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Abstract

The paper deals with the problem of unsupervised learning with structured data,
proposing a mixture model approach to cluster tree samples. First, we discuss
how to use the Switching-Parent Hidden Tree Markov Model, a compositional
model for learning tree distributions, to define a finite mixture model where the
number of components is fixed by an hyperparameter. Then, we show how to
relax such an assumption by introducing a Bayesian non-parametric mixture
model where the number of necessary hidden tree components is learned from
data. Experimental validation on synthetic and real datasets show the benefit
of mixture models over simple hidden tree models in clustering applications.
Further, we provide a characterization of the behaviour of the two mixture
models for different choices of their hyperparameters.

Keywords: Hidden Tree Markov Models, Infinite Mixtures, Dirichlet Process,
Tree structured data

1. Introduction1

Tree structures are used in multiple contexts to represent hierarchically-2

organized information. For example, in biology, phylogenetic trees are used to3

show the evolutionary relationships among various biological species or other4

entities. In natural language processing, parse trees are used to represent the5

syntactic structure of sentences. On the web, most of the data (e.g. HTML and6

XML documents) are represented using the Document Object Model i.e. a tree7

where each node represent a part of the document. Regardless of the application8

domain, a tree is composed by atomic entities (i.e. the information attached9

to the nodes) combined together trough the hierarchical relationships encoded10

by its structure. Hence, dealing with this type of data requires the ability to11

manage the atomic information along with the contextual information (e.g. the12

surrounding entities) given by the structure.13
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Early works on adaptive processing of tree structured data date back to the14

early nineties, mostly focusing on the recursive processing framework consoli-15

dated in the seminal work in [1]. Later, there has been a flourishing of works16

on adaptive tree data processing within different machine learning paradigms.17

Probabilistic models have been one of the first to be applied to tree data, thanks18

to an extension of the Hidden Markov Model for sequences to deal with all the19

root to leaves paths in a tree. This model is referred to as Top-Down Hid-20

den Tree Markov Model (TD HTMM), where the top-down term denotes the21

direction of tree visit and generation. The model has been introduced almost22

coincidentally in the context of documental data processing [2] and for statisti-23

cal signal processing in the wavelet domain [3]. The Bottom-Up HTMM (BU24

HTMM), on the other hand, models a recursive hidden process from the leaves25

to the root. Here, the tree is modelled as set of independent process (i.e. the26

leaves) which are merging and synchronizing at each level until a single process27

is obtained at the root. Note that in such a generative process the hidden state28

of a node depends on the joint hidden state of it children, with clear conse-29

quences in terms of combinatorial explosion the transition distribution for large30

hidden state sizes. The first practical BU HTMM has been introduced in [4],31

where it is proposed an approximation of the state-transition distribution using32

a mixture model, in a so called Switching Parent fashion. The model has also33

been extended to process isomorph structure-to-structure transductions [5].34

Kernel methods have also been widely applied to tree-structured data, since35

they allow a straightforward reuse of kernel-based learning machinery for vecto-36

rial data by plugging in an appropriately defined tree kernel. There has been a37

large body of research dealing with the definition of efficient and discriminative38

tree kernels, including syntactic kernels [6] computing tree similarity by count-39

ing the number of common substructures (e.g. subtrees, paths, etc). Syntactic40

kernels are mostly based on a predefined and hand engineered metric, e.g. path41

similarity. Hence the resulting structural distance is not really adaptive, while42

only the classifier machinery built around the kernel is. To surpass this limi-43

tation, some author have proposed building adaptive tree kernels on the top of44

either neural models [7]or generative tree models [8] such as the HTMM.45

Neural network models for tree structured data have appeared early since the46

definition of the general framework in [1]. Recently, they have found renewed47

interest thanks to the deep learning wave, which has lead to a widespread use48

of Long Short-Term Memory (LSTM) units also in the tree-structured domain.49

The TreeLSTM model in [9] has been the first extension of the LSTM cell to50

handle tree-structures through a bottom-up approach which basically imple-51

ments a specific instance of the structured data processing framework by [1].52

An alternative approach is that put forward in the Tree Echo State Network53

(TreeESN) [10] where the recursive neurons are randomly initialized according54

to some dynamic system stability criterion and their weights are not adjusted55

by the training procedure. Recently, the Hidden Tree Markov Networks (HTNs)56

[11] have been proposed as an hybrid approach integrating probabilistic bottom-57

up models within a neural architecture and learning scheme.58

The large body of research discussed above almost uniquely deals with adap-59
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tive tree structured data processing from a supervised learning point of view,60

whose objective is to build a tree classifier or regressor based on some available61

ground truth labelling. Applications to unsupervised learning are, on the other62

hand, more limited. A notable exception is the seminal paper on a general63

framework for the unsupervised processing of structured data [12]. Within this64

class of models, the most relevant contributions are related to the extension65

of topographic mapping models to handle tree data. This is the case, for in-66

stance, of the SOM-SD model [13], extending Kohonen’s self-organizing maps to67

structured acyclic data (i.e. including trees as a special case). Extensions of gen-68

erative topographic mapping to structured data have instead been proposed by69

[14] and [15], based on top-down and bottom-up approaches, respectively. None70

of these approaches have, however, tackled the specific problem of unsupervised71

learning for clustering applications, which is at the core of this contribution.72

