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Abstract
Person re-identification (re-id) refers to match-
ing pedestrians across disjoint yet non-overlapping
camera views. The most effective way to match
these pedestrians undertaking significant visual
variations is to seek reliably invariant features
that can describe the person of interest faithfully.
Most of existing methods are presented in a su-
pervised manner to produce discriminative features
by relying on labeled paired images in correspon-
dence. However, annotating pair-wise images is
prohibitively expensive in labors, and thus not prac-
tical in large-scale networked cameras. Moreover,
seeking comparable representations across camera
views demands a flexible model to address the com-
plex distributions of images. In this work, we study
the co-occurrence statistic patterns between pairs
of images, and propose to crossing Generative Ad-
versarial Network (Cross-GAN) for learning a joint
distribution for cross-image representations in a un-
supervised manner. Given a pair of person images,
the proposed model consists of the variational auto-
encoder to encode the pair into respective latent
variables, a proposed cross-view alignment to re-
duce the view disparity, and an adversarial layer to
seek the joint distribution of latent representations.
The learned latent representations are well-aligned
to reflect the co-occurrence patterns of paired im-
ages. We empirically evaluate the proposed model
against challenging datasets, and our results show
the importance of joint invariant features in improv-
ing matching rates of person re-id with comparison
to semi/unsupervised state-of-the-arts.

1 Introduction
Nowadays person re-identification (re-id) is emerging as a
key problem in intelligent surveillance system, which deals
with maintaining identities of individuals at physically differ-
ent locations through non-overlapping camera views. Cross-
view person re-id enables automated discovery and analysis

of person specific long-term structural activities over wide
areas, and is fundamental to many surveillance applications
such as multi-camera people tracking and forensic search.

More recently, deep learning methods gradually gain the
popularity in person re-id, which are developed to incorpo-
rate two aspects of feature extraction and metric learning into
an integrated framework [Li et al., 2014; Ahmed et al., 2015;
Wang et al., 2016a; Xiao et al., 2016; Chen et al., 2016b;
Wu et al., 2016; Yi et al., 2014; Varior et al., 2016a]. The
basic idea is to feed-forward a pair of input images into two
CNNs with shared weights to extract features, and a subse-
quent metric learning part compares the features to measure
the similarity. This process is carried out essentially by a clas-
sification on cross-image representation whereby images are
coupled to extract their features, after which a parameterized
classifier based on some distance measure (e.g., Euclidean
distance) performs an ordinary binary classification task to
predict whether the two pedestrian images are from the same
person. The cross-image representation is effective in cap-
turing the relationship across pairs of images, and several ap-
proaches have been suggested to address horizontal displace-
ment by local patch matching. For instance, the FPNN [Li et
al., 2014] algorithm introduced a patch matching layer for the
CNN part at early layers. An improved deep learning archi-
tecture is proposed in [Ahmed et al., 2015] with cross-input
neighborhood differences and patch summary features.These
two methods are both dedicated to improve the CNN archi-
tecture with a purpose to evaluate the pair similarity early in
the CNN stage, so that it could make use of spatial correspon-
dence of feature maps. Adding on, in [Varior et al., 2016a], a
matching gate is embedded into CNN to extract more locally
similar patterns in horizontal correspondence across view-
points. As for the metric learning part, with the aim to reduce
the distance of matched images while enlarging the distance
of mismatched images, common choices are pairwise and/or
triplet comparison constraints. For example, [Li et al., 2014;
Ahmed et al., 2015; Wu et al., 2016] use the logistic loss to
directly form a binary classification problem of whether the
input image pair belongs to the same identity. In some other
works, [Varior et al., 2016a] adopts the contrastive loss based
on pairwise comparison. [Chen et al., 2016b] uses Euclidean
distance and triplet loss while [Wang et al., 2016a] optimizes
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Figure 1: Left: Pedestrian images selected from CUHK03
dataset. Each column indicates images in pairs regarding the
same person observed by disjoint camera views. Right: Illus-
tration of co-occurrence regions in positive image pairs.

the combination loss function based on pairwise and triplet
constraints.

However, these deep learning methods are inherently lim-
ited due to two presumable assumptions: the availability of
large numbered labeled samples across views and the two
fixed camera views are supposed to exhibit a unimodal inter-
camera transform. In practice, building a training dataset with
tuples of labeled corresponding images is impossible for ev-
ery pair of camera views in the context of a large camera net-
work in video surveillance. Thus, this correspondence de-
pendency greatly limits the applicability of the existing ap-
proaches with training samples in correspondence. Secondly,
the practical configurations (which are the combinations of
view points, poses, lightings, and photometric settings) of
pedestrian images are multi-modal and view-specific [Li and
Wang, 2013] even if they are observed under the same cam-
era. Therefore, the complex yet multi-modal inter-camera
variations cannot be well learned with a generic metric which
is incapable of handling multiple types of transforms across
views. Last but not the least, existing deep learning method-
ologies directly compute the difference between intermediate
CNN features and propagate only distance/similarity value
to a ultimate scalar. This would lose important information
since they did not consider feature alignment in cross-view.

