonstrate the effectiveness and advantages of the proposed method in comparison to

several popular methods.

Keywords: System Identification, Stability Selection, NARX, SALSA

1. Introduction

A huge class of nonlinear systems can be well represented using NARX models. When all the model

parameters are given a prior, the NARX model can be converted into a linear-in-the-parameters structure

model and then a lot of algorithms can be used to determine the model structure. The model structure

determination is the key challenge for system identification since it is difficult to select variables especially

when the terms are highly correlated [1, 2, 3]. To address this problem, many variable selection methods

have been proposed to select a subset from the candidate dictionary.

Selecting important terms from the predetermined dictionary can be considered as building a sparse model

with good generalization performance [4]. This is the typical subset selection algorithm and forward selection

is one of the most popular categories. The forward selection algorithms begin with the empty model, and

then gradually select one term at a time from the predetermined dictionary until certain stopping criterion

is satisfied [5]. The popular forward selection algorithms include orthogonal matching pursuits (OMP) [6],

orthogonal least squares (OLS) [7], etc. However, the forward selection algorithms may not be optimal [8],
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various modified algorithms were proposed for improving model compactness, such as optimized orthogonal

matching pursuits (OOMP) [9], iterative orthogonal forward regression (iOFR) [10], etc.

Alternatively, l1 and l2 regularization methods are often used to build sparse models, and l1 regularization

tends to find a more sparse solution comparing with l2 regularization. The Least absolute shrinkage and

selection operator (Lasso) is one of the most popular l1 optimization algorithms, which can prevent some

redundant model terms being included into the final model. This is achieved by not only minimizing the

residual sum of squares but also the sum of the absolute value of model term coefficients. However, the

obtained model may be suboptimal especially when the columns of the predetermined dictionary are highly

correlated. In addition, the l1 minimization methods may not be computationally efficient especially when

they employ third party solvers, such as the matlab software for convex optimization [11].

To find a more sparse solution, various improved regularization methods have been proposed [12, 13].

Most modified algorithms are iteratively l1 reweighted methods since it has been shown that weighted l1

minimization methods tend to perform better than conventional l1 regularization technique under certain

conditions [13]. There are also some proposed methods under the Bayesian framework to produce a sparse

solution by introducing hyper prior [14, 15]. Recently, SALSA algorithm is originally proposed to solve the

l1 minimization problem in the field of image processing [16, 17, 18]. It converts the original optimization

problem into several subproblems which can be addressed separately without the third party solver. Actually,

SALSA is an instance of Alternating Direction Method of Multipliers which has been widely used as a

distributed optimization and statistical learning method [19]. The SALSA combines augmented Lagrangian

and dual decomposition method, which can address constrained optimization problems in a computationally

efficient manner. SALSA has not been used for NARX modelling. In this paper, it is found that SALSA

may not build a sparse NARX model. This may be due to the high correlation among NARX model terms.

Sampling technique is another popular technique to enhance the performance of subset selection meth-

ods. For example, the Markov chain Monte Carlo (MCMC) sampling method is used for NARX model

identification to obtain a more accurate solution [20]. Most recently, stability selection was proposed as a

promising but a general approach to improve model sparsity. The stability selection was originally proposed

in statistics, which solves the structure determination problem by using subsampling approach. Specifically,

only the highly selected terms in those intermediate models generated with subsampling technique will be

selected into the final model. Stability selection can not only help to select the number of variables but also

provide a new variable selection scheme [21].

In this paper, SAL method is proposed to build a more compact model without using third party solver.

With random subsampling technique, SALSA is used to produce some intermediate models, then only choose

the highly selected terms of those intermediate models into the final model. Finally, SALSA is applied again

for parameters estimation. The proposed SAL method enjoys the advantages of both stability selection and

SALSA, which are summarized as follows

• First, SAL is easy to implement since it is under the SALSA framework, which means SAL converts

2



the l1 optimization problem into several subproblems to be separately solved without the third party

solver.

• Second, stability selection can be used to produce a more compact model which only includes the highly

selected terms.

• Third, with the random subsampling technique, it is not necessary to use all the collected data for

system identification. This is especially useful to reduce computational time when processing the large

data.

The model sparsity and algorithm convergence can be guaranteed through theoretical analysis. Two nonlinear

examples and one real-world application from the process industry are used to show the effectiveness of the

proposed method.

The paper is structured as follows. In section 2, NARX model and SALSA are briefly reviewed. Then the

idea of SAL is introduced. Section 4 gives the theoretical analysis of SAL. In the next section, two nonlinear

examples and one real data set from the process industry system are used to show the performance of SAL.

Finally, we give some conclusions.