The goal of this paper is to introduce a mixture model approach to address73

the tree clustering problem. Mixture models are generative approaches widely74

applied in clustering applications for vectorial data, e.g. consider the Gaussian75

mixture model and its evolutions. Here, we propose a mixture model built on the76

top of the bottom-up HTMM. The choice of a BU approach as mixture compo-77

nent is driven by the necessity of extracting and representing in the latent state78

space the maximal amount of structural information from the samples. Earlier79

works [4] have already shown the superior effectiveness of BU approaches over80

TD in this respect. In the following, we start by defining a first finite mixture81

model, where the number of HTMM components is fixed by an hyperparameter.82

Then we extend the model by introducing the possibility of learning the number83

of HTMM components directly from the data, by taking a Bayesian approach84

based on Dirichlet processes [16]. These allow to define a potentially infinite85

number of mixture components: we will then show how, in practice, this allows86

to automatically extract a finite number of relevant components to describe87

clusters in the data. This paper is an extended version of the conference paper88

[17]: this earlier work only introduced the finite mixture model and provided89

only preliminary results on a reduced set of data. The current work extends the90

original conference publication by introducing a completely novel model, that is91

the infinite mixture approach, together with a completely renewed experimental92

validation.93

The remainder of the paper is organized as follows: in Section 2 we introduce94

useful definitions and the notation used throughout the paper. In Section 3 we95

summarize the results obtained in [4] which we use as starting point for our96

work. In Section 4 we define the finite mixture of BU HTMM and we derive97

its learning algorithm, while in Section 5 we extend this in a non-parametric98

fashion, defining a new approximated learning procedure. Finally, Section 699

provides the experimental assessment and in Section 7 we draw our conclusions.100

2. Definition and Notation101

A rooted tree xn is a connected acyclic graph consisting of a set of nodes102

Un = {1, . . . , Un}, where the root is the node with index 1. The term n is used103
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Figure 1: Example of labelled tree with L = 3.

here to denote the n-th tree in a dataset D = {x1, . . . ,xN}, where N is the size104

of the dataset. For the sake of clarity, this index will be omitted when its use is105

clear by the context.106

A rooted tree defines parent-child relation between its nodes (see example in107

fig. 1). Let u, v ∈ Un: by definition of rooted tree, each node has one parent and108

we use the relation u = pa(v) to indicate the node u is the parent of the node109

v. Two nodes are siblings if they share the same parent (i.e. pa(u) = pa(v)).110

In this paper we consider finite trees: the letter L indicates the maximum111

output degree of each node (i.e. the maximum number of children). The position112

of a node with respect to its siblings is indicated by l = pos(u); therefore,113

v = chl(u) indicates the node v is the l-th child of u. The nodes that do not114

have children are called leaves: we indicate with LFn ⊂ Un the set of leaves’115

indexes.116

For the purpose of our paper, we assume that a discrete label is associated117

to each nodes: xnu is the label associated to the node u in the tree xn.118

A rooted tree xn can be decomposed in substructures, which consist in a set119

of nodes and the corresponding edges. We use the term xnu to denote the subtree120

rooted in u. Similarly, xn1\u denotes the whole tree xn without the subtree xnu.121

3. The Switching-Parent Bottom-up Hidden Tree Markov Model122

In this section we provide a summary of the Bottom-Up Hidden Tree Markov123

Models for labelled trees, introduced by [4], which is used as a building block124
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for the following mixtures. The model is formulated in terms of an hidden125

Markov model, introducimg an approximation of the transition function to avoid126

a combinatorial explosion of the parameter space. The training procedure is127

based on the Expectation-Maximisation and it is outlined in section 3.2128

3.1. Model Definition129

The Switching-Parent Bottom-up Hidden Tree Markov Model (SP-BHTMM)130

[4] defines an approximated generative process for a tree x, which goes from the131

leaves to the root. As in standard HMM, the whole process is split in an hidden132

and a visible part. The hidden dynamics regulates interactions among hidden133

states, while the visible one controls the emission of visible labels.134

Given a labelled tree x, we build the graphical model of BHTMM associating135

an hidden random variable Qu ∈ [1, C] to each label xu ∈ [1,M ] in the tree.136

All the hidden variables are linked together reproducing the same structure of137

the visible tree x; the direction of links goes from leaves to the root, assuming138

the hidden state of a node depends on the joint configuration of its hidden child139

nodes. The computation of this state-transition distribution is impractical, since140

it grows exponentially w.r.t the maximum output degree L. The SP-BHTMM141

factorises such joint state distribution as a mixture of pairwise child-to-parent142

transitions: this approximation is called switching parents (SP) [4]. Also, SP-143

BHTMM assumes the hidden state Qu contains all necessary information to144

generate the visible label xu associated.145

Using the conditional independence assumptions introduced by the SP-BHTMM,
we can derive the complete likelihood for a given tree x:

L(x,Q | θ) = P (x,Q | θ) =
∏
u∈LF

πlj bj(xu)×
∏
v∈U

L∑
l=1

φlA
l
i,j bi(xv) (1)

where θ = {π, b, φ,A} represents all SP-BHTMM model parameters. The like-146

lihood of visible data P (x | θ) can be obtained summing (1) over the hidden147

variables Q.148

At this point, it is worth spending few lines to describe each SP-BHTMM149

parameter in more detail. First of all, we should notice that all model parameters150

are categorical distributions, since both hidden variables finite discrete random151

variables, while for the sake of this paper we assume visible labels to be drawn152

from a finite and discrete alphabet as well. Extension to continuous labels is153

trivial, along the lines of [4].154

The term π indicates the priori distribution, which is defined on leaf hidden155

nodes. Since we are dealing with positional trees, the priori distribution depends156

on the position of the leaf node. Let u ∈ LF , it holds P l(Qu = i) = πli; the157

term l = pos(u) indicates the position of the node u. Consequently, the term π158

is a C × L matrix.159

The term b indicates the emission distribution, which generates the visible160

labels. The generation of label xu depends on the state of its hidden variable161

associated Qu; therefore, it holds P (xu | Qu = i) = bi(xu). Again, the term b is162

a M × C matrix.163
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Figure 2: Graphical model (GM) for SP-BHTMM associated to an observed tree x. The
variables S represent the switching parent variables.