1.1 Our Approach and Contributions
To overcome these limitations, we propose the crossing net
based on a couple of generative adversarial networks (GANs)
[Goodfellow et al., 2014] to seek effective cross-view repre-
sentations for person re-id. To combat the first issue of rely-
ing on supervision, as shown in Fig.1, we observe some pat-
terns that appear commonly across image pairs are distinct
to discriminate positive pairs from negatives. Thus, these
co-occurrence patterns should be mined out automatically to
facilitate the task of re-id. Specifically, as shown in Fig.2,
the proposed network starts from a tuple of variational auto-
encoder (VAE) [Kingma and Welling, 2014], each for one
image from a camera view, to encode the input images into
their respective latent variables without any region-level an-
notations on person images. The technique of VAE has been
established a viable solution for image distribution learning
tasks while in this paper, we employ VAE to statistically gen-
erate latent variables for paired images without correspon-
dence labeling. We remark that we don’t use the Siamese
Convolutional Neural Networks (CNNs) [Varior et al., 2016a]
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Figure 2: The schematic overview of the proposed crossing
GAN for person re-id.

to encode the input pair because CNNs are composed of fixed
receptive fields which may not flexible to capture the varied
local patterns. Also, the Siamese architecture enforces the
weight sharing across CNN layers which are not suited for
multi-modal view-specific variations.

To address the view disparity, we propose a cross-view
alignment which is bridged over VAE outputs to allow the
comparable matching. This alignment operation is to de-
rive a shared latent space by modeling the statistical rela-
tionships between generative variables, and we empirically
demonstrate this explicit alignment is crucial for cross-view
representation learning (see Section 5.2). Then, the cross-
ing net is coupled with adversarial networks to produce joint
view-invariant distribution which gives a probability function
to each joint occurrence of cross-view person images.

The major contributions of this paper can be summarized
as follows:

• We extend the GAN to a dual setting, namely Cross-
GAN, which is augmented with VAE to learn jointly in-
variant features for the task of person re-id in a unsuper-
vised manner.

• The proposed Cross-GAN consists of a VAE layer to ef-
fectively encode image distributions w.r.t each camera
view, a view-alignment layer to discover a shared la-
tent space between cross-view images, and an adversar-
ial network to produce the joint distribution of images.

• Extensive experiments are conducted to demonstrate our
method outperforms semi/unsupervised state-of-the-art
yet very comparable to supervised methods.

2 Related Work
2.1 Person Re-identification
The task of person re-identification can be accomplished by
two categories of methods: (i) learning distance or similar-
ity measures to predict if two images describe the same per-
son [Li et al., 2013; Xiong et al., 2014; Li and Wang, 2013;
Zheng et al., 2011; Zhang et al., 2016; Wu et al., 2013a;
Wang et al., 2014a; Wang et al., 2013b; chen et al., 2016a;
Wang and Wu, 2017; Wang et al., 2017b; Huang et al., 2016;
Shi et al., 2016], and (ii) designing distinctive signature
to represent a person under different cameras, which typi-
cally performs classification on cross-image representation
[Li et al., 2014; Ahmed et al., 2015; Varior et al., 2016a;
Wang et al., 2016a; Wu et al., 2018; chen et al., 2016a].



For the first category of methodologies, they usually use
many kinds of hand-crafted features including local bi-
nary patterns [Xiong et al., 2014; Kostinger et al., 2012;
Wang et al., 2015a; Wu et al., 2017b; Wang et al., 2013a;
Wu et al., 2013b; Wang et al., 2014b; Wang et al., 2016b],
color histogram [Kostinger et al., 2012; Wu and Wang, 2017;
Wu et al., 2017a; Wu et al., 2017d], local maximal occurrence
(LOMO) [Liao et al., 2015; Liao and Li, 2015], and focus on
learning an effective distance/similarity metric to compare the
features. For the second category, deep convolutional neural
networks are very effective in localizing/extracting relevant
features to form discriminative representations against view
variations. However, all these re-id models are in a super-
vised manner and rely on substantial labeled training data,
which are typically required to be in pair-wise for each pair
of camera views. Their performance depends highly on the
quantity and quality of labeled training data, which also lim-
its their application to large-scale networked cameras. In con-
trast, our method is based on unsupervised generative model-
ing which does not require any labeled data, and thus is free
from prohibitively high cost of manual labeling and the risk
of incorrect labeling.

A body of unsupervised methods have been developed to
address person re-id without dependency on labeling [Liao
et al., 2015; Zhao et al., 2013b; Yu et al., 2017; Faren-
zena et al., 2010; Wang et al., 2015b; Wang et al., 2016c;
Wang et al., 2017c; Zhou et al., 2017; Peng et al., 2016;
Wu et al., 2017c; Wang et al., 2017a; Bak and Carr, 2017;
Wang et al., 2015c]. These models differ from ours in two
aspects. On the one hand, these models do not explicitly
model the view-specific information, i.e., they treat feature
transformation/optimization in every distinct camera view in
the same manner. In contrast, our models is propertied to
employ VAE to generate view-specific latent variables, and
then aim to find a shared subspace through a view-alignment
layer. Thus, view-specific interference can be alleviated and
common patterns can be attained in the representation learn-
ing. On the other hand, our method is the first attempt to
introduce the adversarial learning into cross-view representa-
tion learning which can automatically discover co-occurrence
patterns across images. While co-occurrence based statis-
tics has been studied in some work [Zhang et al., 2014;
Galleguillos et al., 2008; Ladicky et al., 2010; Liao et al.,
2015], our approach diverts from the literature by aiming
to jointly optimized invariant feature distributions for cross-
image representations.

2.2 Deep Generative Models
In recent years, generative models have received an increas-
ing amount of attention. Several approaches including vari-
ational auto-encoders (VAE) [Kingma and Welling, 2014;
Rezende et al., 2014], generative adversarial networks (GAN)
[Goodfellow et al., 2014], and attention models [Gregor et
al., 2015] have shown that learned deep networks are capable
of generating new data points after the completion of train-
ing to learn an image distribution from unlabeled samples.
Typically, determining the underlying data distribution of un-
labeled images can be highly challenging and inference on
such distributions is highly computationally expensive and or

intractable except in the simplest of cases. VAE and GAN are
the most prominent ones which provide efficient approxima-
tions, making it possible to learn tractable generative models
of unlabeled images.