2. Preliminary

2.1. NARX model

The linear-in-the-parameters structure for NARX can be described by a combination of some unknown

functions given by [7] :

y(t) = f(y(t− 1), · · · , y(t− ny), u(t− 1), · · · , u(t− nu)) + ξ(t)

= f(x(t)) + ξ(t) (1)

where u(t), y(t) and ξ(t) represent system input, output and noise at the time interval t = 1, 2, · · · , N ,

respectively, with N being the length of training data. nu and ny are the largest lags of input and output.

f(·) is the unknown function. For convenience, rewrite the model input x(t) = {y(t− 1), · · · , y(t−ny), u(t−

1), · · · , u(t− nu)} as x(t) = {x1(t), · · · , xr(t)} with r = nu + ny.

The NARX model given by (1) can be rewritten as a linear weighted sum of some unknown nonlinear

functions:

y(t) =

M∑
i=1

pi
(
x(t)

)
Θi + ξ(t) (2)

where pi is the nonlinear function and Θi is the coefficient to be estimated for i = 1, · · · ,M . The equation

(2) can be represented as the matrix format

y = PΘ + ξ (3)
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with

y =


y(1)

y(2)
...

y(N)

 , Θ =


Θ1

Θ2

...

ΘM

 , ξ =


ξ(1)

ξ(2)
...

ξ(N)

 (4)

Here y, Θ and ξ represent the system output, parameter being estimated and residual, respectively. The

N ×M candidate dictionary P is given as

P = [p1, · · · ,pM ] (5)

with pi = [pi(x(1)), · · · , pi(x(N))]T

To produce a sparse solution, the regression problem (3) is generally solved from the viewpoint of the

following l1 minimization problem

Θ̂ = arg min
Θ

{1

2
‖y −PΘ‖22 + λ‖Θ‖1

}
(6)

In recent years, SALSA is proposed as an alternative method to solve the problem (6) by converting the

optimization problem into several suboptimization problems solved separately without the third party solver.

2.2. SALSA

2.2.1. Converting into subproblems

The l1 minimization problem (6) can be rewritten as

min
Θ∈RM

f1(Θ) + f2(Θ) (7)

with f1(Θ) = 1
2 ||y−PΘ||22 and f2(Θ) = λ‖Θ‖1. Introduce a new variable vector v to replace Θ in function

f2, then we have the following constrained problem

min
Θ,v∈RM

f1(Θ) + f2(v)

s.t. v = Θ (8)

According to the constraint of the problem (8), we have ‖Θ− v‖22 = 0, and the optimization problem can be

redescribed as follows:

min
Θ,v∈RM

f1(Θ) + f2(v) +
µ

2
‖Θ− v‖22

s.t. v −Θ = 0 (9)

where µ is the Lagrange multiplier. The value of µ has an impact on the solution of problem (9), namely,

increasing µ makes the solution gradually approximate that of problem (8).

With Augmented Lagrangian (AL) method, problem (9) can be transformed into the following uncon-

strained optimization problem

Lµ(Θ, v, u) = f1(Θ) + f2(v)− uT (Θ− v) +
µ

2
‖Θ− v‖22 (10)
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where u is the dual variable. Replace u by variable d = u/µ, then problem (10) can be solved by alternately

minimizing the following subproblems [16]

Θ̂k+1 = arg min
Θ

f1(Θ) +
µ

2
‖Θ− vk − dk‖22 (11)

vk+1 = arg min
v
f2(v) +

µ

2
‖Θ̂k+1 − v − dk‖22 (12)

dk+1 = dk − (Θ̂k+1 − vk+1) (13)

3. The proposed method

Although the original SALSA provides an alternative way to solve the l1 minimization problem, it may

not produce a sparse solution. In this paper, stability selection is introduced to select the highly selected

terms in the intermediate models produced by SALSA, leading to a parsimonious model. The proposed SAL

algorithm consists of two procedures, namely variable selection and parameter estimation. The first stage

of SAL aims to select variables for finding a suitable subset of some possible variables. Then SALSA is

further applied for parameters estimation at the second stage. It is worth pointing out that variable selection

and parameter estimation may be simultaneously implemented by SALSA at second stage in certain cases,

leading to a more compact model by discarding falsely selected terms. The main idea of SAL shows as Fig.1.

Firstly, we give the exact solutions of subproblems.

