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Abstract

Analyzing emotional information of visual content has attracted growing at-

tention for the tendency of internet users to share their feelings via images

and videos online. In this paper, we investigate the problem of affective image

analysis, which is very challenging due to its complexity and subjectivity. Pre-

vious research reveals that image emotion is related to low-level to high-level

visual features from both global and local view, while most of the current ap-

proaches only focus on improving emotion recognition performance based on

single-level visual features from a global view. Aiming to utilize different lev-

els of visual features from both global and local view, we propose a multi-level

region-based Convolutional Neural Network(CNN) framework to discover the

sentimental response of local regions. We first employ Feature Pyramid Net-

work(FPN) to extract multi-level deep representations. Then, an emotional

region proposal method is used to generate proper local regions and remove ex-

cessive non-emotional regions for image emotion classification. Finally, to deal

with the subjectivity in emotional labels, we propose a multi-task loss function

to take the probabilities of images belonging to different emotion classes into

consideration. Extensive experiments show that our method outperforms the

state-of-the-art approaches on various commonly used benchmark datasets.
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Figure 1: (a): Sample images from different datasets that evoke the same emotion sadness. We

can find out that image emotion is related to many factors. Left: web images whose emotions

are mainly related to image semantics. Middle: IAPS photos whose emotions are mainly

related to image aesthetics, such as compositions and emphasis. Right: abstract paintings

whose emotions are mainly related to low-level visual features, such as texture and color. (b):

Visualization of the class activation map for emotional category sadness of each sample image.

As we can see, some regions within the image are more likely to evoke emotions than other

parts of the image.

Convolutional Neural Network

1. Introduction

With the popularity of photo-based social networks, more and more people

tend to share their feelings through images on these social networks. Emotion

classification has attracted increasing research interests nowadays. Psychologi-

cal studies have revealed that different visual stimuli can evoke different types5

of humans’ emotions [1, 2]. Based on these studies, multimedia researchers tried

to understand the emotion implied in different visual content.

Many studies investigate the relationship between images and emotions through

mapping visual features to emotions. Low-level visual features are first used for
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image sentiment analysis [3, 4]. Machajdik and Hanbury propose to combine10

different levels of visual features, including low-level features based on art theory

and high-level image semantics, for image emotion classification [5]. Principles-

of-arts features specialized for image emotion recognition are also designed to

improve classification performance [6]. Recently, benefiting from the success

of deep Convolutional Neural Network (CNN) on computer vision tasks [7],15

researchers have applied CNN, which can automatically learn deep features

for emotion classification, and demonstrated that the deep features outperform

hand-crafted features on emotion classification[8, 9].

However, analyzing image emotion is implicitly a challenging task compared

to other traditional computer vision tasks, such as object detection and recogni-20

tion, due to the two challenges of the complexity and subjectivity of emotions.

For complexity, most of images can evoke different emotions rather than one

pure emotion [10]. Previous methods for affective image analysis mainly rely

on the single level of visual features extracted from the global perspective of

the whole image, while ignoring the sentimental response of multi-level visual25

features from local regions which contribute to diverse emotion reaction for one

image [11, 12]. Figure 1 shows sample images from different affective image

datasets and the class activation maps of the sample images. We can find that

image emotion is related to complex visual features from high-level to low-level

and some local regions in images may contain more emotional information than30

other parts of images. For subjectivity, people with different cultural back-

ground may have various emotional reactions to the same image. It is unable

to collect the hard emotional label of an image. Instead, emotion category is

labeled with the probability is widely applied in affective image datasets. The

uncertainty labels clearly improve the difficulty to build an accurate classifier35

for image emotion classification.

Researchers have already noticed the effect of multi-level visual features and

local image regions for image emotion classification [13, 9, 14, 15, 16]. How-

ever, these methods only consider the local regions without taking a look from

the global view or only focus on positive-negative emotion classification, a com-40
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Figure 2: The overview of the proposed framework. The framework consists 4 components:(a)

faster R-CNN based on FPN, (b) emotional region extraction based, (c) emotion distribution

estimation and (d) classifier with multi-task loss.

prehensive consideration of both complexity and subjectivity in image emotion

analysis is still a challenging problem.