The last two terms φ and A are related to the state-transition distribution. In164

particular, Ali,j = P l(Qv = i | Qchl(v) = j) indicates the dependency between a165

node and its l-th child while φl = P (Sv = l) is the switching parents distribution166

and it measures the weight of the contribution of the l-th child to the state167

transition of node v. The term φ is a vector with L elements while A is a168

C × C × L matrix.169

3.2. Learning in a SP-BHTMM170

Inferring SP-BHTMM parameters from data is achieved trough an Expec-171

tation Maximisation approach.172

The goal of the Expectation step is to compute the posterior distribution173

of the hidden variables given the visible ones. The upward-downward is an174

algorithm which computes the posterior by exploiting a recursive factorisation175

[4]: such factorisation requires an initial upward pass and a final downward pass176

on the tree, hence the algorithm name.177

The upward pass is a recursive procedure over tree structure, which goes from178

leaves to the root: the aim is to compute the value P (Qu | xu) for each node u.179

Vice versa, the downward pass goes from the root to leaves and computes the180

posterior P (Qu, Qchl
, Su = l | x) for each node u.181

The Maximisation step updates the model parameters in order to maximise182

the expectation of the complete likelihood with respect to the posterior com-183

puted in the E-step.184

We have voluntarily omitted details and derivations of the learning proce-185

dure, which can be found in [4].186
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4. Mixture of SP-BHTMM187

A finite mixture model is able to approximate complex distributions trough188

an appropriate choice of its components to represent local area of the truth189

distribution [18]. In this section we introduce a finite mixture models whose190

components are SP-BHTMM in order to better represents complex distributions191

over labelled trees. The number of components is finite and it is an hyper-192

parameter of the model.193

4.1. Model Definition194

A finite mixture model is obtained combining together multiple generative195

models, which are called mixture components. The combination is obtained196

trough an hidden random variable, called mixture variable.197

Since we are introducing a finite mixture model, the number of components
is fixed and it is represented by the hyper-parameter T . In our model, all compo-
nents are SP-BHTMM, each of them with different parameters θ = {θ1, . . . , θT }.
To better understand how the mixture of SP-BHTMM (MIX-SP-BHTMM) rep-
resents the data, it is useful to summarise the underlying generative process for
a tree xn:

xn | cn,θ ∼ P (xn | θcn)

cn | p ∼ Discrete(p1, . . . , pT ).
(2)

The term cn indicates the latent class associated to the observed tree xn, i.e.198

the index of the component used to generate it. Hence, θcn represents the199

model parameters of the cn-th mixture component. The value P (xn | θcn) is200

the likelihood of tree xn according to the cn component (see equation 1). The201

latent class is drawn from a discrete distribution, which is the distribution of the202

mixture variable. In Fig. 3, we represent the graphical model which describes203

this process: for the sake of clarity, the whole tree xn is indicated as a single204

variable.205

4.2. Learning in a MIX-SP-BHTMM206

Learning MIX-SP-BHTMM parameters has two objectives: the first one is207

to learn the parameters of the mixture components θ; the second one is to learn208

the mixing distribution p. In section 3.2 we have shown how SP-BHTMM pa-209

rameters can be learned trough a specialisation of the EM algorithm. Moreover,210

the EM algorithm is widely used to estimate the mixing distribution in finite211

mixture models [18]. Therefore, we can derive a single EM specialisation which212

is able to learn all MIX-SP-BHTMM parameters.213

The goal of the Expectation phase is to compute the posterior of all hidden
variables in the model given the visible one. First of all, we should observe that
two mixture component are completely independent given the latent class: the
only way to exchange information among components is trough the latent class.
Hence, each conditional independence assumption made to derive the upward-
downward algorithm still holds in our model: we can use upward-downward
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Figure 3: Graphical model for the MIX-SP-BHTMM.

algorithm to derive the posterior of hidden variables in each SP-BHTMM com-
ponent. Combining together the posterior computed for each component, we
obtain the posterior P (Qn | xn, cn = t, θt) where the conditioning over the la-
tent class cn is explicitly introduced. Unfortunately, we cannot use directly this
value since it depends on an hidden variables, i.e. the latent class. However,
applying the chain rule, we obtain:

P (Qn, cn = t, | xn) = P (Qn | cn = t,xn)P (cn = t | xn) (3)

where we omit the parameter θt since it is implicit in the latent class.214

The term P (cn = t | xn) represents the posterior of the latent class, which
cam be easily rewritten as

P (cn = t | xn) =
P (xn | cn = t)P (cn = t)