Our proposed network is inspired by the coupled genera-
tive adversarial networks [Liu and Tuzel, 2016], which learn
a joint distribution of images without any tuple of correspond-
ing images. It is demonstrated to be applied into domain
adaptation and image transformation. Whilst our method has
the sharing of coupled GANs in terms of enforcing weight
sharing across the streamed GANs, our model is different
from [Liu and Tuzel, 2016] on two facets. First, the model
of [Liu and Tuzel, 2016] is originated from the same source
of random vector as the uniform distribution for the genera-
tor of GANs whereas our method uses two respective VAE
to generate the random vectors for two GANs. Second, our
model has a cross-view alignment layer to seek a shared la-
tent space for two distributions which is not provided in [Liu
and Tuzel, 2016].

3 Preliminaries
Let x and x̄ represent a pair of observations (e.g., two im-
ages of pedestrians). We aim to learn a set of latent random
variables z and z̄ (z and z̄ are linked by an alignment map-
ping), designed to capture the variations in the observed in-
puts while maintaining co-occurrence therein. To this end,
we wish to estimate a prior p(x) (p(x̄)) by modeling the gen-
eration process of x (x̄) by sampling some z (z̄) from an ar-
bitrary distribution p(z) (p(z̄)) as p(x) =

∫
z
p(x|z)p(z)dz

(p(x̄) =
∫
z̄
p(x̄|z̄)p(z̄)dz̄). Fitting p(x) (p(x̄)) directly is

intractable which involves expensive inference. We therefore
approximate p(x) and p(x̄) using VAE on each, respectively,
because VAE offers a combination of highly flexible non-
linear mapping between the latent states and the observed
output and effective approximate inference. To further in-
duce joint invariant distribution between z and z̄, two respec-
tive VAEs are connected with two GANs through which the
shared latent representations to images in individual can be
attained by an adversary acting on pairs of (x, x̄) data points
and their latent codes (z, z̄). In the remainder of this sec-
tion, we provide brief introduction of VAE and GAN which
we use to model the prior of pedestrian images and joint in-
variant distributions.

3.1 Variational Autoencoder (VAE)
A VAE comprises an encoder which estimates the posterior
of latent variable and a decoder generates sample from latent
variable as follows,

z ∼ encoder(x) = q(z|x), x̂ ∼ decoder(zx) = p(x|z).
(1)

The VAE regularizes the encoder by imposing a prior over the
latent distribution on p(z) while at the same time reconstruct-
ing x̂ to be as close as possible to the original x. Typically,
q(z|x) is taken to be a Gaussian prior, i.e., z ∼ N (0, 1),
which can be incorporated into a loss in the form of Kullback-
Leibler divergence DKL between the encoded distribution
q(z|x) and the prior p(z). Thus, the VAE loss takes the form



of the sum of the reconstruction error and latent prior:

Lvae = DKL (q(z|x)||p(z))− Eq(z|x)[log p(x|z)]. (2)

We use the VAE to be an effective modelling paradigm to re-
cover the complex multi-modal distributions of images over
the data space. A VAE introduces a set of latent random vari-
ables z, designed to capture the variations in the observed
variable x.

3.2 Generative Adversarial Networks (GAN)
A GAN consists of a generator and a discriminator. The ob-
jective of the generator is to synthesize images resembling
real images, while the objective of the discriminator is to dis-
tinguish real images from synthesized ones. Let x be a nat-
ural image drawn from distribution pX , and z be a random
vector in Rd. Let g and f be the generative and discriminative
models, respectively. The generator synthesizes samples by
mapping a random sample z, from an arbitrary distribution,
to a sample as output image g(z), that has the same vector
support as x. Denote the distribution of g(z) as pG. The
discriminator tries to distinguish between real data sample x,
and synthesized sample g(z) by estimating the probability
that an input image is drawn from pX . The loss function for
the GAN can be formulated as a binary entropy loss as fol-
lows:

Lgan(f, g) = log f(x) + log(1− f(g(z))). (3)

Training on Eq.(3) alternatives between minimizing Lgan

w.r.t. parameters of the generator while maximizing Lgan

w.r.t. parameters of the discriminator. The generator tries to
minimize the loss to generate more realistic samples to fool
the discriminator while the discriminator tries to maximize
the loss.

In practice, Eq.(3) is solved by alternating the following
gradient update steps:

• θt+1
f = θtf − λt∇θf

Lgan(f t, gt),

• θt+1
g = θtg − λt∇θg

Lgan(f t+1, gt).

where θf and θg are parameters of f and g, λ is the learn-
ing rate, and t is the iteration number. The GAN does not
explicitly model reconstruction loss of the generator; instead,
network parameters are updated by back-propagating gradi-
ents only from the discriminator. This strategy can effectively
avoid pixel-wise loss functions that tend to produce overly
smoothed results and enables realistic modeling of noise as
present in the training set. Thus, GAN can be used to synthe-
size images, i.e., the distribution pG converges to pX , given
enough capacity f and g and sufficient training iterations
[Goodfellow et al., 2014].