3.1. Solving the subproblems

The estimation Θ̂ can be obtained by solving the following subproblem

arg min
Θ

1

2
‖PΘ− y‖22 +

µ

2
‖ Θ− vk − dk ‖22 (14)

Define the cost function of problem (14) as J(Θ) which can be rewritten as the following format

J(Θ) =
1

2
(PΘ− y)T (PΘ− y) +

µ

2
(Θ− vk − dk)T (Θ− vk − dk) (15)

The optimal solution of the equation (15) satisfies

∇J(Θ) = PTPΘ−PTy + µ(Θ− (vk + dk)) = 0 (16)

Then Θ̂k+1 can be calculated by

Θ̂k+1 = (PTP + µI)−1
(
PTy + µ(vk + dk)

)
(17)

Given Θ̂k+1, vk+1 can be obtained from the following suboptimization problem

arg min
v
λ‖v‖1 +

µ

2
‖ Θ̂k+1 − v − dk ‖22 (18)

The problem (18) can be exactly solved by introducing the soft thresholding operator Sµ/λ [22]

Sµ/λ(x) = max(0, x− µ/λ)−max(0,−x− µ/λ) (19)
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with λ being the penalty parameter. With the operator Sµ/λ, the estimation of vk+1 can be obtained by

vk+1 = max
(
0, (Θ̂k+1 − dk)− µ/λ

)
−max

(
0,−(Θ̂k+1 − dk)− µ/λ

)
(20)

Given Θ̂k+1 and vk+1, then dk+1 can be calculated by

dk+1 = dk − (Θ̂k+1 − vk+1) (21)

3.2. Variable selection

Stability selection was proposed for choosing a proper amount of terms from the dictionary. This is

achieved by using subsampling method which yields a new way for variable selection. For better understand-

ing, giving some definitions is necessary.

Define that Ns represents the number of random subsampling and Ns = N/2 is recommended according to

literature [21]. In addition, suppose ỹj and P̃j represent the jth subsampling data of system output and input

for j = 1, · · · , n, then we have ỹj ∈ RNs and P̃j ∈ RNs×M . It is worth noting that for every subsampling

data, SALSA runs the same procedure to produce an intermediate model. With these statements, the specific

procedure of variable selection is summarized as follows.

Here, suppose that SALSA is used to build the jth intermediate model with the subsampling data P̃j and

ỹj , j = 1, · · · , n. Specifically, at the first iteration (with v0 = 0 and d0 = 0), Θ̂1 can be calculated

Θ̂1 = (P̃T
j P̃j + µI)−1P̃T

j ỹj (22)

Given Θ̂1, then v1 and d1 can be alternately estimated

v1 = max
(
0, Θ̂1 − µ/λ

)
−max

(
0,−Θ̂1 − µ/λ

)
d1 = −(Θ̂1 − v1) (23)

At the k + 1th iteration, Θ̂k+1, vk+1 and dk+1 can be updated

Θ̂k+1 = (P̃T
j P̃j + µI)−1

(
P̃T
j ỹj + µ(vk + dk)

)
vk+1 = max

(
0, (Θ̂k+1 − dk)− µ/λ

)
−max

(
0,−(Θ̂k+1 − dk)− µ/λ

)
dk+1 = dk − (Θ̂k+1 − vk)

(24)

The following assumption will be firstly introduced before giving the stopping criterion.

Assumption 1: Suppose the signs and locations of nonzero coefficients of Θ̂i(i = 1, 2, · · · , k) obtained

during the iterative process are different before the coefficients converge. In addition, assume that at the

k + 1th step, Θ̂k+1 could converge to Θ∗ as long as with suitable setting of λ and µ.

According to Assumption 1, the procedure of SALSA stops when it satisfies

sign(Θ̂k+1) = sign(Θ̂k) (25)

lock+1 = lock (26)
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Then the term with non-zero coefficient will be selected into the intermediate model defined as Modelj =

[pi : Θ̂i 6= 0], where Θ̂i is the ith element of Θ̂k+1.

Remark 1: Although there might be no exact zero coefficients at each iterative step, comparing with other

coefficients, some weights might be very small, e.g., ‖Θi‖22 � ‖Θ‖22. In this case, to obtain a compact model,

those small weights lower than a predetermined threshold will be pruned at each iteration.

Suppose sn(pi) represents the number of term pi selected by all n intermediate models. Then the term

selection frequency sf(pi) is defined as

sf(pi) =
sn(pi)

n
(27)

where sf(pi) ranges from 0 to 1 . If sf(pi) is larger than the predetermined threshold δthr with 0 ≤ δthr ≤ 1,

which indicates the term pi has a high selection frequency and should be selected.
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Figure 1: The main idea of SAL algorithm. Here Ps and Pe represent model terms sets of variable selection and parameter

estimation stage, respectively.

A simple example is used to illustrate how the stability selection works. Suppose the candidate dictionary

includes six model terms P = [p1,p2,p3,p4,p5,p6]. With subsampling technique, suppose the following five

intermediate models are produced by SALSA shown as Table 1.

Table 1: The intermediate models produced by SALSA

Model Selected Terms

Model1 [p1,p3,p5]

Model2 [p1,p3,p6]

Model3 [p1,p3,p4,p5]

Model4 [p1,p3,p5]

Model5 [p1,p3,p5,p6]

Remark 2: SAL initially builds multiple intermediate models using different training data generated by

subsampling, where the amount of those intermediate models is equal to the number of subsamplings. In

most cases, 100 subsamplings are sufficient, say n = 100. The proposed SAL method only includes highly
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frequently selected terms into the final model but excludes those terms with low selecting probabilities. This

makes a contribution to build a spare model.