Considering the aforementioned challenges, in this paper, we propose a multi-

level region-based convolutional neural network that can automatically extract

multi-level deep representations of local image regions. Multi-level deep features45

can better represent different kinds of affective images and utilizing features

extracted from emotional regions can effectively avoid the noisy information

containing in non-emotion regions. Moreover, a new loss function is proposed

in this paper to estimate an emotion distribution derived from emotion class

probability, which can effectively counteract the factor of subjectivity existing50

in image emotion labels. The overview of our framework is shown in Figure

2. Emotional regions of different size are extracted based on different scales of

feature maps which combine multi-level deep features. Subsequently, the local

deep representations extracted from these emotional regions are combined with

the global deep representations extracted from the whole image for emotion55

classification. Compared with existing methods mainly based on single-level
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visual features from a global view, the multi-level emotion information from both

global and local view utilized in our model can provide a robust performance

on various kinds of images.

The contributions of this paper are summarized as follows: 1) We employ60

a feature pyramid network(FPN) to extract multi-scale deep feature maps that

related to image emotion. The multi-scale deep feature maps extracted from

different convolutional layers can combine high-level semantic features with low-

level deep features, and thus significantly improve the performance of emotion

region detection. 2) We build a region-based CNN model that can effectively65

extract local emotional information from the emotional regions of the image.

Ignoring the noisy information generating from non-emotional regions can sig-

nificantly improve the emotion classification performance. 3) Image emotion

labeling is a highly subjective task and the uncertain emotion labels will de-

grade the classification accuracy. Thus, we modify the loss function to consider70

the emotion class probability, rather than a hard class label, into image emotion

classification to overcome the subjectivity in emotion analysis.

Extensive experiments are conducted to evaluate our Multi-level R-CNN

model on multiple datasets including Flickr&Instagram(FI) [8], IAPSsubset [5],

ArtPhoto [5], etc. The experimental results demonstrate the effectiveness of our75

method for effectively detecting emotional regions with multi-level deep features

and dealing with the problem of subjectivity existing in image emotion.

2. Related Work

Visual emotion analysis on still images [17, 18, 19] and videos [20, 21] has

attracted increasing research interests nowadays. In this section, we review the80

development of image emotion analysis and region-based CNN which are closely

related to this work.

2.1. Affective Image Analysis

For visual emotion classification, existing research can be roughly divided

into methods in dimensional emotion space (DES) [10, 22, 23] and methods in85
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categorical emotion states (CES) [6, 5, 24, 25]. DES models, which utilize 3-D

valence-arousal-control emotion space, 3-D natural-temporal-energetic connota-

tive space, 3-D activity-weight-heat emotion factors, and/or 2-D valence-arousal

emotion space, provide predictable and flexible descriptions for emotions. In

CES models, computational results are mapped directly to one of a few basic90

categories, such as anger, excitement, sadness, etc. Compared to DES mod-

els, CES models are easy for people to understand and label, thus have been

widely applied in recent studies. To compare our results with existing work,

we adopt the CES model to classify emotions into 8 categories (positive emo-

tion Amusement, Awe, Contentment, Excitement and negative emotion Anger,95

Disgust, Fear, Sadness) and 2 categories(positive and negative) predefined in a

rigorous psychological study [26].

The visual features used for image emotion classification are designed and

extracted from different levels [27, 18]. Yanulevskaya et al. [28] first proposed

to categorize emotions of artworks based on low-level features, including Ga-100

bor features and Wiccest features. Solli and Lenz [29] introduced a color-based

emotion-related image descriptor, which is derived from psychophysical exper-

iments, to classify images [13], SIFT features extracted from both global view

and local view were used for emotion prediction. Machajdik et al. [5] defined a

combination of rich hand-crafted mid-level features based on art and psychol-105

ogy theory, including composition, color variance and texture. Zhao et al. [6]

introduced more robust and invariant mid-level visual features, which were de-

signed according to art principles to capture information about image emotion.

High-level adjective-noun pairs related to object detection were introduced for

visual sentiment analysis in recent years [27, 30]. However, these hand-crafted110

visual features have only been proven to be effective on several small datasets,

whose images are selected from a few specific domains, e.g. abstract paintings

and portrait photos. This limits the applications of image emotion classification

on large-scale image datasets.

Considering the recent success of CNN-based approaches in many computer115

vision tasks, CNN based methods have also been employed in image emotion
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analysis. Peng et al. [11] first attempted to apply the CNN model in [7]. They

fine-tuned the pre-trained convolutional neural network on ImageNet [31] and

demonstrated that CNN model outperforms previous methods rely on different

levels of handcrafted features on the Emotion6 dataset. You et al. [8] employed120

a progressive strategy to train a CNN model to detect image emotion on the

large-scale dataset of web images. In [14], local emotional regions extracted

using attention model were considered for sentiment analysis. However, most

existing work only consider single-level visual features extracted from a global

view, which limit their emotion classification performance due to the noisy from125

non-emotion regions within images and ignoring combining information from

different levels including low-level visual features, mid-level image aesthetics

and high-level semantics.