P (xn)
(4)

which completes the E-step definition, which is summarised in alg. 1.215

The M-step updates component parameters θ: it is derived by straight-
forward application of the formula used for a single SP-BHTMM to the new
posterior computed in eq. (3). An additional rule to update the latent class
distribution p is also needed

pt =

∑N
n=1 P (cn = t | xn)

N
. (5)

From the computational complexity point of view, the introduction of the216

mixture increases the computational complexity in time to O(T × Cup-down),217

where Cup-down is the time complexity of the upward − downward algorithm.218

The computational complexity in space has the same behaviour: it becomes219

O(T × CSP-BHTMM + T ), where CSP-BHTMM is the space required to store a220

SP-BHTMM model. The last term T is the space required to store the mixing221

distribution, which can be neglected.222
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Algorithm 1 E-step for MIX-SP-BHTMM

Require: A labelled tree xn, T different SP-BHTMM with parameters θ1 . . . θT
and a mixture distribution p.
for t=1 to T do

postQ[t] = UP-DOWN(xn, θt)
lk[t] = LIKELIHOOD(xn, θt)
postP [t] = lk[t]× pt

end for
postP = NORMALISE(postP )
for t=1 to T do

postQ[t] = postQ[t]× postP [t]
end for
return (postQ, postP )

5. Infinite MIX-SP-BHTMM223

Setting the correct number of components in a finite mixture models is not224

obvious and a variety of techniques have been developed [18]. In this section we225

build an infinite mixture of SP-BHTMM (INF-SP-BHTMM), which allows an226

infinite number of mixture components: in our case each component is, again,227

an SP-BHTMM with different parameters. Due to the infinite number of com-228

ponents, the learning procedure requires an approximation, which is discussed229

in Section 5.2.230

5.1. Model Definition231

An infinite mixture model is a Bayesian non-parametric extension of a finite
mixture model and it typically relies on the use of Dirichlet Processes (DP) [19].
The corresponding generative models can be described as follows [16]

xn | ζn ∼ F (ζn)

ζn | G ∼ G

G ∼ DP (G0, γ).

(6)

The distribution F (ζn) represents the mixture with mixing distribution ζn drawn232

from G, which is itself distributed according to a DP with concentration param-233

eter γ and base measure G0. The value G0 is the expected values of the DP and234

it represents the priori distribution for the mixture component parameters. For235

the sake of simplicity, we have ignored the dependency between the function F236

and the mixture component parameters and the hyper-parameters for the priori237

G0. These will be stated more in detail in the remainder of the section.238

For our purpose is convenient to derive the infinite model in a different way,
namely taking the limit as T goes to infinity of a MIX-SP-BHTMM with T
component[16]. Before taking the limit, we define explicitly the priori probabil-
ity of MIX-SP-BHTMM parameters (i.e. the function G0). Since all the model
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Figure 4: Graphical model for the INF-SP-BHTMM.

parameters are multinomial, we can use its conjugate prior, i.e. the Dirichlet
distribution. By addition of the prior, we obtain the following infinite MIX-SP-
BHTMM model

xn | cn,θ ∼ P (xn | θcn)

cn | p ∼ Discrete(p1, . . . , pT )

π ∼ Dirichlet(απ, . . . , απ)

A ∼ Dirichlet(αA, . . . , αA)

b ∼ Dirichlet(αb, . . . , αb)

φ ∼ Dirichlet(αφ, . . . , αφ)

p ∼ Dirichlet(γ/T, . . . , γ/T ).

(7)

For the sake of clarity, we omit the fact that conditional distributions (such239

as A and b) are obtained by sampling a Dirichlet distribution multiple times.240

Since we are using a flat Dirichlet distribution, we have one hyper-parameter241

for each prior distribution. Hence, the model hyper-parameters are {απ, αA, αb, αφ, γ}:242

the α terms are related to the SP-BHTMM priors (i.e. are parameters of G0)243

while the γ term is the concentration parameter of the Dirichlet Process.244

5.2. Learning in INF-SP-BHTMM245

Computing the exact posterior expectation becomes infeasible when the246

model is extended with a DP priori. However, such expectation can be esti-247

mated using Monte Carlo methods [16]. A Gibbs sampling algorithm can be248

applied to the model described in (7), integrating out the mixing proportions249
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p. The idea is to iteratively sample the latent class c for each data point and250

update the parameters θ for each mixture component, taking in account only251

data points assigned to each mixture. Even if there is an infinite number of252

components, we are able to execute this algorithm since we deal only with mix-253

ture components that are currently associated with some observations and, by254

definition, there is only a finite number of these.255

The first step is to assign a latent class to each tree xi. The Gibbs sampler
update requires sampling the latent class of a tree xi given the latent class of all
other trees. Obviously, the sampling rule depends also on the tree xi itself and
all mixture component parameters θ. The conditional probability from which
to sample is [16]:

P (ci = c | c−i,xi,θ) =


n−i,c
Z

P (xi | θc) if ∃ j 6= i | cj = c

γ

Z

∫
P (xi | θ)dG0(θ) otherwise

(8)

where n−i,c is the number of trees (except xi) which are already assigned to the256

c-th class. The value c−i indicates the latent class of all trees in the dataset257

except xi, while Z is a normalising constant to ensure that the above probability258

sum to one.259

The equation (8) states that the probability to assign a class c to a tree is260

proportional to the number of trees that are already assigned to it (i.e. n−i,c).261