4 The Method
4.1 System Overview: Crossing GANs
The complete network is then trained end-to-end for learning
a joint invariant distribution of images across camera views.
Fig.3 illustrates the overview of our architecture. It con-
sists of a pair of (VAE, GAN)s, that is, (V AE1, GAN1) and
(V AE2, GAN2); each is responsible for synthesizing one

image in one camera view. In Fig.3, the blue and green routes
represent the forward paths of the VAE and GAN for images
x and x̄, respectively. The blue route, i.e., the VAE flow, is
the use of expressive latent variables to model the variability
observed in the data. It essentially captures the statistics of
each individual image. The auto-encoding procedure is ex-
plained in Section 4.2. The red route denotes the cross-view
alignment that links the latent variables (zx, zx̄) to ensure
the shared latent representations. The details of alignment is
given in Section 4.3. The green routes represent the adversar-
ial learning which works to optimize optimal latent features
corresponding to the joint invariance across paired images.
During training, the two GANs are enforced to share a sub-
set of parameters (the brown routes), which results in synthe-
sized pairs of corresponding images without correspondence
supervision. The details are described in Section 4.4.

4.2 Auto-encoding
Given a pair of data points (x(i), x̄(i)) from a dataset X =
{x(i), x̄(i)}Mi=1 containing N = 2M samples in M pairs.
The auto-encoding algorithm uses unobserved random vari-
able z(i), to generate a data point x(i). As the generating
process can be repeated on either x(i) or x̄(i), in the follow-
ing, we describe x(i) as illustration. The process is composed
of two phases: (1) a value z(i) is generated from some prior
distribution p(z(i)); (2) a value x(i) is generated from some
conditional distribution p(x(i)|z(i)). From a coding theory
perspective, the unobserved variable z(i) have an interpre-
tation as a latent representation or code. Following VAE
[Kingma and Welling, 2014] which introduces a recognition
model q(z(i)|x(i)): an approximation to the intractable true
posterior p(z(i)|x(i)), we will therefore refer to q(z(i)|x(i))
as a probabilistic encoder, since given a data point x(i) its
produces a distribution (e.g., a Gaussian) over the possible
values of the code z(i) from which the data point x(i) could
be generated. In a similar vein, we refer to p(x(i)|z(i)) as a
probabilistic decoder, since given a code z(i) it produces a
distribution over the possible corresponding values of x(i).

In this work, neural networks are used as probabilistic
encoders and decoders, namely multi-layered perceptions
(MLPs). Let the prior over the latent variables be the centered
isotropic multivariate Gaussian p(z) = N (z;0, I) whose
distribution parameters are computed from z with a MLP.
We assume the true posterior p(z|x) takes on an approximate
Gaussian form with an approximately diagonal covariance. In
this case, we can let the variational approximate posterior be
a multivariate Gaussian with a diagonal covariance structure:

log q(z(i)|x(i)) = logN (z;µ(i),σ2(i)I) (4)

where the mean and standard of the approximate posterior,
µ(i),σ(i) are outputs of the encoding MLP. i.e., nonlinear
functions of data point x(i) and the variational parameters.

Specifically, we sample from the posterior z(i) ∼
q(z|x(i)) using z(i) = µ(i) + σ(i) � ε where ε ∼ N (0, I).
With � we signify an element-wise product. In this model,
both p(z) and q(z|x) are Gaussian. The resulting estimator
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Figure 3: Architecture overview. Best view in color.

loss for data point x(i) is:

L̃vae(x
(i)) = DKL(q(z|x(i)||p(z)))− Eq(z|x(i))[log p(x

(i)|z)]

= DKL(q(z|x(i)||p(z)))− log p(x(i)|z(i))

' 1

2

J∑
j=1

(
1 + log((σ

(i)
j )2)− (µ

(i)
j )2 − (σ

(i)
j )2

)
− log p(x(i)|z(i))

z(i) = µ(i) + σ(i) � ε, ε ∼ N (0, I)
(5)

where the KL-divergence DKL(q(z|x(i)||p(z))) can be inte-
grated analytically, such that only the expected reconstruction
error Eq(z|x(i))[log p(x(i)|z)] requires estimation by sam-
pling. Given multiple data points from a dataset X with M
pairs of data points, we can construct an estimator loss of as
follows:

L̃vae(X) =
1

M

M∑
i=1

(
L̃vae(x

(i)) + L̃vae(x̄
(i))
)
. (6)

4.3 Learning Cross-View Alignment on Latent
Codes

In this section, we introduce cross-view alignment over latent
representations provided by VAE, which is capable of model-
ing complex multi-modal distributions over data space. Note
that for notation convenience, we use zx and zx̄ to distin-
guish the latent representation for x and x̄.

Lalign = max(||zx − Align(zx̄)||2, τ), (7)
where we model Align(·) as a single fully connected neuron
with a tanh activation function. The threshold τ is τ = 1. In
essence, Align(·) is implicitly learning a mapping across two
normal distributions (zx, zx̄). The parameters of the map-
ping θAlign are optimized through back-propagation. Since
both the VAE and the GAN are able to learn low-dimensional
representations (in our case, both zx, zx̄ are set to be 100 di-
mensions.), we are able to fit the cross-view alignment with
moderate pairs.

The strategy of alignment is designed to align the trans-
formation across cameras by revealing underlying invariant

properties among different views. As a result, unsuper-
vised matching pedestrian images can be statistically inferred
through aligned latent representations. This is motivated by
the observation that some regions are distributed similarly in
images across views and robustly maintain their appearance
in the presence of large cross-view variations.