2.2. Region-based CNN

Our methods are based on region-based CNN (R-CNN) [32], which gener-130

ates region proposals on CNN framework to localize and classify objects in im-

ages. Then, by introducing supervised pre-training for an auxiliary and domain-

specific fine-tuning, the object detection performance are significantly improved

[33]. Girshick [34] further develops the R-CNN model to faster-RCNN model

to reduce the training time and computing consumption, while improving the135

object detection accuracy. Ren et al. [35] combine the Region Proposal Net-

work(RPN) with CNN architecture to share full-image convolutional features

and predict object bounds and objectness scores simultaneously.

Compared to traditional region based CNNs, which are mainly used to find

salient objects in images, in our method, we utilize R-CNN to find local re-140

gions that evoke emotion and use the local representations extracted from these

regions as supplementary information for image emotion classification. This

means that we are interested in regions with emotion rather than regions with

objects. In other words, identified local regions contain not only objects and/or

objects’ parts, but also selected background surroundings of the objects [36].145
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Figure 3: Structure of Feature Pyramid Network (FPN).

3. Preliminaries

As shown in Figure 2(a), candidates of emotional regions with multi-level

deep features are extracted using faster R-CNN based on FPN.

3.1. Feature Pyramid Network (FPN)

To extract multi-level deep representations for image emotion analysis, a150

Feature Pyramid Network (FPN) [37] is employed to extract multi-scale feature

maps. Compared to the existing pyramidal feature hierarchy structure in [9, 19],

in which the lower level feature maps are high-resolution but with low-level deep

features that harm their representational capacity for object recognition and

emotion classification. The detailed structure of FPN is shown in Figure 3. As155

shown in the figure, FPN consists of two parts, a bottom-up pathway and a

top-down pathway, between them is the lateral connections.

The bottom-up pathway is the feed-forward computation of normal backbone

convolutional network (e.g., [7, 38, 39]). In this paper, we use ResNet101 [39] as

the backbone network. From the bottom-up pathway, feature hierarchy which160
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contains feature maps in different size can be computed. The output of the

last layer of each bottleneck in the ResNet101 is selected as the reference set of

feature maps to create the pyramid. The output of these bottlenecks is defined

as {C2, C3, C4, C5} for conv2, conv3, conv4 and conv5 outputs, and note that

conv1 is excluded for the pyramid due to the large memory consuming for the165

massive feature map.

The top-down pathway is used to combine different levels of feature maps

extracted from bottom-up pathway. Feature map from the highest pyramid

level, which is semantically stronger but spatially coarser, is upsampled to fit the

size of lower-level feature maps in feature pyramid, which are higher resolution170

but only contains low-level deep features. The upsampled map is then merged

with the corresponding bottom-up maps (a 1 × 1 convolutional layer is added

behind each bottom-up map to reduce channel dimensions) by element-wise

addition. The process is iterated until the last (finest resolution) merged map

is generated. The set of final feature maps is defined as {{P2, P3, P4, P5}, which175

is corresponding to {C2, C3, C4, C5} in the same spatial size respectively.

3.2. Faster R-CNN

Detecting concrete visual objects in images has been widely studied in com-

puter vision [40, 41, 35]. We briefly review the Faster R-CNN model [35], which

is used to extract emotional region from the image in this work. Faster R-CNN180

is a two-stage detector mainly consisting of three major parts: shared bottom

convolutional layers which is FPN in our model, a region proposal network

(RPN) and a classifier built for region-of-interest (ROI). The detailed structure

is shown in the left part of Figure 2.

First, an input image is represented as multi-scale feature maps which com-185

bine different levels of deep features by FPN. Then, RPN generates candidate

object proposals based on the feature maps. Since we replace the single-scale

feature map using in Faster R-CNN with multi-scale feature maps, single-scale

anchors with size {322, 642, 1282, 2562} pixels are applied for multi-level fea-

ture maps {P2, P3, P4, P5} with different receptive fields respectively. Finally,190
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ROI-pooling is used to extract features representing ROI and ROI-wise classifier

predicts the category label based on the features. The training loss is composed

of two terms:

Ldet = Lobj + Lreg (1)

here Lobj is the classification loss over two classes (if the candidate object region

contains an object or not). Lreg(ti, t
∗
i ) = R(ti − t∗i ) is the regression loss on the195

box coordinates for better localization, in which ti is a 4-d vector representing

the coordinates of the predicted bounding box, t∗i is the coordinates of the

ground-truth box and R is the robust loss function(L1 smooth) defined in [34].