Table 2: The selection frequency of each term

Term p1 p2 p3 p4 p5 p6

sn(pi) 5 0 5 1 4 2

sf(pi) 1 0 1 0.2 0.8 0.4

Following the results in Table 1, we can calculate the selection frequency of each model term shown as

Table 2. Generally, the range of δthr is recommended from 0.6 to 0.9 by the literature [21]. Therefore, given

a predetermined threshold, say δthr = 0.6, then the term p1,p3,p5 will be selected, while the term p2,p4,p6

will be discarded since their low selection frequency. Then the final model obtained at variable selection stage

can be described as Ps = [p1,p3,p5].

3.3. Parameter estimation

The coefficients of those selected variables will be further estimated with SALSA. Suppose that Ps =

[p1,p2, · · · ,pns ] is the set of selected terms pi with sf(pi) ≥ δthr and Θs = [Θ1,Θ2, · · · ,Θns ]
T is the set

including related coefficients. Here Ps ∈ RN×ns , Θs ∈ Rns and ns is the number of the selected terms. Since

most terms of the dictionary are redundant and the related coefficients should be zero in the final model,

then we can rewrite P and Θ as P = [Ps,0] and Θ =

 Θs

0

. Then the equation (3) can be represented as

y = PsΘs+ξ, where y represents system output and ξ represents the residual. With subsampling technique,

we have ỹ ∈ RNs and P̃s ∈ RNs×M . For convenience, suppose Θ̂e is the estimation of Θs. Then Θ̂e can be

iteratively estimated as following

Θ̂e
k+1 = (P̃T

s P̃s + µI)−1
(
P̃T
s ỹ + µ(vk + dk)

)
vk+1 = max

(
0, (Θ̂e

k+1 − dk)− µ/λ
)
−max

(
0,−(Θ̂e

k+1 − dk)− µ/λ
)

dk+1 = dk − (Θ̂e
k+1 − vk)

(28)

Here Pe = [pi : Θ̂i 6= 0] is the model set obtained at parameter estimation stage and Θ̂i is the ith element of

Θ̂e.

Remark 3: Both pruning and stability selection can contribute to model sparsity. Pruning can remove the

terms little or negative contribution to the model performance. For example, some redundant terms may

fit into noise when they enter the model. The small term coefficients indicate their insignificant impact on

the model performance. These noisy terms can be excluded with the pruning technique. Stability selection

excludes the redundant terms according to the frequency of presence in all the intermediate models. For

example, the redundant terms with low selecting probability can be removed by stability selection, no matter

their coefficients are large or small. The use of both pruning and stability selection can significantly improve

model sparsity, since they are compensatable to each other. For example, in the case of terms with large
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coefficients but low selecting probability, stability selection instead of pruning takes effects. In the case of

terms with small coefficients but high selecting probability, pruning other than stability selection takes effects.

It is worth pointing out that model Ps generated at the first stage (variable selection) may not be optimal,

especially when certain correlate terms with high cross correlation weights. In this case, the redundant terms

can be further penalized due to the use of SALSA at the second stage (parameter estimation), leading to a

more compact model.

3.4. The main procedure of SAL

With SALSA and stability selection, the proposed SAL method can produce a more compact model. The

main procedure of SAL is summarized as Algorithm 1.

Algorithm 1 : SAL

Variable selection stage:

1: Set µ, λ and v0 = d0 = 0

2: For j=1:n

3: random subsampling → ỹj and P̃j

4: Repeat

5: Θ̂k+1 = (P̃T
j P̃j + µI)−1

(
P̃T
j ỹj + µ(vk + dk)

)
6: vk+1 = max

(
0, (Θ̂k+1 − dk)− µ/λ

)
−

max
(
0,−(Θ̂k+1 − dk)− µ/λ

)
7: dk+1 = dk − (Θ̂k+1 − vk+1)

8: k ← k + 1

9: until stopping criterion (25) is satisfied.

10: end

11: if sf(pi) ≥ δthr
then term pi is selected.

12: end

Parameter estimation stage:

13: random subsampling → ỹ and P̃s

14: Repeat

15: Θ̂e
k+1 = (P̃T

s P̃s + µI)−1
(
P̃T
s ỹ + µ(vk + dk)

)
16: vk+1 = max

(
0, (Θ̂e

k+1 − dk)− µ/λ
)
−

17: max
(
0,−(Θ̂e

k+1 − dk)− µ/λ
)

18: dk+1 = dk − (Θ̂e
k+1 − vk)

19 k ← k + 1

20: until stopping criterion (25) is satisfied.
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Remark 4: The new SAL method first determines the model terms via the stability selection and then

estimates the model parameters via the SALSA. Two steps have no dependence with each other and the

proposed method is not restricted to SALSA for parameter estimation. In other words, the proposed method

can employ other parameter identification methods, such as bias-eliminated Least Squares [23], iteratively

reweighted Least Squares methods [24] or penalized MM-estimators [25]. Although these methods can be

used for parameter estimation, they are out of scope of this paper and will be used for future study.