Nevertheless, there is a non-zero probability to assign the i-th tree to a new262

component: unfortunately, we can not consider explicitly all the other compo-263

nents since there an infinite number of them. The solution is to integrate over264

all the possible mixture component parameters (i.e. all the possible mixture265

components). The integral is taken over the function G0(θ), since it represents266

the priori for SP-BHTMM parameters. The integral can be solved analytically267

due to the conjugacy between parameter distributions and their priori: the re-268

sult is the likelihood of xn according to a SP-BHTMM whose parameters have269

uniform distributions, since each priori is a flat Dirichlet distribution. When270

a new class is sampled, we must create a new mixture component. The new271

parameters are sampled from the priori distribution G0(θ). During the inference272

procedure, it can also happen that a latent class is no longer assigned to any273

trees. From equation (8), it follows there is a 0 probability to assign such class274

again. Hence, we can remove the corresponding latent class.275

The second step of the inference procedure requires to estimate new pa-276

rameters θ for all mixture components. Obviously, each component updates its277

parameters to adapt itself to trees that are assigned to it during the first step.278

The updates can be performed applying the procedure summarised in section279

3.2 on the subset of the dataset assigned to each component. The only modi-280

fication required is in the M-step, which is extended to consider also the prior.281

Since we choose a conjugate prior, this reduces to add the value α − 1 to each282

counting table. The whole Gibbs sampling methods is summarised in algorithm283

2.284
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Algorithm 2 Gibbs sampling method for INF-SP-BHTMM

Require: A dataset of labelled tree D = {x1, . . . ,xN}, a set of SP-BHTMM
parameters θ = {θ1 . . . θT }, a random assignment c = {ci, . . . , cN}
St = {n | cn = t} ∀t ∈ [1, T ]
repeat

for n = 1 to N do . Sample step
Scn = Scn \ {n}
if Scn = ∅ then . Remove cn

θ = θ \ {θcn}
S = S \ {Scn}
T = T − 1

end if
cn = SAMPLING(c−i,x

m,θ) . eq. (8)
if cn is new then . Create cn

θnew ∼ G0

θ = θ ∪ {θnew}
T = T + 1
Scn = ∅

end if
Scn = Scn ∪ {n}

end for
for t=1 to T do . Update step

θt = EM-SP-BHTMM(θt, St, G0)
end for

until stopping criteria
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Again the computational complexity (both in time and space) increases lin-285

early w.r.t. the number T of component when comparing to the simple SP-286

BHTMM model.287

6. Experimental results288

In this section, we provide an experimental validation of the proposed ap-289

proaches. In particular, we are interested in empirically assessing the ability290

to recognise clusters in tree-structured data. Evaluating the clustering qual-291

ity is not trivial and multiple indexes have been defined [20]. In the following292

experiments, we use the Silhouette index to asses the clustering quality. The293

Silhouette index is an internal measure and therefore it can be computed with-294

out any additional knowledge on data (e.g. the true clustering). Although, it295

requires to define a distance metric among data points: we compute the dis-296

tance between two trees using he Ruzicka distance [21] on theirs representative297

matrix, where a representative matrix Rn for a tree xn is a matrix such that298

the value rnlj counts how many times the label j appears in a node in the l-th299

position. For a given tree xn, the silhouette index is computed considering the300

distance between xn and both elements that are inside and outside its cluster;301

its value is always between −1 (worst clustering) and 1 (best clustering).302

In section 6.1 and 6.2 we report the results obtained on two clustering tasks;303

the former one on a controlled dataset while the latter on a real world dataset.304

In section 6.3 we further investigate the results of the second experiments to305

highlight the impact of the INF-SP-BHTMM hyper-parameters.306

6.1. Synthetic dataset307

The goal of the first experiment is to assess whether the mixture of hid-308

den trees (both finite and infinite) offers an advantage with respect to a single309

SP-BHTMM in terms of cluster identification. To this end, we test all models310

(SP-BHTMM, MIX-SP-BHTMM and INF-SP-BHTMM) on a synthetic clus-311

terization problem. The dataset contains ternary trees (i.e. L=3), compris-312

ing left-asymmetric, symmetric and right-asymmetric tree, hence defining three313

clusters. A tree is defined as left-asymmetric (right-asymmetric) if the number314

of nodes in the leftmost (rightmost) position is greater than the number of nodes315

in the opposite position. In a symmetric tree, the number of nodes is almost316

equivalent for each position.317

A tree generator has been realised to generate the dataset trough a top-down318

recursive procedure: starting from the root, child nodes are generated according319

to a distribution which indicates how likely is to generate a node in each position.320

If new nodes are generated, the same procedure is recursively applied in order321

to generate the whole tree. The procedure ends when a maximum number of322

nodes have been generated. This scheme is used to generate all three different323

types of tree: for each type, a proper distribution to generate child nodes is324

used. The label of each node encodes structural information since it represents325

the number of children of the node: therefore the label goes from 0 (i.e. no326
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child nodes) to 3 (i.e. a child node in each position). Moreover, each of the tree327

types are generated by setting a different maximum number of nodes in order to328

add another structural peculiarity. In particular, left-asymmetric trees are the329

smallest one, while the right-asymmetric are the biggest ones. Symmetric trees330

have size roughly between the characteristic sizes of left and right imbalanced331

trees. Finally, we generate 780 trees (260 for each type) and split them in a332

training set (600 trees, 200 for each type) and test set (180 trees, 60 for each333

type).334

Silhouette index on synthetic dataset

SP-BHTMM C = 3 C = 5 C = 7
Root sampling 0.03 (0.00) −0.02 (0.03) −0.08 (0.02)

