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Abstract

Nowadays, a great number of positive data has been occurred naturally in many

applications, however, it was not adequately analyzed. In this article, we pro-

pose a novel statistical approach for clustering multivariate positive data. Our

approach is based on a finite mixture model of inverted Beta-Liouville (IBL)

distributions, which is proper choice for modeling and analysis of positive vec-

tor data. We develop two different approaches to learn the proposed mixture

model. Firstly, the maximum likelihood (ML) is utilized to estimate parameters

of the finite inverted Beta-Liouville mixture model in which the right number of

mixture components is determined according to the minimum message length

(MML) criterion. Secondly, the variational Bayes (VB) is adopted to learn our

model where the parameters and the number of mixture components can be

determined simultaneously in a unified framework, without the requirement of

using information criteria. We investigate the effectiveness of our model by

conducting a series of experiments on both synthetic and real data sets.
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1. Introduction

Data clustering is a common unsupervised learning technology for data anal-

ysis via discovering similar statistical characters in a data set. It has been widely

applied in many fields such as image processing[1], remote sensing [2], data min-

ing [3]. Thus, there is an urgent need for effective technologies to model and5

analyze complicated data. Among the existing proposed technologies, finite

mixture models have been successfully used and showed excellent performance

of clustering [4, 5, 6]. The finite mixture model is motivated as a linear su-

perposition of statistical distributions with varying proportions and shows the

simplicity and flexibility for clustering. Most existing related works, however,10

have not taken into account the characteristics of data set. Indeed, most of finite

mixture models mainly consider Gaussian as their basic distributions[7]. Never-

theless, it is obvious not an appropriate choice to model non-Gaussian data. For

example, Dirichlet or generalized Dirichlet mixture models [8, 9] can often out-

perform the Gaussian mixture model for modeling proportional data in many15

applications such as image categorization, human action video recognition, etc.

In recent years, several works have been proposed to model positive data

based on inverted Dirichlet mixture models [10, 11]. However, the inverted

Dirichlet distribution has a very restrictive covariance structure that consider-

ably limited its flexibility. In our work, we propose to model positive data based20

on a finite mixture model with inverted Beta-Liouville (IBL) distributions [12].

We are mainly motivated by the fact that the IBL distribution contains inverted

Dirichlet distribution as a special case and therefore can provide more flexibility.

Also, compared with Gaussian which can only approximate symmetric distri-

butions, IBL allows both symmetric and asymmetric distributions.25

A classic approach to learn finite mixture models is through maximum like-

lihood (ML) [13] and is usually carried out based on expectation maximization

(EM) [14]. However, one problem of using ML in mixture modeling is that it

lacks the ability to determine model complexity (i.e., the number of mixture

components). A common solution is to add a determination step based on some30
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typical information criteria such as Akaike information criterion (AIC) [15],

Bayes information criterion (BIC) [16], minimum description length (MDL) [17].

Based on the work of [15], all above criteria can be seen as an approximation to

a particular criterion namely the minimum message length (MML) [18, 19]. The

effectiveness of using EM algorithm together with MML to learn finite mixture35

models have been demonstrated through several works that have been proposed

during the last decade [20, 21]. Thus, the first approach that we develop to learn

finite IBL mixture models is based on a framework that using EM algorithm

to estimate parameters and MML criterion to inference the number of mixture

components. Even though ML is an effective approach to learn finite mixture40

models, it may suffer if the initialization was poorly chosen and would result in

over-fitting. To tackle this problem, we may consider an alternative approach

to learn IBL mixture models based on a Bayesian framework known as varia-

tional Bayes (VB) [22, 23, 24]. The VB algorithm provides a tractable lower

bound for marginal distribution to approximate the real posterior distribution,45

where closed-form solutions are obtained without additional iterative numerical

calculation. In contrast with the ML algorithm, the VB algorithm can estimate

model parameters and select the optimal number of clusters simultaneously.

The major contributions of this work are illustrated as follows: 1) We propose

a new statistical model-based approach for clustering positive data based on50

finite IBL mixture models. 2) We develop two different approaches to learn

the proposed IBL mixture models. The first learning approach is based on

the EM algorithm and uses MML criterion to determine the number of mixture

components. The second learning approach is built by exploiting a VB inference

framework, such that the parameters of our mixture model and the number of55

mixture components can be evaluated simultaneously in a unified framework. 3)

The effectiveness of our approaches for learning the finite IBL mixture model and

the clustering applications of the finite IBL mixture model are shown through

extensive experiments.

The rest of this paper is organized as follows. In section 2, we present the60

finite IBL mixture model and the ML estimation based on MML is also given.
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In section 3, the VB algorithm for learning the finite IBL mixture model is

presented. The experiments based on synthetic data and real applications are

conducted in section 4 and the conclusion follows in section 5.

2. Finite Inverted Beta-Liouville Mixture Model And Maximum Like-65

lihood

2.1. Finite Inverted Beta-Liouville Mixture Model

If a D-dimension vector ~X = {X1, · · · , XD} is drawn from a inverted Beta-

Liouville (IBL) distribution [12], then we have

p( ~X|α1, . . . , αd, α, β, λ) =
Γ(
∑D
d=1 αd)Γ(α+ β)

Γ(α)Γ(β)

D∏

d=1

Xαd−1
d

Γ(αd)

×λβ
( D∑

d=1

Xd

)α−∑D
d=1 αd

(
λ+

D∑

d=1

Xd

)−(α+β)

, (1)

where Xd > 0 for d = 1, · · · , D, α > 0, β > 0 and λ > 0. Actually, the IBL70

distribution can be viewed as a generalized form of inverted Dirichlet distribu-

tion that may contain multiple symmetric and asymmetric modes. More details

about IBL distribution can be found from [12].

The mean, variance and covariance of the IBL distribution are given by

E(Xd) =
λα

β − 1

αd∑D
d=1 αd

, (2)

V ar(Xd) =
λ2α(α+ 1)

(β − 1)(β − 2)

αd(α+ 1)
∑D
d=1 αd(

∑D
d=1 αd + 1)

− λ2α2

(β − 1)2

α4
d

(
∑D
d=1 αd)

4
, (3)

75

Cov(Xm, Xn) =
αmαn∑D
d=1 αd

[
λ2α(α+ 1)

(β − 1)(β − 2)(
∑D
d=1 αd + 1)

− λ2α2

(β − 1)2(
∑D
d=1 αd)

]
. (4)
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Given a set of data that contains N vectors: X = { ~X1, · · · , ~XN}, where

each ~Xi = {Xi1, · · · , XiD} is drawn from the finite IBL mixture model with M

components and is defined as follow

p( ~Xi|~π,Θ) =
M∑

j=1

πjp( ~Xi|θj). (5)

where Θ = (θ1, · · · , θM ), p( ~Xi|θj) denotes the IBL distribution in Eq. (1) asso-

ciated with the jth component with parameters θj = (αj1, . . . , αjD, αj , βj , λj),

and ~π = (π1, . . . , πM ) represent the mixing coefficients where 0 ≤ πj ≤ 1 and
∑M
j=1 = 1.