Remark 5: Although the proposed SAL is able to reduce the redundant terms, SAL requires more compu-

tations comparing with the original SALSA since SAL applies subsampling technique. If the subsampling

times are chosen as 100, namely n = 100, there are 100 intermediate models. As each intermediate model

only use half data, it requires approximately 1/4 computations, compared to using the whole data with

SALSA method. Therefore, SAL constructing 100 intermediate models, needs about 25 times of SAL-

SA with the whole data. For the standard SALSA, the solution is computed directly, which means one

must compute (P̃T
j P̃j + µI)−1

M×M and other three matrix multiplications. Thus directly solving the solution

Θ̂k+1 = (P̃T
j P̃j + µI)−1

(
P̃T
j ỹj + µ(vk + dk)

)
, the computation cost T measured by the amount of multiplies

is T = O(M3 + M2 + MNs + 2M). The leading cost of each iteration of SALSA will be either O(M3)

or O(MNs). In the experiments, the predetermined value of Ns is smaller than M2, so each iteration has

O(M3) cost.

4. Theoretical analysis

4.1. The convergence

The proposed SAL is under the SALSA framework. Therefore, if SALSA is convergent then we can get

the same conclusion for SAL.

Theorem 1 [26]: Consider problem (7), where f1 and f2 are closed, proper convex functions. Suppose

arbitrary µ > 0 and v0, d0 ∈ RM . Let {ηk ≥ 0, k = 0, 1, · · ·∞} and {νk ≥ 0, k = 0, 1, · · ·∞} be two sequences

that satisfy

∞∑
k=0

ηk <∞ and

∞∑
k=0

νk <∞ (29)

Consider three sequences {Θ̂k ∈ RM , k = 0, 1, · · · }, {vk ∈ RM , k = 0, 1, · · · } and {dk ∈ RM , k = 0, 1, · · · }

that satisfy

ηk ≥
∥∥∥Θ̂k+1 − arg min

Θ
f1(Θ) +

µ

2
‖Θ− vk − dk‖22

∥∥∥ (30)

νk ≥
∥∥∥vk+1 − arg min

v
f2(v) +

µ

2
‖Θ̂k+1 − v − dk‖22

∥∥∥ (31)

dk+1 = dk + Θ̂k+1 − vk+1 (32)

If problem (7) has a solution, the sequence {Θ̂k} converges, namely, Θ̂k → Θ∗, where Θ∗ is a solution of

(7). However, if there is no solution for (7), then at least one of {vk} or {dk} diverges.
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Here we give the convergence proof of SALSA based on Theorem 1. According to the proof of the

literature [16], SALSA is convergent if the following two subproblems

arg min
Θ

f1(Θ) +
µ

2
‖Θ− vk − dk‖22 (33)

and

arg min
v
f2(v) +

µ

2
‖ Θ̂k+1 − v − dk ‖22 (34)

can be solved exactly. Since f1(Θ) = 1
2‖PΘ − y‖22 and f2(v) = λ‖v‖1, the solutions of subproblems above

can be solved exactly as mentioned in section 2.2.2, namely

Θ̂k+1 = (PTP + µI)−1
(
PTy + µ(vk + dk)

)
(35)

and

vk+1 = max
(
0, (Θ̂k+1 − dk)− µ/λ

)
−max

(
0,−(Θ̂k+1 − dk)− µ/λ

)
(36)

Then the convergence of SALSA is guaranteed since subproblems (9),(10) can be solved exactly [16]. There-

fore, the proposed SAL algorithm is also convergent as aforementioned.

4.2. The number of falsely selected terms

Although stability selection only select the highly selected terms of the intermediate models, redundant

terms may also be included into the final model. Generally, the redundant terms selected into the final model

are considered as the falsely selected terms and the amount can be bounded. For analyzing the amount

of falsely selected terms, some basic concepts should be introduced in advance. Suppose S and Z are set

of important and redundant terms, respectively, where S = {k : Θk 6= 0} and Z = {k : Θk = 0} with

k = 1, 2, · · · ,M . Meanwhile, Ŝ = {k : Θ̂k 6= 0} is considered as the estimation of the set S.