MIX-SP-BHTMM T = 3 T = 5 T = 7
C = 2 0.41 (0.01) 0.43 (0.03) 0.46 (0.05)
C = 4 0.45 (0.05) 0.47 (0.08) 0.47 (0.05)
C = 6 0.46 (0.05) 0.45 (0.05) 0.47 (0.06)

INF-SP-BHTMM α = 1 α = 1.5 α = 2
C = 2 0.36 (0.23) 0.45 (0.08) 0.45 (0.07)
C = 4 0.43 (0.08) 0.51 (0.00) 0.51 (0.00)
C = 8 0.33 (0.00) 0.51 (0.00) 0.51 (0.00)

Table 1: Mean silhouette index over 5 runs (std in brackets) on a synthetic dataset. In bold
the best result for each model.

All models (SP-BHTMM, MIX-SP-BHTMM and INF-SP-BHTMM) have335

been trained in an unsupervised setting, i.e. the class of the data is not know336

during the training. For each model, different configurations have been trained337

changing the number of hidden states (i.e. C), the number of mixtures (i.e. T )338

and the priori hyper-parameters. Thanks to a preliminary analysis, we have339

noticed that some hyper-parameters of INF-SP-BHTMM does not affect the340

solution too much. Therefore, to reduce the number of configurations to test,341

we have used the same value for all the priori hyper-parameters (i.e. απ, αb,342

αA, αφ): we refer to this value with the letter α. Also, we have fixed the343

concentration parameters γ = 10. For a fair comparison, each training algorithm344

has been executed for maximum of 30 iterations.345

At test time, the SP-BTHMM assign a class for each tree sampling the pos-346

terior of the root while the MIX-SP-BHTMM model samples the posterior of347

the mixture variable. The INF-SP-BHTMM model cannot directly sample from348

the posterior, since this would be intractable; however, the Gibbs sampler (in-349

troduced in Section 5.2) can be used to approximate the latent class assignment350

(skipping the parameters optimisation step). During the test, we limit to 10 the351

number of iterations of the Gibbs sampler.352

In table 1 we report the mean and standard deviation (in brackets) of the sil-353

houette index for each configuration over 5 runs. The advantage obtained intro-354

ducing a mixture is clear: the single SP-BHTMM reaches the best performance355
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of 0.03, which is far from the best one obtained from both MIX-SP-BHTMM and356

INF-SP-BHTMM. Instead, the performance obtained by both mixture models357

is closer to the silhouette index computed on the ground truth, that is 0.51. In358

figure 5 we report two confusion matrices, obtained using INF-SP-BHTMM and359

SP-BHTMM to show the benefits of mixture models.360

(a) SP-BHTMM, C = 3. (b) INF-SP-BHTMM, C = 8 and α =
2.

Figure 5: Confusion matrices for the synthetic dataset using INF-SP-BHTMM (on the left)
and SP-BHTMM (on the right).

Even if the best results obtained by MIX-SP-BHTMM and INF-SP-BHTMM361

are similar, there are some differences. First of all, we should notice that the362

infinite model reaches the best performance with zero standard deviation, i.e.363

the model performed the same in each run. Also, MIX-SP-BHTMM performs364

better when there are more component than the real number of cluster: most365

of them are not used by the model. On the other hand, INF-SP-BHTMM is366

able to find the true number of clusters. In figure 6, we plot the mean (and367

standard deviation) number of components during the training for two different368

configurations of INF-SP-BHTMM. In the first iterations, the model explores369

the solution space creating a high number of components (with different pa-370

rameters); then, the model starts adapting the best components to the data,371

throwing away unused ones. After few iterations, it reaches a total of 3 com-372

ponent which is the true number of clusters. The plot also shows a different373

behaviour between the two configurations: this aspect is examined in depth in374

section 6.3.375

This behaviour affects also the time required for both training and test. As376

stated in previous sections, the complexity in time for both mixture models377

depends linearly on the number of components: hence, unused mixture compo-378

nents slow down the inference procedure.379

6.2. Real-world dataset380

The previous experiment shows the ability of both MIX SP-BHTMT and381

INF MIX SP-BHTMT to clusterize labelled trees in a completely unsupervised382
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(a) C = 8 and α = 2. (b) C = 4 and α = 1.5.

Figure 6: Number of components during the training averaged over 5 runs for two different
configurations of INF-SP-BHTMM.

fashion. The goal of this experiment is to assess the clusterization performance383

of MIX SP-BHTM and INF-SP-BHTMM on a real world dataset. Due to the384

poor performance obtained in the previous experiment, we do not evaluate SP-385

BHTMM.386

The dataset we have chosen is taken from the INEX 2005 competition [22]. It387

is based on the (m-db-s-0) corpus, comprising 9631 XML-formatted documents388

represented as trees with maximum output degree L = 32 and labelled by389

11 thematic categories, which represents the different clusters. Node labels390

represent XML tags: there are 366 possible labels. The dataset is split in391

training set (4820 trees) and test set (4811 trees) [22].392

Again, we have tested multiple configurations for each model. In particular,393

in MIX-SP-BHTMM we have varied the number of hidden states C ∈ [2, 4, 8]394

and the number of mixture component T ∈ [6, 11, 22]. In INF-SP-BHTMM we395

have changed the number of hidden states C ∈ [2, 4, 8] and the hyper-parameter396