More detailed information about the architecture and training procedure of

Faster R-CNN can be found in [35].200

4. Emotion Analysis using Multi-level R-CNN

4.1. Emotional Region Extraction

Detecting concrete visual objects in images has been widely studied in com-

puter vision [40, 41, 35]. However, compared to object detection, detecting

emotional content is extremely challenging. The main difficulty is that both the205

concrete objects and the surrounding background contribute to image emotions

[30, 42]. Due to the strong co-occurrence relationships between objects and local

emotional regions [43], we could still utilize object detection methods to select

potential emotional regions. However, to select proper emotional regions from

the candidate object proposals generating through RPN, we modify the Faster210

R-CNN to contain emotional information as shown in Figure 2(b).

Following the definition of objectness score Sobj in [35], which measures the

membership to set of object classes vs. background, we define emotion score

Semo to evaluate the probability of a region evoking emotions. To compute

emotion score, a binary class label (of emotional region or not) is assigned215

to each anchor in RPN. The positive label is assigned to an anchor with the

highest Intersection-over-Union (IoU) overlap with a ground-truth emotional
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region or an anchor that has an IoU overlap higher than 0.7 with any ground-

truth emotional region. The negative label is assigned to anchor with IoU

overlap lower than 0.3 with any ground-truth emotional regions. Using the220

samples collected from RPN, a softmax classifier can be trained to predict to

probability pemo of the region evoking emotions.

In Faster R-CNN, we introduce the emotional region classifier into the ROI-

wise classifier and fix the object classifier. The new training loss function is:

L∗
det = Lemo + Lreg (2)

where Lemo is the classification loss of the RoI being an emotional region or225

not. Therefore, the RoI-wise classifier can compute both the probability of the

RoI evoking emotions pemo and the probability of the ROI containing an object

pobj . The Faster R-CNN can train on the loss L∗
det related to emotional regions.

As we mentioned before, considering the emotional region is related to the

probability of the region containing an object pobj and the probability of the230

region evoking emotions pemo, the emotion score of the region can be computed

considering both probabilities:

Semo =
√
p2emo + p2obj (3)

The proposed emotion score Semo can reflect how likely a region evoking

emotions. The 10 regions with highest emotion score are selected as the emo-

tional regions of the image and used for image emotion classification.235

4.2. Emotion Distribution Estimation

The majority voting strategy is widely employed to obtain the ground truth

emotional label for most of affective image datasets [5, 8]. Many images in

these datasets have emotional labels with probabilities instead of hard emotional

labels. To handle the impact of labeling image emotions with emotion class240

probabilities, we consider to either estimate an emotion distribution based on

label probabilities or directly import label probabilities into a loss function for
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training. For emotion distribution estimation, since the subjectivity existing in

humans’ emotional response to images, the emotional response to an image is

more likely a distribution of several emotions rather than a single emotion.245

Inspired by the study of emotion theory [44], the degree of similarity between

two emotions, which determines the relationship of the two emotions, from simi-

lar to complete opposite, can be represented through Mikels’ Wheel [10]. Figure

4 shows Mikels’ wheel and the method to compute emotion distance revealing

the similarity between two emotions. The low distance dij between emotion i250

and emotion j indicates that the two emotions are similar to each other. Us-

ing Mikels’ Wheel as weak prior knowledge, we can assign the probability of

different emotion classes to an image based on the dominant emotion class of

that image. Therefore, if we denote the image has an dominant emotion j with

probability p∗j , the emotion distribution for the i-th emotion of the image can255

be generated through triangular distribution as shown in Figure 2(c):

f(i) =


p∗j i = j

1
disij

(1−pj)∑
i6=j

1
disij

i 6= j

(4)

in which, the emotion classes being closer to the dominant emotion class are

assigned with higher probabilities. The sum of all emotion class probabilities∑
f(i) is normalized to 1.