2.2. Maximum Likelihood Estimation80

An important step for learning finite mixture models is to estimate involved

parameters. In this part, we develop a learning approach based on maximum

likelihood (ML) to learn our finite IBL mixture model. Specifically, the values

of parameters are obtained by maximizing the log-likelihood function as

Θ̃ = argmax
Θ

log p(X|~π,Θ), (6)

where the log-likelihood function is generally given by

L(X|~π,Θ) = log p(X|~π,Θ) = log

N∏

i=1

p( ~Xi|~π,Θ) =

N∑

i=1

log

( M∑

j=1

πjp( ~Xi|θj)
)
.(7)

Now we define latent variables as indicator variables for a set of data that is

observed. Let Z = {~Z1, . . . , ~ZN}, each ~Zi = (Zi1, · · · , ZiM ) corresponds to an

observed data ~Xi, where Zij ∈ {0, 1} and
∑M
j=1 Zij = 1, and Zij = 1 if ~Xi

belongs to component j, and 0, otherwise. Then, the log-likelihood function of

the complete data set {X ,Z} takes the form

Φ(X ,Z|~π,Θ) =
N∑

i=1

M∑

j=1

Zij{logπj + log p( ~Xi|θj)}. (8)

Next, the conditional expectation of the complete-data log-likelihood function

is maximized in the M-step of EM algorithm which is given by

Ω(X|Θ) =

N∑

i=1

M∑

j=1

〈Zij〉{logπj + log p( ~Xi|θj)}, (9)

5
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where 〈Zij〉 (i.e., the posterior probability) denotes the expected value of the

indicator variable and is given by

〈Zij〉 =
πjp( ~Xi|θj)∑M
k=1 πkp(

~Xi|θk)
. (10)

Then, we can maximize Ω(X|Θ) as described in Eq. (9) by computing the first

derivatives with respect to all parameters as follows

∂Ω(X|Θ)

∂αj
=

N∑

i=1

〈Zij〉
[
log

D∑

d=1

Xid − log(λj +
D∑

d=1

Xid)

]

+[Ψ(αj + βj)−Ψ(αj)]

N∑

i=1

〈Zij〉, (11)

∂Ω(X|Θ)

∂βj
=

N∑

i=1

〈Zij〉
[
logλj − log(λj +

D∑

d=1

Xid)

]

+[Ψ(αj + βj)−Ψ(βj)]

N∑

i=1

〈Zij〉, (12)

85

∂Ω(X|Θ)

∂αjd
=

N∑

i=1

〈Zij〉
[
logXid − log

D∑

d=1

Xid

]

+

[
Ψ(

D∑

d=1

αjd)−Ψ(αjd)

] N∑

i=1

〈Zij〉, (13)

∂Ω(X|Θ)

∂λj
=

N∑

i=1

〈Zij〉
[
βj
λj
− αj + βj

λj +
∑D
d=1Xid

]
, (14)

where Ψ(·) denotes digamma function. From Eq. (11) to Eq. (14), it is clear

that a closed-form solution for θj does not exist. To estimate these unknown

parameters, the Newton-Raphson method is utilized

θ
(t+1)
j = θ

(t)
j −H(θ

(t)
j )−1 ∂Ω(X|~π(t),Θ(t))

∂θ
(t)
j

, (15)

where H(θ
(t)
j )−1 denotes the inverse Hessian matrix for parameter θj and is

described in details in Appendix A. It is worth noting that the closed-form

solution for mixing coefficients πj exists and is given by

πj =
1

N

N∑

i=1

〈Zij〉. (16)

6
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2.3. MML Criteria For Estimating Parameters

One fundamental issue in mixture modeling is how to correctly and automat-

ically select the optimal number of mixture components. There have been some

criteria applied in dealing with this problem by mainly evaluating two parts in-

cluding data part of maximizing likelihood and a penalty part of the complexity

of statistical models [25]. Among these existing criteria, the minimum message

length (MML) criterion has been widely used and shown excellent performance

in many applications [20, 26]. The MML criterion for finite mixture models is

generally defined by

MML ' −log(h(Θ, ~π))− log(p(X|~π,Θ)) +
1

2
log(|F (Θ, ~π)|) +

Np
2

(1− log(12)),

(17)

where h(Θ) denotes the prior probability, log(p(X|~π,Θ)) is the likelihood which

can be obtained from Eq. (7), F (Θ) represents the expected Fisher information

matrix [19], | · | denotes determinant, and Np denotes the number of the free

estimated parameters (i.e., Np = M(D + 4)− 1). The log(|F (Θ)|) of the finite90

IBL mixture model can be approximated as (please see Appendix B for detail)

log(|F (Θ)|)' (M − 1)log(N) +
M∑

j=1

log(|H̃(αj , βj , λj)|)

+
M∑

j=1

log

(∣∣∣∣1−Ψ′(
D∑

d=1

)
D∑

d=1

1

Ψ′(αjd)

∣∣∣∣
)
−

M∑

j=1

log(πj)

+D
M∑

j=1

log(nj) +
M∑

j=1

D∑

d=1

log(Ψ′(αjd)). (18)

The prior h(Θ) is defined as (details can be viewed in Appendix C)

h(Θ) = (M − 1)!
M∏

j=1

[
f(αj , βj , λj)

−3
D∏

d=1

f(αjd)

]
, (19)

where

f(αj , βj , λj) =

[
e18(α̂j + β̂j + λ̂j)

3

α̂j β̂j λ̂j

]−1

, (20)

and with

f(αjd) = e6

∑D
d=1 α̂jd
α̂jd

, (21)

7
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where the parameters with the hat notation are the estimated parameters.

Based on [27], MML is based on evaluating statistical models and is able to

compress information from data. In addition, based on information-theory, the

optimal number of mixture components occurs when the minimum of informa-95

tion is obtained. Thus, MML has the ability to select the optimal clusters to

describe data set. The complete algorithm based on EM algorithm and MML

criterion is summarized as follows

Algorithm 1

1: Initialization.

2: E-step: calculate the posterior probability 〈Zij〉 according to Eq. (10)

3: M-step: update parameters θj and πj using Eq. (15) and Eq. (16), respec-

tively.

4: calculate the MML criterion using Eq. (17).

5: select the optimal component M∗ such that:

M∗ = argmin
M

MML(M).