4.4 Adversarial Learning
Generator
Let g1 and g2 be the generators of GAN1 and GAN2, which
map corresponding inputs zx and zx̄ to images that have the
same support as x and x̄, respectively. Both g1 and g2 are
realized as convolutions [Radford et al., 2015]:

g1(zx) = g
(m)
1 (g

(m−1)
1 (. . . g

(2)
1 (g

(1)
1 (zx)))),

g2(zx̄) = g
(m)
2 (g

(m−1)
2 (. . . g

(2)
2 (g

(1)
2 (zx̄))));

(8)

where g(i)
1 and g(i)

2 are the i-th layer of g1 and g2 andm is the
number of layers in generators. Through layers of convolu-
tion operations, the generator gradually decode information
from more abstract concept to more material details. The
first layer decode high-level semantics while the last layer
decode low-level details. Note this information flow is op-
posite to that in a standard deep neural network [Krizhevsky
et al., 2012] where the first layers extract low-level features
while the last layers extract high-level features. Based on the
observation that a pair of person images from two camera
views share the same high-level concept (i.e., they belong to
the same identity but with different visual appearance), we
enforce the first layers of g1 and g2 to have identical struc-
tures and share the weights, which means θ

g
(i)
1

= θ
g
(i)
2

, for
i = 1, 2, . . . , k where k is the number of shared layers, and
θ
g
(i)
1

and θ
g
(i)
2

are the parameters of g(i)
1 and g

(i)
2 , respec-

tively. This constraint can force the high-level semantics to
be decoded in the same way in g1 and g2, which can also be
propagated into the VAE to update the parameters simultane-
ously. Thus, the generator can gradually decode the informa-
tion from more abstract concepts to more finer details, and
the view-alignment is embedded to ensure the common finer
regions can be preserved with high correlations.



Discriminator
Let f1 and f2 be the discriminators of GAN1 and GAN2

given by

f1(x) = f
(n)
1 (f

(n−1)
1 (. . . f

(2)
1 (f

(1)
1 (x)))),

f2(x̄) = f
(n)
2 (f

(n−1)
2 (. . . f

(2)
2 (f

(1)
2 (x̄))));

(9)

where f (i)
1 and f (i)

2 are the i-th layer of f1 and f2, and n is
the number of layers. Note that GAN1 and GAN2 have the
identical network structure. The discriminator maps an input
image to a probability score, estimating the likelihood that
the input is drawn from a true data distribution. The first lay-
ers of the discriminator extract low-level features while the
last layers of layers extract high-level features. Considering
that input image pair are realizations of the same person in
two camera views, we force f1 and f2 to have the same last
layers, which is achieved by sharing the weights of the last
layers via θ

f
(n−i)
1

= θ
f
(n−i)
2

, for i = 0, 1, . . . , l − 1 where
l is the number of weight-sharing layers in the discrimina-
tor, and θ

f
(i)
1

and θ
f
(i)
2

are the network parameters of f (i)
1

and f (i)
2 , respectively. The weight-sharing constraints herein

helps reduce the number of trainable parameters of the net-
work, and also effective in deriving view-invariant features in
joint distribution across x and x̄.

Therefore, we cast the problem of learning jointly invariant
feature distribution as a constrained objective function with
the training loss given by

Lgan(f1, f2, g1, g2) = log f1(x) + log(1− f1(g1(z)))

+ log f2(x̄) + log(1− f2(g2(zx̄)))

subject to θ
g
(j)
1

= θ
g
(j)
2
, j = 1, 2, . . . , k

θ
f
(n−i)
1

= θ
f
(n−i)
2

, i = 0, 1, . . . , l − 1

(10)

The crossing GAN can be interpreted as minimax game
with two teams and each team has two players.

4.5 Implementation Details
Given a dataset X = {x(i), x̄(i)}Mi=1 where N = 2M is the
total number of data points.

Lalign =
1

M

M∑
i=1

max(||zx(i) − Align(zx̄(i))||2, τ), (11)

L = Lvae + Lalign − Lgan (12)
In this work, we adopt a deep convolutional GAN frame-

work architecture [Radford et al., 2015] and feature matching
strategy [Salimans et al., 2016] for stable and fast-converging
training. The visualization of model is shown in Table 1.
Specifically, we use all convolutional nets to replace deter-
ministic spatial pooling functions (such as max pooling) with
strided convolutions. This allows the network to learn its own
spatial down-sampling. We use this approach in our gen-
erator, allowing it to learn its own spatial up-sampling, and
discriminator. The overview architecture of Cross-GAN is
shown in Table 1, and the training procedure is summarized
in Algorithm 1.

Algorithm 1 Mini-batch stochastic gradient descent for train-
ing crossing generative adversarial nets.
input : Mini-batch of training samples in pairs X =

{x(j), x̄(j)}Mj=1
output: Parameters of VAE, alignment, and two GANs

1 Initialize parameters for VAE and alignment: θvae, θalign
Initialize parameters θ

f
(i)
1

, θ
f
(i)
1

, θ
g
(j)
1

, θ
g
(j)
2

with the shared
network connection weights set to the same values. for t =
0, 1, 2, . . . , T do
/* update parameters of VAE */

2 repeat
3 Draw M samples from camera view A,

{x(1), . . . ,x(M)} Draw M samples from
camera view B, {x̄(1), . . . , x̄(M)} ε ← ran-
dom samples from noise distribution p(ε)
Compute gradients of the estimator of Eq.(5):
e ← 5θvae

1
M

∑M
j=1

(
L̃vae(x

(j)) + L̃vae(x̄
(j))
)

Update parameters of θvae using gradients e (e.g.,
SGD or Adagrad [Duchi et al., 2010])

4 until convergence of parameters θvae;
/* update parameters of θalign */

5 Compute the gradients of the parameters of the alignment
5Lalign (eq.(7)) /* update parameters of
two GANs */

6 Draw M samples from p(z), {z(1), . . . ,z(M)} Com-
pute the gradients of the parameters of the dis-
criminator, f t1, ∆θ

f
(i)
1
5θ

f
(i)
1

1
M

∑M
j=1 log f t1(x(j)) +

log(1 − f t1(gt1(z
(j)

x(j)))) Compute the gradients of
the parameters of the discriminator, f t2, ∆θ

f
(i)
2

5θ
f
(i)
2

1
M

∑M
j=1 log f t2(x̄(j)) + log(1− f t2(gt2(z

(j)

x̄(j))))