4.3. Classifier and Loss Function260

Through Faster R-CNN, a set of local deep representations of emotional

regions is collected {Xlocal}Kj=1, where K is the number of emotional regions

extracted from one image. Considering that an image may not contain many

local emotion regions, we only include top-ranked major emotion regions for

classification, by setting K = 10. The global deep representation of the whole265

image Xglobal extracted from the ResNet101 is concatenated with the local deep
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Figure 4: Mikels’ emotion wheel and example of emotion distance [10].

representations {Xlocal}Kj=1:

X = [Xglobal, {Xlocal}Kj=1] (5)

Followed by a softmax layer, X is transformed into a probability distribution

of different emotions, where the emotion category with the highest probability

is considered as the predicted label of the image. Considering the two methods270

(as discussed in Section 4.2) deal with the subjectivity existing in emotions, two

loss functions can be applied in our approach.

Multi-task Loss: Taking both emotional label and estimated emotion dis-

tribution into account, the multi-task loss function consists two terms:

Lmulti = (1− λ)Lcls + λLed (6)

where Lcls is the traditional classification loss, which can be computed as:275

Lcls = −
∑
i

yi log(pi) (7)

where y = {yi|yi ∈ {0, 1}, i = 1, ..., n,
∑n
i=1 yi = 1} indicates the ground-truth
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label of the image, and pi is the probability of an image belonging to the ith

emotion category.

Led is the loss from emotion distribution f(i). We employ the KL loss defined

in [45]. λ controls the trade-off between the two weights. The KL loss is the280

measurement of the similarity between the emotion distribution f(i) and the

predicted emotion distribution pi:

Led = −
∑
i

f(i) log(pi) (8)

The loss function can be optimized by stochastic gradient descent(SGD). We

define {ai|i = 1, 2, ..., N} to be the activation values of class i in the last fully

connected layer. The gradient can be computed by:285

∂L

∂ai
=(1− λ)

∑
i

∂Lcls
∂pi

∂pi
∂ai

+ λ
∑
i

∂Led
∂pi

∂pi
∂ai

= pi + (1− λ)yi + λf(i)

(9)

Loss with Probability: Another instinctive thought to deal with label

with probability is to directly introduce label probability into loss function.

Similar to [46], the classification loss with probability Lp can be defined as:

Lp = −
∑
i

yi log(pθi ), p
θ
i =

exp(p∗j
2 · pi)∑

i exp(p∗j
2 · pi)

(10)

The class prediction is weighted by the label probability p∗j . By introducing

the explicit simplifying assumption p∗j
∑
i exp(p∗j

2 · pi) ≈ (
∑
i exp(pi))

p∗j which290

becomes equal when p∗j → 1, the classification loss with probability can be

rewritten as:

Lp = −
∑
i

log(exp(p∗j
2 · pi)) + log(

∑
i

exp(p∗j
2 · pi))

≈ −p∗j
2
∑
i

yi log(pθi ) + log(
1

p∗j
2 )

(11)

The label with lower probability P ∗
j will reduce the contribution of the clas-

sification loss. With the above equation, label probability is introduced into loss

14



for training.295

5. Experiments and Results

In this section, we evaluate our model against state-of-the-art emotion clas-

sification methods through comprehensive experiments to demonstrate the ef-

fectiveness of our framework for different emotion classification tasks.

5.1. Dataset300

Our experiments are carried out on normally used image emotion datasets:

Flickr and Instagram (FI)(8 categories)[8]: This dataset is collected from

social websites using the names of emotion categories as searching keywords.

Workers from Amazon Mechanical Turk (AMT) are then hired to further la-

bel the images. Finally, 23,308 well-labeled images are collected for emotion305

recognition1.

EmotionRoI(2 categories)[36]: The dataset contains 1,980 affective images

from Flickr with labeled emotional regions. This dataset can be used for training

the R-CNN.

IAPSsubset(8 categories)[5]: The International Affective Picture System(IAPS)310

is a standard stimulus image set, which has been widely used in affective image

classification. IAPS consists of 1,182 documentary-style natural color images de-

picting complex scenes, such as portraits, puppies, babies, animals, landscapes

and others. Among all IAPS images, Mikels et al. [26] selected 395 images

and mapped arousal and valence values of these images to the above mentioned315

eight discrete emotion categories.

ArtPhoto(8 categories)[5]: In the ArtPhoto dataset, 806 photos are se-

lected from some art sharing sites by using the names of emotion categories as

the search terms. The artists, who take the photos and upload them to the

websites, determine emotion categories of the photos. The artists try to evoke320

1We have 23,164 labeled images as some images no longer exists on the Internet.
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a certain emotion for the viewers of the photo through the conscious manipula-

tion of the emotional objects, lighting, colors, etc. In this dataset, each image

is assigned to one of the eight aforementioned emotion categories. Considering

the generalization of our model, we demonstrate the effectiveness of the compo-

nents and adjust the parameters in our model on FI dataset, which contains over325

20,000 different kinds of affective images, rather than other 4 small datasets,

each of which only contains several hundreds of affective images for a specific

domains.