3. Variational Learning For Estimating Parameters

Since EM algorithm may result in over-fitting due to poor initialization,100

we provide an alternative learning approach, in this section, that can estimate

parameters and select the right number of components of the finite IBL mixture

model. Our approach is based on a Bayesian framework known as variational

Bayes (VB), which has shown promising results in learning mixture models

[28, 8].105

3.1. Latent Variables and Prior Distributions

We define latent variables Z = {~Z1, . . . , ~ZN} as indicator variables for an

observed data set. Each ~Zi = (Zi1, · · · , ZiM ) corresponds to a data point ~Xi,

where Zij ∈ {0, 1},
∑M
j=1 Zij = 1, and Zij = 1 if ~Xi belongs to component j,

8
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and 0, otherwise. The conditional distribution of Z given the mixing coefficients

~π takes the form

p(Z|~π) =

N∏

i=1

M∏

j=1

π
Zij

j . (22)

Then, the likelihood function of data set X with latent variables Z and related

parameters Θ is given by

p(X|Z,Θ) =

N∏

i=1

M∏

j=1

p( ~Xi|θj)Zij . (23)

Next, we place priors over parameters Θ = (α, ~α, ~β,~λ). Since α, ~α, ~β,~λ, Θ are

positive, Gamma distribution G(·) is adopted as their priors

p(α) = G(α|~u,~v) =
M∏

j=1

D∏

d=1

α
ujd−1
jd e−vjdαjd

Γ(ujd)
, (24)

p(~α) = G(~α|~g,~h) =
M∏

j=1

α
gj−1
j e−hjαj

Γ(gj)
, (25)

p(~β) = G(~β|~s,~t) =
M∏

j=1

β
sj−1
j e−tjβj

Γ(sj)
, (26)

p(~λ) = G(~λ|~c, ~f) =

M∏

j=1

λ
cj−1
j e−fjλj

Γ(cj)
. (27)

Then, for the finite IBL mixture model, the joint distribution of all random

variables and latent variables given mixing coefficients ~π is defined by

p(X ,Z,Θ|~π) = p(X|Z,Θ)p(Z|~π)p(α)p(~α)p(~β)p(~λ). (28)

The graphical model of finite IBL mixture model is shown in Fig. 1.

3.2. Model Learning via VB Inference

For the finite IBL mixture model, the goal of VB is to find a lower bound

on p(X|~π) via Jensen’s inequality. Here, we define Λ = {Z,Θ}, and the lower110

bound L(q) can then be obtained by

log p(X|~π) = log

∫
p(X ,Λ|~π)dΛ = log

∫
q(Λ)

p(X ,Λ|~π)

q(Λ)
dΛ

≥
∫
q(Λ)log

p(X ,Λ)|~π
q(Λ)

dΛ = L(q), (29)

9
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Figure 1: Graphical model of finite IBL mixture model. Symbols in circle denote variables

and black points are parameters. Arcs represent the conditional dependence between two

variables, and plates denote the replication (shown in the lower right with the number of

replications).

where q(Λ) is an approximation for the posterior distribution p(Λ|X , ~π). Then,

we can decompose the log marginal probability as

log p(X|~π) = L(q) + KL(q‖p), (30)

where the Kullback-Leibler divergence KL(q‖p) is defined by

KL(q‖p) = −
∫
q(Λ)log

p(Λ|X , ~π)

q(Λ)
dΛ. (31)

In our work, we adopt the mean field assumption [29, 30, 31] to restrict the

family of distribution. Thus, the posterior distribution q(Λ) can be factorized

into different factors as

q(Λ) = q(Z)q(Θ) = q(Z)q(α)q(~α)q(~β)q(~λ). (32)

Then, we need to find proper individual factors to maximize the lower bound

L(q) via variational optimization with respect to each factor in turn. The opti-

mal solution to the factor q(Z) is given by

q(Z) =

N∏

i=1

M∏

j=1

r
Zij

ij , (33)

10
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where

rij =
r∗ij∑M
k=1 r

∗
ik

, (34)

with

r∗ij = exp

[
logπj + Sj + Tj + (ᾱj −

D∑

d=1

ᾱjd)log(

D∑

d=1

Xid)

+β̄j〈logλj〉+
D∑

d=1

(ᾱjd − 1)logXid)− (ᾱj + β̄j)Hij

]
, (35)

with expected values that are defined as follows

ᾱj =
g∗j
h∗j
, β̄j =

s∗j
t∗j
, ᾱjd =

u∗jd
v∗jd

, λ̄j =
c∗jd
f∗jd

,

Hij =

〈
log(λj +

D∑

d=1

Xid)

〉
, 〈logλj〉 = Ψ(c∗j )− log(f∗j ),

Sj =

〈
log

Γ(
∑D
d=1 αjd)∏D

d=1 Γ(αjd)

〉
, Tj =

〈
log

Γ(αj + βj)

Γ(αj)Γ(βj)

〉
. (36)

Since Hij , Sj and Tj are intractable, we use second order Taylor series expansion

to calculate their lower bounds.

Similarly, the optimal solution to the factor q(α) is given by

q(α) =

M∏

j=1

D∏

d=1

G(αjd|u∗jd, v∗jd), (37)

where we have115

u∗jd = ujd +
N∑

i=1

〈Zij〉ᾱjd
[
Ψ(

D∑

d=1

ᾱjd)−Ψ(ᾱjd) + Ψ′(
D∑

d=1

ᾱjd)
D∑

l 6=d
(〈logαjl〉

−logᾱjl)ᾱjl

]
, (38)

v∗jd = vjd −
N∑

i=1

〈Zij〉
[
logXid − log(

D∑

d=1

Xid)

]
, (39)

and with expected values

〈Zij〉 = rij , 〈logαjl〉 = Ψ(u∗jl)−Ψ(v∗jl). (40)

11
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Next, the optimal solution to the factor q(~α) can be calculated by

q(~α) =

M∏

j=1

G(αj |g∗j , h∗j ), (41)

where g∗j and h∗j are given by

g∗j = gj+
N∑

i=1

〈Zij〉
[
Ψ(ᾱj+β̄j)−Ψ(ᾱj)+β̄jΨ

′(ᾱj+β̄j)(〈logβj〉−logβ̄j)

]
ᾱj , (42)

h∗j = hj −
N∑

i=1

〈Zij〉log

( D∑

d=1

Xid

)
+

N∑

i=1

〈Zij〉Hij , (43)

and we have

〈logβj〉 = Ψ(s∗j )− log(t∗j ). (44)

Then, the variational optimal solution q(~β) can be updated by

q(~β) =
M∏

j=1

G(βj |s∗j , t∗j ), (45)

where we have

s∗j = sj+
N∑

i=1

〈Zij〉
[
Ψ(ᾱj+β̄j)−Ψ(β̄j)+ᾱjΨ

′(ᾱj+β̄j)(〈logαj〉−logᾱj)

]
β̄j (46)

t∗j = tj +
N∑

i=1

〈Zij〉
[
Hij − 〈logλj〉

]
, (47)

with

〈logλj〉 = Ψ(g∗j )− log(h∗j ). (48)

Finally, the variational optimal solution to q(~λ) can be updated by

q(~λ) =

M∏

j=1

G(cj |f∗j , t∗j ), (49)

where

c∗j = cj +

N∑

i=1

〈Zij〉β̄j , (50)

f∗j = fj +
N∑

i=1

〈Zij〉
ᾱj + β̄j

λ̄j +
∑D
d=1Xid

. (51)

12
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In our case, the lower bound L(q) can be calculated by

L(q) =
∑

Z

∫
q(Z,Θ)log

{
p(X ,Z,Θ|~π)

q(Z,Θ)

}
dΘ

= 〈log p(X|Z,Θ)〉+ 〈log p(Z|~π)〉+ 〈log p(Θ)〉

− 〈logq(Z)〉 − 〈log q(Θ)〉. (52)

To determine the optimal number of mixture components M , we treat the mix-

ing coefficients ~π as parameters and estimate values for M by maximizing the

lower bound L(q) with respect to ~π. Then, we can calculate the optimal values

for πj as

πj =
1

N

N∑

i=1

rij . (53)

By deleting the components with mixing coefficients that are close to 0, appro-

priate number of mixture components will be acquired.