7 end



Table 1: The network architecture of Cross-GANs.
Layer Generator

View 1 View 2 Shared?
1 Conv (N=20, K=5× 5, S=1), BN, ReLU Conv (N=20, K=5× 5, S=1), BN, ReLU Yes
2 Conv (N=20, K=5× 5, S=1), BN, ReLU Conv (N=20, K=5× 5, S=1), BN, ReLU Yes
3 Conv (N=20, K=5× 5, S=1), BN, ReLU Conv (N=20, K=5× 5, S=1), BN, ReLU Yes
4 Conv (N=20, K=3× 3, S=1), BN, ReLU Conv (N=20, K=3× 3, S=1), BN, ReLU Yes
5 Conv (N=20, K=3× 3, S=1), BN Conv (N=20, K=3× 3, S=1), BN No

Discriminator
View 1 View 2 Shared?

1 Conv (N=20, K=5× 5, S=1), MAX-POOL (S=2), LeakyReLU Conv (N=20, K=5× 5, S=1), MAX-POOL (S=2), LeakyReLU No
2 Conv (N=20, K=5× 5, S=1), MAX-POOL (S=2), LeakyReLU Conv (N=20, K=5× 5, S=1), MAX-POOL (S=2), LeakyReLU No
3 Conv (N=20, K=5× 5, S=1), MAX-POOL (S=2), LeakyReLU Conv (N=20, K=5× 5, S=1), MAX-POOL (S=2), LeakyReLU No
4 FC (N=1024), ReLU FC (N=1024), ReLU No
5 FC (N=1024), Sigmoid FC (N=1024), Sigmoid Yes

Figure 4: Examples from person re-identification datasets:
VIPeR (left), CUHK03 (middle), and Market-1501 (right).
Columns indicate the same identities.

5 Experiments
5.1 Datasets and Settings
We perform experiments on three benchmarks: VIPeR [Gray
et al., 2007], CUHK03 [Li et al., 2014], and Market-1501
data set [Zheng et al., 2015].

• The VIPeR data set [Gray et al., 2007] contains 632 in-
dividuals taken from two cameras with arbitrary view-
points and varying illumination conditions. The 632
person’s images are randomly divided into two equal
halves, one for training and the other for testing.

• The CUHK03 data set [Li et al., 2014] includes 13,164
images of 1360 pedestrians. The whole dataset is cap-
tured with six surveillance camera. Each identity is ob-
served by two disjoint camera views, yielding an aver-
age 4.8 images in each view. This dataset provides both
manually labeled pedestrian bounding boxes and bound-
ing boxes automatically obtained by running a pedes-
trian detector [Felzenszwalb et al., 2010]. In our exper-
iment, we report results on labeled data set. The dataset
is randomly partitioned into training, validation, and test
with 1160, 100, and 100 identities, respectively.

• The Market-1501 data set [Zheng et al., 2015] contains
32,643 fully annotated boxes of 1501 pedestrians, mak-
ing it the largest person re-id dataset to date. Each iden-
tity is captured by at most six cameras and boxes of per-
son are obtained by running a detector of Deformable
Part Model (DPM) [Huang et al., 2015]. The dataset is
randomly divided into training and testing sets, contain-
ing 750 and 751 identities, respectively.

We use the deep convolutional networks to instantiate the
GANs in Cross-GAN. The two generative models have an

identical structure with 5 convolutional layers. The gener-
ator is realized using the convolutions of ResNet-50 [He et
al., 2016] with fine-tuned parameters on re-id [Zheng et al.,
2017a]. Following [Liu and Tuzel, 2016], we use the batch
normalization processing and the parameter sharing is applied
on all convolutional layers except the last convolution. For
the discriminative models, we use three fully connected lay-
ers with hidden units of 1,024 on each layer. The inputs to
the discriminative models are batches containing the output
images from the generators and images from each training
subsets. Also, each training set is equally divided into two
non-overlapping subsets, which are used to train two GANs
respectively. The Adam algorithm [Kingma and Ba, 2015] is
used for training, the learning rate is set to be 0.002, the mo-
mentum parameter is 0.5, and the mini-batch size is 128. The
training is performed 30,000 iterations.

The evaluation protocol we adopt is the widely used single-
shot modality to allow extensive comparison. Each probe im-
age is matched against the gallery set, and the rank of the true
match is obtained. The rank-k recognition rate is the expecta-
tion of the matches at rank k, and the cumulative values of the
recognition rate at all ranks are recorded as the one-trial Cu-
mulative Matching Characteristic (CMC) results. This eval-
uation is performed ten times, and the average CMC results
are reported.

5.2 Ablation Studies

The Impact of Cross-View Alignment

In this experiment, we study the impact of cross-view align-
ment which is demonstrated to be essential to the person
matching. To quantifying the performance with/without
cross-view alignment, we transform the query images gener-
ated by g1 to the gallery view by using the same method em-
ployed for generating the training image in the gallery camera
view. Then we compare the transformed images with the im-
ages generated by the g2. The performance is measured by the
average of the ratios of agreed pixels between the transformed
image and the corresponding image in the gallery view. The
pixel agreement ratio is the number of corresponding pixels
that have the same value in the two images divided by the total
image size. The experimental results are shown in Fig.5, and
it can be observed that with the cross-view alignment strategy,
the rendered pairs of images (positive or negative) resembled
true pairs drawn from the joint distributions.
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Figure 5: The average agreement ratios of the Cross-GAN
with/without cross-view alignment on VIPeR dataset.