of SP-BHTMM priori α ∈ [1, 1.2, 1.5, 2]. As in the previous experiment, we have397

fixed the concentration parameter γ = 10. Each configuration has been trained398

for a maximum of 30 iterations, while the INF-SP-BHTMM test procedure has399

been executed for a maximum of 10 iterations.400

In Table 2, we report the mean and standard deviation (in brackets) of the401

silhouette index for each configuration over 5 runs. The advantage of infinite402

model is not clear, even if it reaches the best performance on the INEX2005403

dataset. Rather than comparing only the results, it is interesting to compare the404

clusterings produced by both models. In Figure 7, we report clusters obtained405

using the best configuration of both models. The plot shows how trees in each406

true class (on the y-axis) are distributed among the model cluster (on the x-407
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Silhouette index on INEX 2005 dataset

MIX-SP-BHTMM T = 6 T = 11 T = 22
C = 2 0.12 (0.01) 0.13 (0.07) 0.20 (0.04)
C = 4 0.13 (0.09) 0.17 (0.02) 0.15 (0.02)
C = 8 0.08 (0.00) 0.11 (0.05) 0.17 (0.06)

INF-SP-BHTMM α = 1 α = 1.2 α = 1.5 α = 2
C = 2 0.15 (0.02) 0.15 (0.05) 0.19 (0.02) 0.21 (0.04)
C = 4 0.07 (0.04) 0.20 (0.04) 0.16 (0.07) 0.18 (0.03)
C = 8 0.05 (0.10) 0.15 (0.05) 0.13 (0.02) 0.15 (0.06)

Table 2: Mean silhouette index over 5 runs (std in brackets) on INEX05 dataset. In bold the
best result for each model.

axis). The clustering obtained using MIX-SP-BHTMM (fig. 7a) is made up408

of only 4 active clusters (even if there are 22 components): the first cluster409

contains all trees with true labels {1, 2, 3}, the second cluster contains all trees410

with labels {4, 5}, the third cluster contains all trees with labels {6, 8, 9, 11} and411

the last one contains all trees with labels {7, 9}. The clustering obtained using412

the INF-SP-BHTMM (fig. 7b) are almost the same, but there are two main413

differences. The first one is the number of clusters used, that is only 6 since the414

components with no data are thrown away during the training, thus reducing415

their impact on computational complexity. The second difference is that the416

model creates two new clusters to contain trees with true label 1: even if the417

model creates a spurious cluster, it is able to learn the difference between trees418

from category 1 and trees from all other categories.419

The clustering produced by both models exploit the structural and label420

information contained in INEX2005 trees. In Figure 8 we report a similarity421

measure between categories in the INEX2005 training set. The similarity be-422

tween two categories C1 and C2 is computed taking the mean of the Ruzicka423

similarity [21] between all C1 trees and all C2 trees. The plot shows clearly that424

categories with high similarity are the ones that are clustered together by our425

models. It is curious to observe that trees with label 6 are more similar to trees426

in class 11 than trees with the same class.427

6.3. The importance of hyper-parameters428

The experiments reported so far highlight how important is choosing the429

right value of hyper-parameters in order to obtain satisfactory results using430

both models. In this section, we analyse the results obtained on the dataset431

INEX05 to emphasise the effects of each hyper-parameter. In particular, we432

study the effect of the hyper-parameters on the number of clusters discovered by433

the models. In Table 3 we report the mean and standard deviation of the number434

of clusters for each MIX-SP-BHTMM and INF-SP-BHTMM configuration over435

5 runs.436

The MIX-SP-BHTMM is characterised by two hyper-parameters: the num-437

ber of hidden states C and the number of mixture components T . By increasing438
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(a) MIX-SP-BHTMM, C = 2 and T =
22.

(b) INF-SP-BHTMM, C = 2 and α =
2.

Figure 7: Clusterisation obtained by MIX-SP-BHTMM (on the left) and INF-SP-BHTMM
(on the right) using the best configuration in a run.

Number of component

MIX-SP-BHTMM T = 6 T = 11 T = 22
C = 2 1.60 (0.55) 2.00 (0.71) 3.40 (0.55)
C = 4 2.00 (1.00) 2.20 (0.84) 1.80 (0.45)
C = 8 1.20 (0.45) 2.00 (0.00) 2.80 (0.45)

INF-SP-BHTMM α = 1 α = 1.2 α = 1.5 α = 2
C = 2 44.20 (14.79) 33.00 (13.69) 8.80 (3.11) 4.60 (1.95)
C = 4 23.80 (26.36) 11.60 (4.83) 3.20 (1.30) 2.40 (1.67)
C = 8 45.80 (35.81) 5.80 (3.03) 2.40 (0.55) 1.80 (0.84)

Table 3: Mean number of clusters over 5 runs (std in brackets) on INES05 dataset.

the number of hidden states, we obtain more expressive SP-BHTMMs. There-439

fore, with high value of C the model tends to use less components since each440

component can be expressive enough to represent different clusters. The num-441

ber of components T indicates how many SP-BHTMM components are used by442

the model. Observing the results in Table 2, it was clear that increasing the443

number of components helped to obtain better performance. However, even if444

an high number of components is set, the number of clusters being identified is445

always small (see Table 3). We argue that increasing the value of T allows more446

exploration in the solution space: each component has a random configuration447

that can be suitable or not to describe the data. Creating more components,448

it is more likely to guess a best initialisation. In figure 9a we plot the average449

number of clusters over 5 runs for each MIX-SP-BHTMM configuration. From450

the plot is clear that higher values of T lead to higher numbers of active clus-451

ters. It is also visible the influence of C: the configuration with C = 2 has more452

active components than the configuration with C = 8.453
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Figure 8: Ruzicka similarity among categories in INEX2005 training set. Blue colours mean
low similarity while yellow colours mean high similarity.