3.3. The Complete Learning Algorithm

The complete algorithm for learning IBL mixture model with VB inference120

can be summarized as follows In our VB algorithm, it is useful to monitor

Algorithm 2

1: Initialize the number of components M .

2: Initialize values of hyper-parameters ujd, vjd, gj , hj , sj , tj , cj , fj .

3: Initialize the values of rij by using K-means.

4: repeat

5: Variational E-step:

Update the variational factors q(Z), q(α), q(~α), q(~β) and q(~λ).

6: Variational M-step:

Maximize lower bound L(q) with respect to ~π by using Eq. (52).

7: until convergence is reached

8: Select the optimal value of M by removing the components with small mix-

ing coefficients (less than 10−5).

the variational lower bound L(q) (Eq. (52)) during the re-estimation, which
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contributes to testing for convergence. That is, we can evaluate the lower bound

L(q) at each iteration, and terminate the learning process if L(q) does not

increase significantly.125
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Figure 2: The two-dimensional synthetic data sets. (a) Data set 1 (D1); (b) Data set 2 (D2);

(c) Data set 3 (D3); (d) Data set 4 (D4).

4. Experiment

In this section, we test the effectiveness of our two proposed methods includ-

ing the MML-based finite IBL Mixture Model(MML-IBLMM) and the vari-

ational finite IBL Mixture Model (Var-IBLMM), through synthetic data sets

and real-world applications. In the experiments of synthetic data, we compare130

the accuracy on learning IBL mixture model in terms of estimating model pa-

rameters and selecting the right number of components using MML-IBLMM

and var-IBLMM, respectively. In the experiments regarding real-world appli-

cations, we demonstrate the merits of MML-IBLMM and Var-IBLMM on clus-

tering by comparing them with several other well-defined mixture models, such135
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(a) (b)

(c) (d)

Figure 3: Probability densities for the two-dimensional synthetic data sets. (a) Data set 1

(D1), (b) Data set 2 (D2), (c) Data set 3 (D3), (d) Data set 4 (D4).

as MML-based finite Gaussian mixture model(MML-GMM) [32], variational fi-

nite Gaussian mixture model (Var-GMM) [33], MML-based finite Beta-Liouville

Mixture Model (MML-BLMM)[34] and variational finite Beta-Liouville Mix-

ture Model (Var-BLMM)[35]. In our experiments, we initialize the number

of mixture components to 15 (M = 15), and set other hyperparameters as140

(ujd, vjd, gj , hj , sj , tj , cj , fj) = (1, 0.1, 1, 0.1, 1, 0.1, 1, 0.1, 1, 0.1).

4.1. Synthetic Data

In this part, we provide the performance of both MML-IBLMM and Var-

IBLMM by testing them on four different 2-dimensional synthetic data sets

which are obtained by using Gibbs sampler. Specifically, we evaluate the ef-145

fectiveness for estimating parameters and selecting the right components of

15
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Table 1: Parameters for generating the synthetic data sets D1 ∼ D4. N denotes the total

number of data points, Nj denotes the number of elements in cluster j.

Nj j αj1 αj2 αj βj λj πj

D1 100 1 3 4 10 6 1 0.25

300 2 15 3 7 7.5 3 0.75

D2 150 1 3 4 10 6 1 0.25

150 2 15 3 7 7.5 3 0.25

300 3 3 20 6 10 5 0.50

D3 160 1 3 4 10 6 1 0.20

160 2 15 3 7 7.5 3 0.20

200 3 3 20 6 10 5 0.25

280 4 8 4 4 8 3 0.35

D4 200 1 3 4 10 6 1 0.20

200 2 15 3 7 7.5 3 0.20

200 3 3 20 6 10 5 0.20

200 4 3 9 5 3.5 1.5 0.20

200 5 8 4 4 8 3 0.20

mixture model between MML-IBLMM and Var-IBLMM algorithms. Table 1

presents the real parameters for generating the four synthetic data sets. The

synthetic data sets and their corresponding probability densities can be viewed

in Fig. 2 and Fig. 3, respectively.150

The estimated parameters obtained by MML-IBLMM and Var-IBLMM based

on 20 runs are shown in Table 2 and Table 3, respectively. As we can observe

from this table, our proposed two algorithms can accurately estimate parameters

of these four synthetic data sets.

Fig. 4 shows the message length values of different number of mixture com-155

ponents for each synthetic data set obtained by using MML-IBLMM. We can

observe that the correct number of mixture components is obtained with the

maximum of message length values (i.e., M = 2 in Data set 1, M = 3 in Data set

16
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Table 2: The estimated parameters obtained by MML-IBLMM.

j α∗j1 α∗j2 α∗j β∗j λ∗j π∗j

D1 1 2.91 3.87 9.70 5.82 1.00 0.250

2 14.4 3.09 6.81 7.26 2.91 0.750

D2 1 2.88 3.85 10.40 5.80 0.97 0.243

2 14.55 2.89 7.31 7.20 2.92 0.253

3 2.89 20.8 6.25 9.68 4.825 0.504

D3 1 2.89 3.84 10.35 5.82 1.04 0.208

2 15.46 2.88 6.78 7.25 3.08 0.205

3 2.89 20.82 6.21 9.65 5.175 0.240

4 8.33 4.14 4.13 7.67 2.89 0.347

D4 1 2.90 3.86 10.33 5.83 0.96 0.205

2 15.38 2.89 6.75 6.75 3.09 0.195

3 3.112 20.81 6.51 10.38 5.19 0.192

4 2.94 9.27 4.45 3.395 1.455 0.203

5 8.32 3.86 4.08 7.87 2.92 0.205

2, M = 4 in Data set 3, M = 5 in Data set 4). Therefore, we have proved here

that MML criterion is a useful tool to discover the correct number of mixture160

components in mixture modeling.