The Impact of Weight-Sharing in GAN
The weight-sharing constraint and adversarial learning are
crucial for co-occurrence pattern encoding/generation across
images without requirement on the labeled pair in correspon-
dence. In our model, each sample can be separately drawn
from the marginal distribution px1 and px2 , and not rely on
samples in correspondence with joint distribution of px1,x2 .
The adversarial learning encourages the generators to pro-
duce realistic images individually resembling to respective
view domains, while the weight-sharing can capture the cor-
respondence between two views automatically.

In this experiment, we study the weight-sharing effect for
the adversarial training by varying the number of weight-
sharing layers in both generative and discriminative models.
If image x1 is from the probe view, and the Cross-GAN is
trained to find the correct matching image x̄1 from the gallery
view such that the joint probability density p(x1, x̄1) is max-
imized. Let L be the loss function measuring the difference
between two images, e.g., L is implemented to be the Eu-
clidean distance in this experiment. Given g1 and g2, we aim
to seek the transformation by finding the random vector that
generates the query image via z∗ = arg minz L(g1(z), x1).
With z∗ found, one can apply g2 to produce the transformed
image x̄1 = g2(z∗). In Fig.6, we show the loss computed on
cross-image transformation matching by using Euclidean dis-
tance on VIPeR with varied weight-sharing configurations. It
can be seen that the matching performance is positively corre-
lated with the number of weight-sharing layers in the genera-
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Figure 6: The loss function (Euclidean distance) measuring
the difference between two images from VIPeR with respect
to different weight-sharing configurations in the coupled gen-
erators and discriminators. It can be seen that the perfor-
mance is positively correlated with the number of weight-
sharing layers in the generative models but less correlated
with the number of weight-sharing layers in the discrimina-
tors.

tive models, while less correlated with the number of weight-
sharing layers in the discriminative models.

Table 2: Comparison results with state-of-the-arts on the
VIPeR dataset (test person =316).

Method R=1 R=10 R=20

Se
m

i/u
n-

su
pe

rv
is

ed

Cross-GAN 49.28 91.66 93.47
LADF [Li et al., 2013] 29.34 75.98 88.10
SDALF [Farenzena et al., 2010] 19.87 49.37 65.73
eSDC [Zhao et al., 2013b] 26.31 58.86 72.77
t-LRDC [Zheng et al., 2016] 27.40 46.00 75.10
OSML [Bak and Carr, 2017] 34.30 - -
CAMEL [Yu et al., 2017] 30.90 52.00 72.50
OL-MANS [Zhou et al., 2017] 44.90 74.40 93.60
SalMatch [Zhao et al., 2013a] 30.16 62.50 75.60

Su
pe

rv
is

ed

MLF [Zhao et al., 2014] 29.11 65.20 79.90
LocallyAligned [Li and Wang, 2013] 29.60 69.30 86.70
JointRe-id [Ahmed et al., 2015] 34.80 74.79 82.45
SCSP [chen et al., 2016a] 53.54 91.49 96.65
Multi-channel [Cheng et al., 2016] 47.80 84.80 91.10
DNSL [Zhang et al., 2016] 42.28 82.94 92.06
JSTL [Xiao et al., 2016] 38.40 - -
SI-CI [Wang et al., 2016a] 35.80 83.50 -
S-LSTM [Varior et al., 2016b] 42.40 79.40 -
S-CNN [Varior et al., 2016a] 37.80 77.40 -
SpindleNet [Zhao et al., 2017a] 53.80 90.10 96.10
Part-Aligned [Zhao et al., 2017b] 48.70 87.70 93.00
Deep-Embed [Wu et al., 2018] 49.00 91.10 96.20

5.3 Comparison with State-of-the-arts
In this subsection, we extensively compare the pro-
posed Cross-GAN with a number of state-of-the-art
semi/unsupervised and supervised methods on three datasets.
Semi/unsupervised methods include LADF [Li et al., 2013],
SDALF [Farenzena et al., 2010], eSDC [Zhao et al., 2013b],
t-LRDC [Zheng et al., 2016], OSML [Bak and Carr, 2017],



Table 3: Rank-1, -10, -20 recognition rate of various methods
on the CUHK03 data set (test person =100).

Method R=1 R=10 R=20

Se
m

i/u
n-

su
pe

rv
is

ed

Cross-GAN 83.23 96.73 99.47
OSML [Bak and Carr, 2017] 45.61 85.43 88.50
LSRO [Zheng et al., 2017b] 84.62 97.64 99.80
CAMEL [Yu et al., 2017] 31.90 76.62 80.63
eSDC [Zhao et al., 2013b] 8.76 38.28 53.44
UMDL [Peng et al., 2016] 1.64 8.43 10.24
OL-MANS [Zhou et al., 2017] 61.70 92.40 98.52
XQDA [Liao et al., 2015] 52.20 92.14 96.25

Su
pe

rv
is

ed

FPNN [Li et al., 2014] 20.65 51.32 83.06
kLFDA [Xiong et al., 2014] 48.20 66.38 76.59
DNSL [Zhang et al., 2016] 58.90 92.45 96.30
JointRe-id [Ahmed et al., 2015] 54.74 91.50 97.31
E-Metric [Shi et al., 2016] 61.32 96.50 97.50
S-LSTM [Varior et al., 2016b] 57.30 88.30 -
S-CNN [Varior et al., 2016a] 61.80 88.30 -
Deep-Embed [Wu et al., 2018] 73.00 94.60 98.60
SpindleNet [Zhao et al., 2017a] 88.50 98.80 99.20
Part-Aligned [Zhao et al., 2017b] 85.40 98.60 99.90

Table 4: Rank-1, -10, -20 recognition rate and mAP of vari-
ous methods on the Market-1501 data set (test person =751).
All results are evaluated on single-shot setting.