Remark 6: For the variable selection procedure of SAL algorithm, there are two tuning parameters λ ∈ Λ ⊆

R+ and µ ∈ Λ ⊆ R+, respectively. Here Λ is the set which contains the value of tuning parameters. Even

if the value of µ is fixed, for every λ ∈ Λ, we obtain an estimation of the set Ŝ which is marked as Ŝλ and

vice versa. Therefore, tuning two parameters simultaneously makes the variable selection and the related

theoretical analysis more intractable. For analyzing the amount of falsely selected terms, we set µ = λ, such

that a certain bound can be analyzed theoretically under certain assumptions.

For a given λ ∈ Λ and a random subsample Is with size Ns, we can get the selected set Ŝλ(Is) and let

Ŝλ=Ŝλ(Is). The following definitions and assumption are also necessary for analyzing the amount of the

falsely selected variables at the first stage.

Definition 1 (Selection probabilities): For every set K ⊆ {1, 2, · · · ,M}, Π̂λ
K represents the probability

of K being in the structure estimate set Ŝλ(Is), which is defined as

Π̂λ
K = P (K ⊆ Ŝλ(Is)) (37)

11



where P is with respect to random subsampling. Meanwhile, Π̂λ
k represents the selection probability of every

variable being in the set Ŝλ(Is) for k = 1, · · · ,M .

Definition 2 (Stable variables): For given λ ∈ Λ, the set Ps including stable variables is defined as

Ps = {k : max
λ∈Λ

Π̂λ
k ≥ δthr} = {k : sf(pi) ≥ δthr} (38)

Definition 3 (False selections): Define ŜΛ = ∪λ∈ΛŜ
λ if tuning the value of λ and q is the average amount

of the selected variables with q = E(|ŜΛ(Is)|). Then the amount of falsely selected variables can be defined

V = |Ps ∩ Z| (39)

Assumption 2: For λ ∈ Λ, suppose that

E(|S ∩ Ŝλ|)
|S|

≥ E(|Z ∩ Ŝλ|)
|Z|

(40)

which means the random guessing is not better than the original procedure.

Theorem 2: With the stronger Assumption 2, the average amount of the falsely selected terms in model

set Ps could be bounded by the following inequality

E(V ) ≤ 1

2δthr − 1

q2

M
(41)

Proof of Theorem 2: For simplifying the proof, define ZΛ = Z ∩ ŜΛ is the set of redundant variables in set

Z selected into ŜΛ, similarly, UΛ = S ∩ ŜΛ is the set of variables in set S selected into ŜΛ. Then the average

amount of falsely selected terms can be calculated by E(|ZΛ|) = E(|ŜΛ|)−E(|UΛ|) = q−E(|UΛ|). According

to Assumption 2, E(|UΛ|) ≥ E(|ZΛ|)|S|/|Z|, then we have (1 + |S|/|Z|)E(|ZΛ|) ≤ q by eliminating variable

E(|UΛ|) . With simple operations, then we have |Z|−1E(|ZΛ|) ≤ q/M . Here assume that for λ ∈ Λ, the

distribution of {1k∈Ŝλ , k ∈ Z} is exchangeable, then we further obtain

(k ∈ ŜΛ) = E(|ZΛ|)/|Z| ≤ q/M (42)

for k ∈ Z. With the inequality (42), the sample splitting will be further introduced in the following part for

proving the inequality (41).

Suppose I1 and I2 are two random subset obtained by random splitting the data into two non-overlapping

part with size Ns and I1∩I2 = ∅. Similar with the definition of selection probability, define the simultaneously

selection probability

Π̂sim,λ
K = P (K ⊆ Ŝsim,λ) (43)

where P is with respect to random sample splitting and Ŝsim,λ = Ŝλ(I1)∩Ŝλ(I2) represents the simultaneously

selected set.

If P (K ⊆ ∪λ∈ΛŜ
λ) ≤ ε for some Λ ⊆ R+, then P (maxλ∈Λ Π̂sim,λ

K ≥ ξ) ≤ ε2/ξ for 0 < ξ < 1 [21].

Therefore, we have P (maxλ∈Λ Π̂sim,λ
k ≥ ξ) ≤ (q/M)2/ξ for k ∈ Z. Since the inequality Π̂sim,λ

K ≥ 2Π̂λ
K − 1

12



holds, it follows P (maxλ∈Λ Π̂λ
k ≥ δthr) ≤ P ((maxλ∈Λ Π̂sim,λ

k + 1)/2 ≥ δthr) ≤ (q/M)2/(2δthr − 1). Finally,

the inequality E(V ) =
∑
k∈Z P (maxλ∈Λ Π̂λ

k ≥ δthr) ≤ 1
2δthr−1

q2

M is approved.

Remark 7: The Theorem 2 shows that the number of falsely selected variables at the first stage can be

bounded under certain assumption. Meanwhile, the second stage may further discard falsely selected terms

in certain cases as aforementioned. Therefore, the average amount of redundant terms selected into the final

model set Pe is no more than 1
2δthr−1

q2

M .