Abstract(8 categories)[5]: This dataset consists of 228 abstract paintings.

Unlike the images in the IAPS-Subset and ArtPhoto dataset, the images in330

the Abstract dataset represent the emotions through overall color and texture,

instead of some emotional objects. In this dataset, each painting was voted by

14 different people to decide its emotion category. The emotion category with

the most votes was selected as the emotion category of that image.

5.2. Implementation Details335

The backbone network of our model is the FPN [37]. In this paper, we follow

a two-step training strategy. At the first step, we use the same strategy as in

[37] to fine-tune the multi-level R-CNN on COCO pretrained weights using the

EmotionROI dataset. Note, the aspect ratio of anchor is set to {1:1}. At the

second step, the learning rate of the last two fully-connected layers are initialized340

as 0.001 and fine-tuned by SGD. The batch size is 128 and a total of 100 epochs

are run to update the parameters. All the experiments are carried out on four

NVIDIA GTX 1080 GPUs with 32GB of GPU memory.

5.3. Baseline

We compare the proposed framework with the state-of-the-art methods for345

image emotion classification, which use various features, including hand-crafted

features and deep features.
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5.3.1. Hand-crafted features

• GCH/LCH/GCH+BoW/LCH+BoW[4]: 64-bin color histogram fea-

tures for global view(GCH) and local view(LCH), and with SIFT-based350

bag-of-words features.

• Zhao[6]: low-level and mid-level features based on principle of art.

• Rao(a)[13]: SIFT-based bag-of-visual features for both global and local

view based on the image blocks extracted from images.

• SentiBank[27]: 1200-dim adjective noun pairs(ANPs) features as mid-355

level representation with linear SVM classifier.

5.3.2. Deep features

• AlexNet[7]: AlexNet fine-tuned on ImageNet pre-trained weights.

• VGG-16[38]: VGGNet fine-tuned on ImageNet pre-trained weights.

• ResNet101[39]: ResNet Fine-tuned on ImageNet pre-trained weights.360

• DeepSentiBank[47]: 2,089-dim ANPs features based on CNN.

• PCNN[48]: a novel progressive CNN architecture based on VGGNet [38].

• Rao(b)[9]: a CNN architecture based on AlexNet with side branch to

utilize multi-level deep features.

• Zhu[19]: a unified CNN-RNN architecture for visual emotion recognition.365

5.4. Experimental Validation

For methods using deep features, we first fine-tune them on the large scale

dataset(FI). The FI dataset is split randomly into 80% training, 5% validation

and 15% testing sets. For the 4 datasets(FI, IAPSsubset, ArtPhoto, Ab-

stract), with 8 emotional categories(positive emotion Amusement, Awe, Con-370

tentment, Excitement and negative emotion Anger, Disgust, Fear, Sadness), we

can convert them to 2 emotional categories with labeling 4 positive emotions
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as positive and 4 negative emotions as negative. To compare the results for all

datasets, we present the classification results for both 8 emotional categories

and 2 emotional categories.375

5.4.1. The effectiveness of local emotional region:

To demonstrate the effectiveness of considering the proposed local emotional

regions. We design experiments performed on the FI dataset to compare: 1)

ResNet101[39] only using the global feature extracted from the last convolu-

tional layer; 2) our framework only with features extracted from object re-380

gions extracted using Faster R-CNN with FPN[37]. 3) our framework only

with features extracted from emotional regions; 4) our framework with object

regions extracted using Faster R-CNN with FPN; and 5) our framework with

features extracted from both the whole image and emotion regions. Table 1

shows the performance of the five different methods on the test set of FI. As385

shown in table 1, compared to ResNet101, our method with object regions im-

proves the performance by 7.65% for 8 classes FI and 7.08% for 2 classes FI and

our method with emotional regions improves the performance by 14.64% and

12.84%. This reveals that emotional information from local regions can largely

improves the emotion classification accuracy than a single-column CNN-based390

global features extracted from the whole image. However, the emotion recogni-

tion performances reduced significantly without using features extracted from

global view. This demonstrates the effectiveness of the global features extracted

from the whole image.