In our VB learning algorithm, the number of mixture components is obtained

by removing the components with the estimated mixing coefficients that are

close to 0. We can verify this result according to the variational likelihood

bound calculated by Eq. (52). The idea is that the variational likelihood bound165

should be maximum at the correct number of components. Fig. 5 shows the

results of variational likelihood bounds for different data sets obtained by Var-

IBLMM, by varying the number of mixture components from 1 to 10. As we can

see from this figure, for each data set, we have received the correct number of

mixture components at the maximum value of the variational likelihood bound.170

It is convenient for Var-IBLMM to determine its convergence by inspecting
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Table 3: The estimated parameters obtained by Var-IBLMM.

j α∗∗j1 α∗∗j2 α∗∗j β∗∗j λ∗∗j π∗∗j

D1 1 2.93 3.92 9.78 5.88 1.00 0.254

2 15.21 3.11 6.84 7.35 3.09 0.746

D2 1 2.92 3.84 9.80 5.83 0.98 0.245

2 14.65 2.90 7.29 7.18 2.89 0.253

3 3.10 20.65 6.18 9.75 4.83 0.502

D3 1 3.08 4.15 10.21 5.88 0.97 0.204

2 14.68 2.92 6.88 7.31 3.11 0.196

3 3.11 20.75 6.20 9.73 5.17 0.245

4 8.23 3.88 4.14 7.77 2.88 0.355

D4 1 3.09 4.15 9.79 6.11 0.98 0.197

2 15.28 2.93 7.12 7.21 3.12 0.198

3 3.08 20.47 5.86 10.28 5.16 0.199

4 2.93 9.75 4.85 3.509 1.502 0.202

5 8.15 3.91 4.16 7.89 2.97 0.204

the variational lower bound. It converges to local optimal solution by employing

the VB algorithm. Var-IBLMM can directly calculate the closed form solution

by using approximate calculation and variational methods in comparison with

MML-IBLMM which uses traditional EM and MML criteria.175

4.2. Text Categorization

In this section, We test our two algorithms on a challenging real application

namely text categorization. The main purpose of text categorization is to auto-

matically assign documents into semantic clusters. Thus, it is vital to choose a

reasonable model which can correctly describe the statistical characteristics of180

text data. In our experiment, to better describe and cluster the documents, we

employ the bag-of-words (BOW) model to convert documents into feature vec-

tors via calculating their (term frequencyinverse document frequency) (TFIDF)

scores. In our BOW model, we have the assumption that documents can be
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Figure 4: The values of message length of different number of mixture components for each

synthetic data set obtained by MML-IBLMM. (a) D1, (b) D2, (c) D3, (d) D4.

composed into a series of words regardless of grammar and words that are in-185

dependent between each other.

We conduct the experiment on text classification using the “ModApte” data

set, which is a subset of Reuters-21578 data set 1. In our case, the “ModApt”

data set that contains 12,902 documents which are grouped into 135 valid top-

ics and mainly aim at the top 10 frequent categories including “earn”, “acq”,190

“money-fx”, “grain”, “crude”, “trade”, “interest”, “ship”, “wheat” and “corn”.

In our experiment, all of processed positive vectors are modeled by the proposed

finite IBL mixture model and grouped into homogeneous classes based on ML

and VB learning approaches. The categorization performance is evaluated by

different measures includes Error rate, Recall rate, Precision and F1, which are195

widely used in information retrieval.

1http://www.daviddlewis.com/resources/testcollections/reuters21578/
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Figure 5: The variational likelihood bound of different number of mixture components by

Var-IBLMM. (a) D1, (b) D2, (c) D3, (d) D4.

The average categorization results based on 30 runs are provided in Ta-

ble 4 for MML-IBLMM and Table 5 for Var-IBLMM, respectively. For compar-

ison, the average categorization performance by different approaches are pre-

sented in Fig. 6. As shown in Fig. 6, Var-IBLMM and MML-IBLMM perform200

better than Var-BLMM, MML-BLMM, Var-GMM and MML-GMM in terms

of higher precision, Recall and F1 scores, and lower error rates (specifically,

2.76± 0.21, 3.21± 0.15 vs 3.54± 0.18, 3.72± 0.20, 6.37± 0.31, 6.80± 0.35). Fur-

thermore, Var-IBLMM achieves higher accuracy rate and lower error rate than

MML-IBLMM (see clearly Table 4 and Table 5), which demonstrated the ad-205

vantages of using VB algorithm to learn mixture models than ML algorithm.

Moreover, it can be seen that GMM and BLMM based on Var or MML pro-

vided the worst performance among other all tested approaches. This result

also shows that Gaussian distribution and Beta-Liouville are not the optimal

choice for dealing with positive high-dimensional vector.210
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Table 4: Average categorization performance (%) by MML-IBLMM for the “ModApte” data

set.

Categories Error Recall Precision F1

earn 4.94±0.39 92.56±1.11 93.55±0.38 91.14±0.21

acq 5.46±0.33 88.13±2.01 90.62±0.25 88.30±0.31

money-fx 4.50±0.32 65.82±0.89 81.31±0.33 75.20±1.00

grain 2.46±0.20 76.24±1.14 93.64±0.51 87.00±0.84

crude 2.36±0.14 75.54±3.13 90.23±1.21 84.90±0.55

trade 3.44±0.19 62.74±3.72 85.74±2.01 84.50±1.33

interest 3.90±0.17 56.21±0.74 79.31±1.17 66.00±0.63

ship 2.00±0.19 49.65±1.56 91.56±0.57 66.25±2.19

wheat 1.60±0.09 66.56±2.61 93.14±0.97 74.10±1.30

corn 1.44±0.13 56.14±0.27 94.55±1.14 72.34±0.93

4.3. Diagnosis of Coronary Artery Disease

Coronary artery disease (CAD) is quite common and is one of the main fac-

tors which lead to death. Therefore, it is imperative to have an effective in-time

diagnosis of CAD. In this section, we test the developed finite IBL mixture model

on this challenging application. We evaluate the performance of our mixture215

model with the proposed two learning approaches on a data set known as the

Z-Alizadeh Sani data set 2. The Z-Alizadeh Sani data set includes the records of

303 patients, with 54 features attached to each patient. These features can act

as the indicator for CAD of the patient [36]. These 54 features can be divided

into four groups: demographic, symptom and examination, ECG, and labora-220

tory and echo features. Each patient could be possibly classified into CAD or

Normal. The patient will be classified as CAD, if the diameter narrowing is

over or equal to 50%. Otherwise, the patient is considered as Normal [36]. In

2https://archive.ics.uci.edu/ml/datasets/Z-Alizadeh+Saniand
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Table 5: Average categorization performance (%) by Var-IBLMM for the “ModApte”data set.

Categories Error Recall Precision F1

earn 4.23±0.35 93.33±0.95 94.01±0.13 91.89±0.33

acq 4.86±0.51 91.79±1.21 92.56±0.15 89.00±0.26

money-fx 3.91±0.32 67.51±1.17 83.06±1.05 76.55±0.63

grain 2.01±0.21 77.51±2.30 94.50±1.71 89.62±0.87

crude 2.00±0.16 75.96±3.11 90.89±0.64 85.34±1.21

trade 3.21±0.36 63.61±0.87 88.51±0.88 86.80±0.41

interest 3.35±0.22 57.86±1.16 82.23±1.03 69.78±0.88

ship 1.73±0.22 52.06±2.41 92.33±2.22 70.98±2.03

wheat 1.25±0.13 66.98±0.97 93.97±1.40 75.00±1.41

corn 1.01±0.07 59.76±1.16 95.25±0.78 73.95±1.64

our experiment, we transform some features into Integer or Real values. For

instance, “YES” is converted into 1 and “NO” is forced into 0. The result-225

ing feature vectors are then normalized and thus result in positive vectors. In

our case, a confusion matrix is considered to measure the performance of the

proposed approach as shown in Table 6. In our two-class problem (CAD and

Normal), there are 4 different types of measures which are defined as follows:

true positive (TP) denotes a patient who suffers from CAD, false positive (FP)230

denotes a patient who is diagnosed with CAD but is indeed Normal, true neg-

atives (TN) denotes a patient who is Normal, false negatives (FN) represents a

patient who is indeed Normal but is incorrectly diagnosed with CAD.