5. Simulation

In this section, two nonlinear examples and one simulation data set from the process industry are used to

test the effectiveness of the proposed method. SAL is also compared with several popular methods including

OFR, Lasso and SALSA in terms of their performance. For fair comparison, each algorithm is repeated many

times and the best result is selected as the final model.

5.1. Example 1

First, consider the nonlinear benchmark example [27]:

z(t) = 0.2z3(t− 1) + 0.7z(t− 1)u(t− 1)

+ 0.6u2(t− 2)− 0.5z(t− 2)

− 0.7z(t− 2)u2(t− 2)

y(t) = z(t) + e(t). (44)

where u(t) represents the system input and z(t) represents the output at interval t. A uniformly distributed

white noise u(t) is used to excite the system with u(t) ∈ [-1,1]. The system output z(t) is disturbed by a

Gaussian noise sequence e(t). The signal-to-noise ratio is chosen as 15dB. The model input of the unknown

nonlinear system includes the delayed input and output, namely {z(t − 1), z(t − 2), z(t − 3), z(t − 4), u(t −

1), u(t−2), u(t−3)}. Total 3000 input and output samples are generated for training and testing. The Mean

Absolute Error (MAE) is used to test the model performance [28]

MAE =
1

M

M∑
i=1

∣∣Θi − Θ̂i

∣∣ (45)

where Θ̂ is the estimation of the true coefficients Θ.

Here, the parameters of OFR, Lasso, SALSA and SAL are defined and determined as ρ = 0.031, λL =

0.0042, λS = 0.215 and λSA = 0.3. All the results are listed in the Table 3, it can be seen that although the

coefficients of important terms are close to the true value, OFR selects a redundant term z(t−4)u(t−2)2 into

the final model. The reason is that according to the error reduction ration (ERR) criterion, the unimportant

term z(t− 4)u(t− 2)2 is firstly selected into the final model due to its largest ERR value. For SALSA, it can

not produce a sparse model, although most coefficients of other 115 variables are small. In addition, Lasso

13



Table 3: The simulation results for example 1

Algorithm Selected Terms Coefficient MAE

z(t− 4)u(t− 2)2 -0.0057

u(t− 2)u(t− 2) 0.6008

OFR z(t− 2) -0.4981 0.0002

u(t− 1)z(t− 1) 0.6951

z(t− 2)u(t− 2)2 -0.6989

z(t− 1)3 0.1940

z(t− 4)u(t− 2)2 0.0023

u(t− 2)u(t− 2) 0.5800

Lasso z(t− 2) -0.4956 0.0011

u(t− 1)z(t− 1) 0.6700

z(t− 2)u(t− 2)2 -0.6527

z(t− 1)3 0.1723

z(t− 2) -0.5121

SALSA u(t− 1)z(t− 1) 0.7493

u(t− 2)u(t− 2) 0.5970

z(t− 2)u(t− 2)2 -0.6376 0.0290

z(t− 1)3 0.1686

other 115 terms
...

z(t− 2) -0.4979

SAL u(t− 1)z(t− 1) 0.6971

u(t− 2)u(t− 2) 0.6007 0.0001

z(t− 2)u(t− 2)2 -0.6970

z(t− 1)3 0.1995

Figure 2: Box plots of the number of model terms produced by four algorithms for example 1.
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also includes a redundant term into the final model, while SAL is able to build an optimal model without

redundant terms and the parameter estimation of SAL is accurate with MAE being 0.0001.

To test the sensitivity of algorithm to noise, Monte Carlo simulation with 100 repetitions are carried out

and the Box plots of the number of model terms are shown in Fig.2. From this figure, one can get the same

conclusion with that of Table 3. One can see that in most cases, both SAL and Lasso can produce a more

compact model comparing with other algorithms. In addition, OFR often select redundant terms into the

model and SALSA can not produce a sparse model.

5.2. Example 2

Consider another sparse nonlinear system [29]:

z(t) = −0.3u(t− 2) + 0.8z(t− 1) + u(t− 1)

− 0.4u(t− 3) + 0.25u(t− 1)u(t− 2)

− 0.3u3(t− 1) + 0.24u3(t− 2)

− 0.2u(t− 2)u(t− 3)

y(t) = z(t) + e(t). (46)

where u(t) represents the system input and z(t) represents the output at interval t. A white noise u(t) ∈ [−1, 1]

is used as the system input with uniform distribution and SNR value of 15dB.

There are total 3500 samples generated and the delayed input and output {z(t−1), z(t−2), u(t−1), u(t−

2), u(t− 3)} are used for model input. These delayed inputs and outputs can form a model term candidate

pool with 56 polynomial terms. The MAE is also used to test the model performance. The parameters

are determined as ρ = 0.031, λL = 0.0012, λS = 0.019, and λSA = 0.01, respectively and all results are

listed in Table 4. One can see that SAL has the smallest MAE with value being 0.0015, which means the

parameter estimation of SAL is more accurate than that of other algorithms. In addition, SAL builds a

more compact model without redundant terms comparing with other methods. In this numerical example,

SAL implements variable selection and parameter estimation simultaneously at the second stage, leading to

a more parsimonious model.