(a) (b)

Figure 9: Number of active components as a function of hyper-parameters for MIX-SP-
BHTMM (on the left) and INF-SP-BHTMM(right).

While the INF-SP-BHTMM is still characterised by the number of hidden454

states C, there is no hyper-parameters to adjust the number of components455

explicitly. However, the number of components is strictly correlated to the value456

of α. In fact, the value of α indicates how strong is our priori belief on the SP-457

BHTMM parameters: stronger belief means components will not adapt to the458

data too much (preventing over-fitting), while week belief leads to completely459

data-driven solution. Hence, an high value of α tends to create solutions with460

less clusters, while a small value has the opposite effects. The value of the hyper-461

parameters C has the same influence described before on MIX-SP-BHTMM. In462

Figure 9b we plot the average of active components during the test for each463

INF-SP-BHTMM configuration over 5 runs. The effects of the value of α is464

evident: the number of components reduces from more than 20 to around 5,465
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independently on the value of C. The effects of C are also clear: the number of466

components obtained with C = 2 is greater than the one obtained with C = 4,467

which is greater than the one obtained with C = 8. Furthermore, the influence468

of C is evident when reporting the best clustering obtained for each C value469

(see Figure 10): selecting C = 8, all trees in the first five categories are merged470

together. On the other hand, selecting C = 2, we do not have a SP-BHTMM471

expressive enough to represent trees in the first category: hence, the model uses472

two components to represent them.473

(a) C = 2. (b) C = 4. (c) C = 8 .

Figure 10: Best clusters obtained using INF-SP-BHTMM with different values of C.

7. Conclusion474

Learning models for tree-structured data have found application mostly to475

supervised tasks. Also generative models, like SP-BHTMM, have been used476

mostly for such tasks, often within kernel-based frameworks for increased preci-477

sion. This despite the fact that generative models traditionally find competitive478

applications in unsupervised/explorative analysis. In this work, we have first479

highlighted the limitations of SP-BHTMM in realizing unsupervised clustering480

analysis. Motivated by this, we have shown how to build on SP-BHTMM abil-481

ity to learn structural patterns within a mixture model framework for clustering482

applications. Two different forms of mixture of hidden tree models have been483

introduced. The first is a finite mixture (MIX-SP-BHTMM) which requires a484

fixed number of components to be supplied as hyper-parameters, while model485

parameters are learned by EM. The second, is in infinite-mixtures model, ad-486

dressing the problem of components specification by allowing an infinite number487

of components within the model. Despite the potentially infinite nature of the488

mixture, only a finite set of components is actually used during training, while489

the learning procedure can create (or remove) components on the fly. Learning490

in the infinite model is not trivial and a Gibbs sampling methods is required to491

approximate the intractable posterior.492

The experiment have shown the benefit of mixture models in an unsupervised493

task. Even on controlled data, the SP-BHTMM was not able to perform an494
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effective clustering. On the other hand, performances of both finite and infinite495

mixture models are nearly equivalent in both experiments (the INF-SP-BHTMM496

is slight better). The major advantage of the infinite model is its ability to learn497

the number of clusters directly from data. The experiments have also shown498

how the behaviour of INF-SP-BHTMM is dependent on the configuration of499

its hyper-parameters. In particular, we have highlighted how the priori hyper-500

parameter plays a fundamental role to avoid the generation of single components501

for each element in the dataset.502

Further developments of this work can lead to a complete non-parametric503

model, such that the SP-BHTMM is able to use an infinite number of hidden504

states. Also, the inference procedure can be extended in order to adapt the505

hyper-parameters to the model, as stated in [16].506

Acknowledgements507

This work has been supported by the Italian Ministry of Education, Univer-508

sity, and Research (MIUR) under project SIR 2014 LIST-IT (grant n. RBSI14STDE).509

8. References510

[1] P. Frasconi, M. Gori, A. Sperduti, A general framework for adaptive pro-511

cessing of data structures, IEEE transactions on Neural Networks 9 (1998)512

768–786.513

[2] M. Diligenti, P. Frasconi, M. Gori, Hidden tree markov models for doc-514

ument image classification, IEEE Trans. Pattern Anal. Mach. Intell. 25515

(2003) 519–523.516

[3] M. S. Crouse, R. D. Nowak, R. G. Baraniuk, Wavelet-based statistical sig-517

nal processing using hidden markov models, IEEE Transactions on Signal518

Processing 46 (1998) 886–902.519

[4] D. Bacciu, A. Micheli, A. Sperduti, Compositional generative mapping520

for tree-structured data; part i: Bottom-up probabilistic modeling of trees,521

Neural Networks and Learning Systems, IEEE Transactions on 23 (2012)522

1987 –2002.523

[5] D. Bacciu, A. Micheli, A. Sperduti, An input-output hidden Markov model524

for tree transductions, Neurocomputing 112 (2013) 34–46.525
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