Table 6: Confusion matrix for the Z-Alizadeh Sani data set.

CAD Normal

CAD True positive (TP) False positive (FP)

Normal False negative (FN) True negative (TN)

To better evaluate the performance of the proposed MML-IBLMM and Var-
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Figure 6: Average categorization performance for different algorithms in terms of (a) Error,

(b) Recall, (c) Precision and (d) F1.

IBLMM, we also adopt three other measures including Accuracy, Sensitivity

and Specificity [37], based on the confusion matrix as illustrated in Table 6.

The calculations of Accuracy, Sensitivity and Specificity are respectively given

by

Accuracy =
TN + TP

TN + TP + FN + FP
, (54)

Sensitivity =
TP

TP + FN
, (55)

Specificity =
TN

FP + TN
. (56)

Table 7 shows the classification results for the Z-Alizadeh Sani data set in

terms of the confusion matrix by different approaches including Var-IBLMM,235

MML-IBLMM, Var-BLMM, MML-BLMM, Var-GMM and MML-GMM. After

obtaining this confusion matrix, we can calculate the Accuracy, Sensitivity
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and Specificity as presented in Table 8. As we can see from these two ta-

bles, the classification results obtained by Var-IBLMM and MML-IBLMM are

better than the ones based on the Var-BLMM, MML-BLMM, Var-GMM and240

MML-GMM. According to Table 8, Var-IBLMM achieves the highest accuracy

rate (81.84%) while MML-IBLMM also provides the competitive accuracy rate

(79.21%). However, the accuracy of MML-GMM is considerably low, which is

only 63.04%. These results prove that the IBL distribution possesses better sta-

tistical characteristics for clustering positive vectors than the Beta-Liouville and245

Gaussian distributions do. Also, Var-IBLMM outperforms the MML-IBLMM

which again demonstrates the fact that VB inference may provide a better model

learning performance than the ML approach does.

Table 7: The confusion matrices for different algorithms.

Algorithms CAD Normal

Var-IBLMM
CAD 178 25

Normal 30 70

MML-IBLMM
CAD 165 29

Normal 34 75

Var-BLMM
CAD 160 28

Normal 41 74

MML-BLMM
CAD 151 15

Normal 59 78

Var-GMM
CAD 132 46

Normal 60 65

MML-GMM
CAD 129 33

Normal 69 62

Another interesting observation is that, most tested approaches have the

values of sensitivity that are higher than those of specificity, with the exception250

of MML-BLMM (71.90% vs 83.87%) and MML-GMM (65.15% vs 65.26%). As a

result, these two algorithms are more prone to identify patients as Normal rather
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Table 8: Results of different algorithms for the Z-Alizadeh Sani data set (%).

Algorithms Accuracy Sensitivity Specificity

Var-IBLMM 81.84 85.58 73.68

MML-IBLMM 79.21 82.91 72.82

Var-BLMM 77.23 79.60 72.54

MML-BLMM 75.57 71.90 83.87

Var-GMM 65.02 68.75 58.56

MML-GMM 63.04 65.15 65.26

than CAD. The rest of the approaches are more inclined to predict patients have

CAD compared with MML-BLMM and MML-GMM.

4.4. Software Modules Categorization255

Classification of software modules is currently an important area in system

engineering. This research field has also been extended other important fields

in system engineering [38]. One of the most challenging task is to develop

and maintain a software system, which still has a number of obstacles. A lot

of relatively independent units called modules (i.e. a set of source-code files)260

that execute one function are included in software. In this section, we conduct

experiments on a data set namely MIS data set [39], which is a widely utilized

commercial software including 4500 routines written with about 400,000 lines

of codes in the form of Pascal, FORTRAN, and PL/M assembly code. Our goal

is to predict the types of modules (i.e. fault-prone or nonfault-prone). The MIS265

data set in our experiment consists of 390 modules (modules 1-114 are thought

as nonfault-prone, the remaining modules are regarded as fault-prone) during

three-years system testing and maintenance. Then, in order to analyze the data,

each module can be described by 11 complexity metrics as variables [10]. In our

experiment, we also give four different types of measures which are defined270

as: true positive (TP) denotes a nonfault-prone module classified as a nonfault
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prone module, true negative(TN) denotes a fault-prone module classified as a

fault-prone module, false negative (FN)denotes a fault-prone module wrongly

classified as a nonfault-prone module and false positive (FP) denotes a nonfault-

prone module mistakenly classified as a fault-prone module. (see Table 9).

Table 9: The confusion matrix for the MIS data set.

Nonfault-prone (NF) Fault-prone (F)

Nonfault-prone (NF) True Positive (TP) False positive (FP)

Fault-prone (F) False negative (FN) True negative (TN)

275

The main goal of this experiment is to test and compare the performance of

clustering for Var-IBLMM, MML-IBLMM as well as Var-BLMM, MML-BLMM,

Var-GMM, MML-GMM. The results of confusion matrix for these methods are

presented in Table 10. Then, we calculate the responding accuracy, Sensitivity

and Specificity which can be seen in Table 11.

Table 10: The confusion matrices for different algorithms.

Algorithms NF F

Var-IBLMM
NF 99 15

F 59 215

MML-IBLMM
NF 100 14

F 76 200

Var-BLMM
NF 96 18

F 74 202

MML-BLMM
NF 94 20

F 87 189

Var-GMM
NF 107 7

F 157 119

MML-GMM
NF 105 9

F 159 117

280
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Table 11: Results of different algorithms for the MIS data set (%).

Algorithms Accuracy Sensitivity Specificity

Var-IBLMM 80.51 62.66 93.48

MML-IBLMM 76.92 56.82 93.46

Var-BLMM 76.41 56.47 90.90

MML-BLMM 72.56 51.93 90.43

Var-GMM 57.95 40.53 94.44

MML-GMM 56.92 39.78 92.86

From the Table 11, it can be seen that the clustering results based on IBLMM

including Var-IBLMM (80.51%) and MML-IBLMM (76.92%) are more accurate

than that based on BLMM and GMM due to the fact that IBL distribution can

give better performance to model the positive vector data. Also, the Var-GMM

achieves the higher specificity (94.44%), which shows that the classification285

based on GMM is prone to identify one software module as fault-prone than

nonfault-prone.