Although both our framework with object regions and that with emotion395

regions improve the emotion classification performance, it is clear that using

emotional regions in our method outperforms than using object regions by 6.99%

and 5.76% for 8 classes FI and 2 classes FI respectively. The results of our

methods only using local features extracted from object regions and emotional

regions also indicate that emotional regions contains more emotional information400

than object regions

Figure 5 shows examples of object regions and emotion regions. we can find
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Table 1: Classification accuracy for both 8 classes and 2 classes on the test set of FI. Our

method with different configurations, i.e., combing with object region and emotional region

is compared with single column ResNet101 without local information and using object region

and emotional region as local information only.

Method FI(8 classes) FI(2 classes)

ResNet101 60.82% 74.67%

object regions only 54.82% 88.44%

emotional regions only 59.78% 72.57%

Ours+object regions 68.47% 81.75%

Ours+emotional regions 75.46% 87.51%

that emotional regions are larger than object regions by containing objects and

the surrounding background which may evoke emotions.

Figure 5: Examples of object regions with highest objectness scores(red bounding box) and

emotional regions with the highest emotion probability(green bounding box).

In Figure 6, we show the confusion matrix of ResNet101 and our method with405

different configuration. It is clearly that applying local information in image

emotion classification can improve the performance and provide a more balanced

classification result for each emotion category. Especially applying emotional

regions as local information in our method achieves the best classification result

on most of the emotion categories. This also demonstrate the effectiveness of410
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(a) ResNet101 (b) Ours + object region

(c) ResNet101 + emotional region (d) Ours + emotional region

Figure 6: Confusion matrix for our method with different configurations and ResNet101.

the emotional region.

5.4.2. The effectiveness of multi-level features:

Previous methods have already have already indicated that multi-level fea-

tures can significantly improve the image emotion classification performances

[9, 19]. However, the effectiveness of multi-level features in emotional region415

detection still needs to be proved. Figure 7 performs the detection results on

the testset of EmotionROI dataset. We notice that multi-level features improve

both performances of object region detection and emotional region detection.

The reason is that multi-level framework provides features maps with different
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Emotional Region(RCNN) Emotional Region(RCNN+FPN)

Figure 7: Comparison of Emotional region detection performance on the test set of Emotion-

ROI dataset using object detection methods and emotional region detection methods with

single level features and multi-level features.

scales of respective fields, which can effectively detect objects with different size420

in an image. What’s more, the multi-level features can improve the accuracy of

predicting emotional score [9], which can further promote the emotional region

detection performance.

5.4.3. Choice of the loss functions:

As we have discussed earlier, the subjectivity of the emotion is one of the425

main challenges for visual emotion recognition. Compared to traditional soft-

max loss Lcls widely used in different CNN models, the two loss functions we

introduced before both taking label probability into account. We conduct ex-

periments on the FI dataset for popular CNN model and our method using the

aforementioned loss functions. The results are shown in Table 2. Though both430

Lmulti and Lp introduce label probability into loss function, the performances

of them are quite different. For Lp, the classification performance is worse

than using Lcls while the performance of using Lmulti is 2% better than that of

using Lcls. The main reason is that, compared to Lp, Lmulti introduces inter-
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Table 2: Classification accuracy for both 8 classes and 2 classes on the test set of FI using pop-

ular CNN models and our method with traditional softmax loss(Lcls), multi-task loss(Lmulti)

and loss with probability(Lp).

Method FI(8 classes) FI(2 classes)

AlexNet+Lcls 58.61% 70.44%

ResNet101+Lcls 60.82% 74.67%

Ours+Lcls 73.05% 85.94%

AlexNet+Lp 57.44% 68.72%

ResNet101+Lp 59.28% 74.15%

Ours+Lp 73.58% 86.07%

AlexNet+Lmulti 60.32% 72.83%

ResNet101+Lmulti 62.77% 77.15%

Ours+Lmulti 75.46% 87.51%

class relationship, rather than simply abandon the low-probability labels, which435

contribute to the overall classification performance. Therefore, Lmulti is more

suitable for emotion classification and we apply the multi-task loss function in

the following experiments.