Method R=1 R=10 R=20 mAP

Se
m

i/u
n-

su
pe

rv
is

ed

Cross-GAN 72.15 94.3 97.5 48.24
eSDC [Zhao et al., 2013b] 33.54 60.61 67.53 13.54

SDALF [Farenzena et al., 2010] 20.53 - - 8.20
LSRO [Zheng et al., 2017b] 83.97 95.64 97.56 66.07
CAMEL [Yu et al., 2017] 54.56 84.67 87.03 -

OL-MANS [Zhou et al., 2017] 60.72 89.80 91.87 -
PUL [Fan et al., 2017] 45.53 72.75 72.65 -

UMDL [Peng et al., 2016] 34.54 62.60 68.03 -
XQDA [Liao et al., 2015] 43.79 75.32 80.41 22.22
BoW [Zheng et al., 2015] 34.40 - - 14.09

Su
pe

rv
is

ed

JSTL [Xiao et al., 2016] 44.72 77.24 82.00 -
KISSME [Kostinger et al., 2012] 39.35 - - 19.12

kLFDA [Xiong et al., 2014] 44.37 - - 23.14
SCSP [chen et al., 2016a] 51.90 - - 26.35
DNSL [Zhang et al., 2016] 61.02 - - 35.68

S-CNN [Varior et al., 2016a] 65.88 - - 39.55
Deep-Embed [Wu et al., 2018] 68.32 94.59 96.71 40.24
SpindleNet [Zhao et al., 2017a] 76.90 - - -

Part-Aligned [Zhao et al., 2017b] 81.00 - - -

CAMEL [Yu et al., 2017], OL-MANS [Zhou et al., 2017],
SalMatch [Zhao et al., 2013a], UMDL [Peng et al., 2016],
XQDA [Liao et al., 2015], and PUL [Fan et al., 2017].
Supervised methods include MLF [Zhao et al., 2014], Lo-
callyAligned [Li and Wang, 2013], JointRe-id [Ahmed et al.,
2015], SCSP [chen et al., 2016a], Multi-channel [Cheng et
al., 2016], DNSL [Zhang et al., 2016], JSTL [Xiao et al.,
2016], SI-CI [Wang et al., 2016a], S-CNN [Varior et al.,
2016a], SpindleNet [Zhao et al., 2017a], Part-Aligned [Zhao
et al., 2017b], FPNN [Li et al., 2014], S-LSTM [Varior et al.,
2016b], kLFDA [Xiong et al., 2014], KISSME [Kostinger et
al., 2012], E-Metric [Shi et al., 2016] and Deep-Embed [Wu
et al., 2018]. Please note that not all methods report their
matching results on three datasets and the CMC values are
quoted from their papers.

The comparison results are reported in Table 2, Table 3,
and Table 4 for VIPeR, CUHK03, and Market-1501 respec-
tively. The CMC curves of unsupervised/semi-supervised
methods on three datasets are shown in Fig.7.

In the VIPeR dataset, Cross-GAN notably outperforms all
semi/unsupervised competitors by achieving rank-1=49.28.
Compared with unsupervised feature encoding methods such
as SDALF [Farenzena et al., 2010], eSDC [Zhao et al.,
2013b], and SalMatch [Zhao et al., 2013a], the proposed
method of Cross-GAN is able to learn deep local features
with joint distribution and thus robust against visual varia-
tions. Also, our method is very comparable to the state-of-
the-art supervised method of SpindleNet [Zhao et al., 2017a]
which obtains rank-1=53.80.

In the CUHK03 dataset, the proposed Cross-GAN outper-
forms all state-of-the-art unsupervised method except LSRO
[Zheng et al., 2017b] whereby Cross-GAN achieves rank-
1=83.23 versus LSRO [Zheng et al., 2017b] achieves rank-
1=84.62. The main reason is that LSRO [Zheng et al., 2017b]
is a semi-supervised approach which uses GANs to generate
complex realistic images to augment the number of training
data, and a uniform labeling on the generated samples and
semantic labeling on existing training samples are performed
respectively. However, the proposed method doesn’t require
any labeling in training.

In the Market-1501 dataset, the matching rate of Cross-
GAN is only secondary to LSRO [Zheng et al., 2017b]. The
primary reason is that on Market-1501, many persons ex-
hibit similar visual appearance and it is more difficult to dis-
tinguish people without any supervision aid. In this aspect,
LSRO [Zheng et al., 2017b] generates more realistic images
regarding each person to enable discriminative feature learn-
ing. However, generating sophisticated images in large num-
bers is very computationally expensive, which is not feasible
in practice. In contrast, the proposed Cross-GAN can still
achieve very comparable performance to LSRO [Zheng et al.,
2017b] without any labeling.

6 Conclusions and Future Work
This paper presents a unsupervised generative model to learn
jointly invariant features for person re-id without relying on
labeled image pairs in correspondence. The proposed method
is built atop variational auto-encoders, a cross-view align-
ment, and dual GANs to seek a series of non-linear trans-
formations into a shared latent space which allows compara-
ble matching across camera views. The learned joint feature
distribution effectively captures the co-occurrence patterns in
person image against dramatic visual variations. Extensive
experiments are conducted to demonstrate the effectiveness
of our method in person re-id by setting the state-of-the-art
performance.
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