5. Conclusion

In this work, we have proposed a novel statistical approach for clustering

multivariate positive data based on a finite mixture model of IBL distributions.290

We have developed two approaches to learn the proposed IBL mixture model

based on ML and VB learning algorithms. In ML learning algorithm, the right

number of mixture components is determined according to the minimum mes-

sage length criterion. In VB learning, the parameters of the model and the

number of mixture components can be determined simultaneously in a unified295

framework, without the requirement of using information criteria. The effec-

tiveness of our model has been tested though extensive experiments involving

both synthetic data sets and real applications such as text category, CAD di-

agnosis and classification of software modules. One potential future work could
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be devoted to the integration of feature selection into the proposed IBL mixture300

model to improve clustering performance.

Appendix A. Proofs of Eq. (8)and Eq. (9)

Because ~Zi uses a 1-of-K representation, we can get the distribution in the

form as follow

p(~Zi) =
M∏

j=1

π
Zij

j . (A.1)

Similarity, the conditional distribution of ~Xi given Zij is distribution as follow

p( ~Xi|Zij = 1) = p( ~Xi|θj), (A.2)

which can also take the form

p( ~Xi|~Zi) =

M∑

j=1

p( ~Xi|θj)Zij . (A.3)

Obviously, the complete data set {X ,Z} can be obtained from both Eq. (A.1)

and Eq. (A.3) as

p(X ,Z|~π,Θ) =

N∏

i=1

M∏

j=1

π
Zij

j p( ~Xi|θj)Zij . (A.4)

Then, we can have the log-likelihood function of the complete data set {X ,Z}
as follow

Φ(X ,Z|~π,Θ) =

N∑

i=1

M∑

j=1

Zij{logπj + log p( ~Xi|θj)}. (A.5)

Next, as you can see from the reference [24] in chapter 9.3.1, the expectation of

the complete-data log likelihood function is therefore obtained by

Ω(X|Θ) = EZ
[
Φ(X ,Z|~π,Θ)

]
=

N∑

i=1

M∑

j=1

〈Zij〉{logπj + log p( ~Xi|θj)}. (A.6)

where EZ [·] denotes the operation of expectation for the variable Z.
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Appendix B. Inverse of Hessian Matrix H(θ
(t)
j )−1

The second derivatives of Ω(X|Θ) with respect to parameters Θ are

∂2Ω(X|Θ)

∂2αj
= [Ψ′(αj + βj)−Ψ′(αj)]

N∑

i=1

〈Zij〉, (B.1)

∂2Ω(X|Θ)

∂2βj
= [Ψ′(αj + βj)−Ψ′(βj)]

N∑

i=1

〈Zij〉, (B.2)

∂2Ω(X|Θ)

∂2λj
=

N∑

i=1

〈Zij〉
[
− βj
λ2
j

+
αj + βj

(λj +
∑D
d=1Xid)2

]
, (B.3)

∂2Ω(X|Θ)

∂αjd1∂αjd2
=





[
Ψ′(

D∑

d=1

αjd)−Ψ′(αjd)

] N∑

i=1

〈Zij〉, if d1 = d2

Ψ′(
D∑

d=1

αjd)
N∑

i=1

〈Zij〉, otherwise

(B.4)

∂2Ω(X|Θ)

∂αj∂βj
= Ψ′(αj + βj)

N∑

i=1

〈Zij〉, (B.5)

∂2Ω(X|Θ)

∂αj∂αjd
=
∂2Ω(χ|Θ)

∂βj∂αjd
=
∂2Ω(χ|Θ)

∂λj∂αjd
= 0, (B.6)

∂2Ω(X|Θ)

∂αj∂λj
= −

N∑

i=1

〈Zij〉
1

λj +
∑D
d=1Xid

, (B.7)

∂2Ω(X|Θ)

∂βj∂λj
=

N∑

i=1

〈Zij〉
[

1

λj
− 1

λj +
∑D
d=1Xid

]
. (B.8)

The Hessian matrix can be expressed as a block-diagonal structure

H(θj) = BlockDiag{H(αj , βj , λj), H(αj1, · · · , αjD)}, (B.9)

where305

H(αj , βj , λj) =




∂2Ω(χ|Θ)

∂2αj

∂2Ω(X|Θ)

∂αj∂βj

∂2Ω(X|Θ)

∂αj∂λj

∂2Ω(X|Θ)

∂βj∂αj

∂2Ω(X|Θ)

∂2βj

∂2Ω(X|Θ)

∂βj∂λj

∂2Ω(X|Θ)

∂λjαj

∂2Ω(X|Θ)

∂λjβj

∂2Ω(X|Θ)

∂2∂λj



, (B.10)
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with

H(αj1, · · · , αjD) =
∂2Ω(X|Θ)

∂2αjd1∂
2αjd2

. (B.11)

The H(αj1, · · · , αjD) can also be written in the form [40]

H(αj1, · · · , αjD) = Gj + γj~cj ∗ ~c Tj , (B.12)

where

Gj = diag

[
−Ψ′(αj1)

N∑

i=1

〈Zij〉, · · · ,−Ψ′(αjD)
N∑

i=1

〈Zij〉
]
, (B.13)

with

~cTj = (cj1, · · · , cjD), cjd = 1, d = 1, · · · , D, (B.14)

and

γj = Ψ′
( D∑

d=1

αjd

) N∑

i=1

〈Zij〉, if γj 6=
( D∑

d=1

c2jd
Gdd

)−1

. (B.15)

Then the inverse of Hessian Matrix can be written in the form of a block-diagonal

structure as

H(θj)
−1 = BlockDiag{H(αj , βj , λj)

−1, H(αj1, · · · , αjD)−1} (B.16)

where the inverse of Matrix H(αj1, · · · , αjD) takes the form as follows [40]

H(αj1, · · · , αjD)−1 = G∗j + γ∗j~c
∗
j ~c
∗T
j , (B.17)

where

G∗j = G−1
j = diag

[
1

−Ψ′(αj1)
∑N
i=1〈Zij〉

, · · · , 1

−Ψ′(αjD)
∑N
i=1〈Zij〉

]
(B.18)

with

~c ∗Tj = diag

[
1

−Ψ′(αj1)
∑N
i=1〈Zij〉

, · · · , 1

−Ψ′(αjD)
∑N
i=1〈Zij〉

]
, (B.19)

and

γ∗j = Ψ′
( D∑

d=1

αjd

) N∑

i=1

〈Zij〉
(

1 + Ψ∗
(
αjd

) N∑

i=1

〈Zij〉
D∑

d=1

1

−Ψ∗(αjd)
∑N
i=1〈Zij〉

)
.