5.4.4. Choice of parameter λ:

The parameter λ controls the two portion of the proposed loss function.440

λ = 0 means the proposed loss function is equal to cross entropy loss and λ = 1

means the proposed loss function is equal to KL loss. Considering the estimate

emotion distribution p̂i generated only using label probability and weak prior

knowledge of emotion distance defined in Mikels’ wheel(Figure 4), we do not

recommend to set the parameter λ too high. Figure 8 shows the effectiveness of445

parameter λ in the proposed loss function. When λ increases from 0 to 0.4, the

classification performance is improved dramatically. However, further increasing

over 0.5 leads to significant decreasing of the accuracy, since the large weight

of Led introduces excess ambiguity. Therefore, we choose λ = 0.4 in all our
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Figure 8: Impact of different λ on the validation set of the FI dataset. λ = 0.4 achieves the

best performance and we choose it in all our experiments.

experiments for a comprehensive considering of the hard emotional label and450

emotion distribution.

5.5. Comparison with State-of-the-art Methods

We represent the results of our method and state-of-the-art methods on the

aforementioned 5 datasets(FI, EmotionROI, IAPSsubset, ArtPhoto and

Abstract). For fair comparison with EmotionROI dataset, which only has455

two emotional classes, we show the classification performance of the other 4

datasets for both 8 classes and 2 classes. The label conversion method is intro-

duced in Section 5.4. For the small-scale datasets(IAPSsubset,ArtPhoto,Abstract

and EmotionROI), we can transfer the parameters of deep learning methods

on the FI dataset. We follow the same experimental settings described in [5].460

Due to the imbalanced and limited number of images per emotion category, we

employ the ”one against all” strategy to train the classifier. The image sam-

ples from each category are randomly split into five batches and 5-fold cross

validation strategy is used to evaluate the different methods.
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Table 3 shows the comparisons of our methods to several state-of-the-art465

methods, including methods using hand-crafted features and deep features. It is

clear that methods using deep features outperform methods using hand-crafted

feature on large-scale dataset FIs. However, hand-crafted features show their

effectiveness for some specific kinds of images on small-scale dataset.

For hand-crafted features, low-level feature like color are very suitable to470

classify abstract paintings, which mainly consist of color and texture. While for

other kinds of images, simple color feature seems not enough for emotion clas-

sification. Multi-level features are combined in Zhao’s method [6] and achieve

acceptable result for the small-scale dataset. The reason is that image emotion

is related to various kinds of visual features from different levels, comprehensive475

consideration of different visual features can benefit the classification result.

In Rao(a) [13], local emotional region is extracted using image segmentation

method and represented with SIFT feature and bag-of-words. SIFT feature is a

texture representation, which can be used to detect concrete objects, e.g. face,

building, animal etc.. The performance of the method demonstrates the effec-480

tiveness of both concrete objects and local regions for image emotion analysis.

For deep features, the performances of three popular CNN frameworks,

which are AlexNet[7], VGGNet[38] and ResNet[39] are first compared. We

can find that as the CNN goes deeper, the emotion classification accuracy just

slightly improves. The results show that high-level image semantics cannot be485

used for image emotion classification independently. Other deep methods uti-

lize only one kind of features, like DeepSentibank[47] and PCNN[48] also show

limited performance. Both Rao(b)[9] and Zhu[19] utilize the multi-level deep

features extracted from different level of CNN and achieve relatively high per-

formance. Except the multi-level features, the regional information contained490

in lower levels of convolutional layers also contributes to the improvement.

Employed both multi-level deep features and local emotional regions, our

framework outperforms both hand-crafted feature based methods and deep ap-

proaches in all datasets. Also our method shows a robust performance on differ-

ent kinds of images, such as abstracting paintings consisting of color and texture495
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and images from IAPSsubset whose emotions are evoked by certain objects.

This means our method effectively combine different levels of visual features

from both global and local view.

6. Conclusion

In this paper, we investigate the problem of image emotion recognition. In-500

spired by the observation that multi-level features and local regions with high

emotional response contribute much to image emotion, we propose a framework

to automatically detect emotional regions on multi-level deep feature maps. The

local emotional information extracted from emotional regions is combined with

global information extracted from the whole image for image emotion classifica-505

tion. We also utilize the label probability of the affective images to leverage the

ambiguity and subjectivity of the emotional labels. The experimental results

show that our method outperforms the state-of-the-art methods on different

affective image datasets.

As shown before, the detected affective regions contain not only the object,510

but also the surrounding areas of the object. Therefore, the emotion can be

used as an anchor in the detection tasks like saliency detection [49], co-saliency

detection [50], and object detection [51, 52] in future research. Besides, an image

may evoke multiple emotions in the same time. For future study, we plan to

exploit relationship between different emotions to predict emotion distribution515

more precisely. We will also try to apply multi-label learning in image emotion

analysis.
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