Again, Monte-carlo simulation repeated 100 times is carried out and all the results are shown in Fig.3.

From the figure, one can also get the conclusion that in most cases, SAL can build a more compact model

comparing with OFR, Lasso and SALSA method.

5.3. Process industry data set

The real data of the pH neutralization process taken from the DaISy library [30] is used to illustrate the

performance of the proposed method. The input variables of this process industry system include u1(t) and

u2(t) which represent acid and base solution flow in liters, respectively. The system output y(t) is the pH value

of the solution in the tank. Since the slow reaction in chemical process, the long delayed input and output

{u1(t− 1), u1(t− 2), · · · , u1(t− 15), u2(t− 1), u2(t− 2), · · · , u2(t− 15), y1(t− 1), y1(t− 2), · · · , y1(t− 15)} are
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Table 4: The simulation results for example 2

Algorithm Selected Terms Coefficient MAE

u(t− 1) 1.0092

u(t− 2) -0.3832

u(t− 1)u(t− 2) 0.2475

u(t− 1)3 -0.3164

OFR u(t− 2)u(t− 3) -0.2067 0.0047

u(t− 3)3 -0.0111

z(t− 1) 0.8722

u(t− 3) -0.4337

u(t− 2)3 0.2799

u(t− 1) 0.9803

u(t− 2) 0.4262

u(t− 3) -0.0121

z(t− 1) 0.0501 0.0448

Lasso u(t− 1)u(t− 2) 0.2473

u(t− 1)3 -0.2760

other 12 terms
...

u(t− 1) 1.0057

u(t− 2) -0.3810

u(t− 3) -0.4429

z(t− 1) 0.8673

SALSA u(t− 1)u(t− 2) 0.2849

u(t− 2)u(t− 3) -0.2030 0.0540

u(t− 1)3 -0.3151

u(t− 2)3 0.2077

other 48 terms
...

u(t− 1) 0.9984

u(t− 2) -0.3192

u(t− 3) -0.4005

z(t− 1) 0.8210

SAL u(t− 1)u(t− 2) 0.2470 0.0015

u(t− 2)u(t− 3) -0.1934

u(t− 1)3 -0.2967

u(t− 2)3 0.2693

Figure 3: Box plots of the number of model terms produced by four algorithms for example 2.
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used for model input and the polynomial NARX model with order up to 2 is used. These chosen variables

can produce 1081 polynomial terms. The following mean squared error (MSE) is used to test the model

performance

MSE =
1

N

N∑
t=1

(
y(t)− ŷ(t)

)2
(47)

where ŷ(t) is the prediction of the unknown system.

The simulation data set has 2001 samples, which is divided into two subdata sets. The first 1200 samples

are for training data and the other samples are used for testing data. The Lasso and SALSA method select too

many redundant terms into the final model, leading to the overfitting phenomenon. Therefore, the obtained

models have poor generalization performance and those simulation results are not listed. However, both OFR

and SAL can build a sparse model with few terms. The model obtained by OFR is described as

y(t) = −0.0840u2(t− 1)y(t− 2) + 1.2216u2(t− 1)

+ 0.9663y(t− 1) (48)

and the model produced by SAL is

y(t) = 1.1138y(t− 1) + 0.0781u2(t− 5)− 0.1259y(t− 4) (49)

According to the results shown in Fig.4-5, it can be seen that SAL builds a linear model to describe the

nonlinear industry process system, while the model performs better than that of OFR in terms of MSE on the

testing data. A parsimonious model with good generalization performance is always desirable especially for

the process industry system, therefore the effectiveness of SAL has been demonstrated by these comparisons.

Figure 4: The training and testing performance of OFR.

6. Conclusion

In this paper, Sparse Augmented Lagrangian (SAL) algorithm is proposed to solve the l1 minimization

problem, leading to a sparse solution by implementing variable selection and parameter estimation. Mean-
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Figure 5: The training and testing performance of SAL.

while, the convergence of SAL is guaranteed. More specifically, at variable selection stage, stability selection

is used to choose the highly selected terms of those intermediate models produced by SALSA, where SALSA

converts the original optimization problem into several subproblems solved in a computationally efficient

manner. At the second stage, SALSA is further used for parameters estimation. In certain cases, variable

selection and parameter estimation will be simultaneously carried out for building a more compact model at

the second stage. The effectiveness of SAL has been proved in comparison to several popular algorithms. In

the near future, instead of directly computing the inverse of matrix like standard SALSA, the authors will

adopt other strategies to solve the subproblems so that each iteration could be computed more cheaply.
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