(B.20)
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Appendix C. Proof of Eq. (18)

Based on [41], the complete-data Fisher matrix is shown as

|F (Θ, ~π)| ' |F (~π)|
M∏

j=1

|F (θj)|, (C.1)

where |F (~π)| denotes the Fisher information with respects to mixing parameters

which is given by

|F (~π)| = NM−1

∏M
j=1 πj

, (C.2)

and |F (θj)| in Eq. (C.1) represents the Fisher information with respects to

parameter vector θj of the IBL distribution. To calculate |F (θj)|, We assume

that for the jth cluster Xj = ( ~Xl, · · · , ~Xl+nj−1), where l ≤ N , nj represents the

number of elements in cluster j. Thus, the negative likelihood function about

the jth cluster takes the form

Φ(Xj |θj) = −log(p(Xj |θj)) = −
l+nj−1∑

i=l

log(p( ~Xi|θj)). (C.3)

Then, we can obtain the second and mixed derivatives of Φ(Xj |θj) with respect

to parameters θj as follows

∂2Φ(Xj |θj)
∂2αj

= −nj [Ψ′(αj + βj)−Ψ′(αj)], (C.4)

∂2Φ(Xj |θj)
∂2βj

= −nj [Ψ′(αj + βj)−Ψ′(βj)] (C.5)

∂2Φ(Xj |θj)
∂2λj

= −nj
[
− βj
λ2
j

+
αj + βj

(λj +
∑D
d=1Xid)2

,

]
, (C.6)

∂2Φ(Xj |θj)
∂αjd1∂αjd2

=





−
[
Ψ′(

D∑

d=1

αjd)−Ψ′(αjd)

]
nj , if d1 = d2

−Ψ′(
D∑

d=1

αjd)nj , otherwise

(C.7)

∂2Φ(Xj |θj)
∂αj∂βj

= −Ψ′(αj + βj)nj , (C.8)
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∂2Φ(Xj |θj)
∂αj∂αjd

=
∂2Ω(χ|Θ)

∂βj∂αjd
=
∂2Ω(χ|Θ)

∂λj∂αjd
= 0, (C.9)

∂2Φ(Xj |θj)
∂αj∂λj

= nj
1

λj +
∑D
d=1Xid

, (C.10)

∂2Φ(Xj |θj)
∂βj∂λj

= −nj
[

1

λj
− 1

λj +
∑D
d=1Xid

]
. (C.11)

Next, the Hessian matrix related to the jth cluster can also be expressed as a

block-diagonal structure, such that

H̃(αj , βj , λj) =




∂2Φ(Xj |θj
∂2αj

∂2Φ(Xj |θj
∂αj∂βj

∂2Φ(Xj |θj
∂αj∂λj

∂2Φ(Xj |θj
∂βj∂αj

∂2Φ(Xj |θj
∂2βj

∂2Φ(Xj |θj
∂βj∂λj

∂2Φ(Xj |θj
∂λjαj

∂2Φ(Xj |θj
∂λjβj

∂2Φ(Xj |θj
∂2∂λj



, (C.12)

with

H̃(αj1, · · · , αjD) =
∂2Φ(Xj |θj)
∂αjd1∂αjd2

. (C.13)

Then, we can rewrite the H̃(αj1, · · · , αjD) as

H̃(αj1, · · · , αjD) = Rj + ρj~bj ∗~b Tj , (C.14)

where

Rj = diag

[
Ψ′(αj1)nj , · · · ,Ψ′(αjD)nj

]
, (C.15)

with

~bTj = (bj1, · · · , bjD), bjd = 1, d = 1, · · · , D, (C.16)

and

ρj = −Ψ′
( D∑

d=1

αjd

)
nj . (C.17)

Then, based on the theorem of matrix as described in [40], we can have

|H̃(αj1, · · · , αjD)|=
(

1 + ρj

D∑

d=1

b2d
Rdd

) D∏

d=1

Rdd

=

(
1−Ψ′(

D∑

d=1

αjd)
D∑

d=1

1

Ψ′(αjd)

)
nDj

D∏

d=1

Ψ′(αjd).(C.18)
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By combining Eq. (C.12) and Eq. (C.18), we obtain

|F (θj)| = |H̃(θj)| = |H̃(αj , βj , λj)| × |H̃(αj1, · · · , αjD)|. (C.19)

Hence, by substituting Eq. (C.19) and Eq. (C.2) into Eq. (C.1), we have310

|F (Θ, ~π)| ' NM−1

∏M
j=1 πj

M∏

j=1

|H̃(αj , βj , λj)|

×
(

1−Ψ′(
D∑

d=1

αjd)
D∑

d=1

1

Ψ′(αjd)

)
nDj

D∏

d=1

Ψ′(αjd).

Appendix D. Proofs of Eq. (19)

For h(Θ, ~π), due to the fact that the mixing vector ~π and parameters Θ are

independent, thus we can have

h(Θ, ~π) = h(~π)h(Θ) = h(~π)

M∏

j=1

h(θj) = h(~π)

M∏

j=1

[
h(αj , βj , λj)

D∏

d=1

h(αjd)

]

= h(~π)

M∏

j=1

[
h(αj)h(βj)h(λj)

D∏

d=1

h(αjd)

]
. (D.1)

Since
∑M
j=1 πj = 1, the prior for ~π is naturally a Dirichlet distribution that is

given by

h(~π) =
Γ(
∑M
j=1 ηj)∏M

j=1 Γ(ηj)

M∏

j=1

π
ηj−1
j , (D.2)

where ~η = (η1, . . . , ηM ) represent parameters of the Dirichlet distribution. Fol-

lowing [42], we can set η1, · · · , ηM = 1 and then the prior is uniform and is

given by

h(~π) = (M − 1)!. (D.3)

For h(αj , βj , λj), we choose the uniform distributions for αj , βj and λj over[
0, e6 α̂j+β̂j+λ̂j

α̂j

]
,

[
0, e6 α̂j+β̂j+λ̂j

β̂j

]
and

[
0, e6 α̂j+β̂j+λ̂j

λ̂j

]
, respectively, where we

can find e6 α̂j+β̂j+λ̂j

α̂j
> αj , e

6 α̂j+β̂j+λ̂j

β̂j
> βj and e6 α̂j+β̂j+λ̂j

λ̂j
> λj , where the

hat notation represents estimated parameter. Then we have

h(αj) =

[
e6 α̂j + β̂j + λ̂j

α̂j

]−1

, (D.4)
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h(βj) =

[
e6 α̂j + β̂j + λ̂j

β̂j

]−1

, (D.5)

h(λj) =

[
e6 α̂j + β̂j + λ̂j

λ̂j

]−1

. (D.6)

As a result, we can obtain

h(αj , βj , λj) = h(αj)h(βj)h(λj) =

[
e18(α̂j + β̂j + λ̂j)

3

α̂j β̂j λ̂j

]−1

. (D.7)

Similarly, we choose the uniform distribution for αjd over

[
0, e6

∑D
d=1 α̂jd

α̂jd

]
based

on the fact that αjd < e6
∑D

d=1 α̂jd

α̂jd
. Then, we can have

h(αjd) =

[
e6

∑D
d=1 α̂jd
α̂jd

]−1

. (D.8)

Finally, by substituting Eq. (D.3), Eq. (D.7) and Eq. (D.8) into Eq. (D.1), we

obtain

h(Θ) = (M − 1)!
M∏

j=1

[(
e6 (α̂j + β̂j + λ̂j)

3

α̂j β̂j λ̂j

)−3 D∏

d=1

e6

∑D
d=1 α̂jd
α̂jd

]
. (D.9)
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