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Abstract 
 

A series of methods have been proposed to reconstruct 

an image from compressively sensed random measurement, 

 

Patch Vectorization CS Measurement 

 

n 
 

... 

but most of them have high time complexity and are in- 

appropriate for patch-based compressed sensing  capture, 

       ... 
n2 

...  CS  n2
 

because of their serious blocky artifacts in  the restora- 

tion results. In this paper, we present a non-iterative im- 

age reconstruction method from patch-based compressively 

sensed random measurement. Our method features two cas- 

caded networks based on residual convolution neural net- 

work to learn the end-to-end full image restoration, which 

is capable of reconstructing image patches and removing 

the blocky effect with low time cost. Experimental results 

on synthetic and real data show that our method outper- 

forms state-of-the-art compressive sensing (CS) reconstruc- 

tion methods with patch-based CS measurement. To demon- 

strate the effectiveness of our method in more general set- 

ting, we apply the de-block process in our method to JPEG 

compression artifacts removal and achieve outstanding per- 

formance as well. 

 

 

1. Introduction 

Compressive sensing (CS) [8, 1] shows that a sparse sig- 

nal can be effectively restored with a much lower sampling 

rate compared with that required by the traditional Shannon 

sampling theory [12]. Since natural images are intrinsically 

sparse in some domains [24], they can be effectively recon- 

structed from CS measurement. Most of existing image re- 

construction methods with CS measurement are iterative, 

which typically need dozens or even hundreds of iterations 

in the reconstruction process. This limits their application 

in real-time reconstruction tasks. Besides, these methods 

often require high measurement rate (MR). 

The great success of deep learning in various low-level 

and high-level computer vision tasks, such as image classi- 

fication [15, 29, 31, 11], object detection [26, 25], action 

recognition [28], image segmentation [20], image super- 

resolution [5, 14, 6] and image debluring [27], has also been 

partially generalized into CS image reconstruction,  as  for 

   ...     ...      ...   
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(a) CS Measurement Capture 
 

  

 

(b) Ground Truth (c) Reconstruct (d) De-Block 

Figure 1: The capturing process of CS measurement (a) and 

the representative reconstruction (c) and de-block (d) per- 

formance of our method. The MR here is 0.10. 

 
 

example evidenced in the two state-of-the-art non-iterative 

methods [23, 16]. Compared with their iterative counter- 

parts, these methods have lower time complexity in the on- 

line reconstruction process, and also work reasonably well 

under low MR. However, when using patch-based CS mea- 

surement, the reconstruction results of current iterative and 

non-iterative methods usually suffer from serious blocky ar- 

tifacts, even though a separate de-block module can be used 

to alleviate them. 

In this paper, we present a non-iterative image restora- 

tion method based on residual convolution neural network 

(CNN) from patch-based CS random measurement. Our 

method incorporates the patch reconstruction and de-block 

process into an end-to-end model, which can directly re- 

store the full image without blocky artifacts from patch- 

based CS input. In order to get a proper tradeoff between 

restoration quality and time complexity, we design the cor- 

responding network depth for different MR, and achieve 

outstanding performance in patch reconstruction and blocky 

artifacts removal, as shown in Figure 1. To further show the 
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effectiveness of the proposed method, we also apply the de- 

block process in our method into JPEG artifacts removal, 

which is shown to be superior over the state-of-the-art meth- 

ods customized for this task. 

In summary, our main contributions are that we 

1. Present a non-iterative end-to-end full image restora- 

tion pipeline for patch-based CS measurement under 

tight time complexity restriction; 

2. Design a deep network structure based on residual 

CNN, which performs well for both image patch re- 

construction and blocky artifacts removal; 

3. Demonstrate the effectiveness of our method on syn- 

thetic and real patch-based CS data, and its extensibil- 

ity into JPEG compression artifacts removal. 
 

2. Related Work 

In the following, we will review most relevant studies on 

traditional and deep learning based methods for CS recon- 

struction, as well as blocky artifacts removal methods. 

2.1. Traditional Methods for CS Reconstruction 

Many methods have been proposed for CS reconstruc- 

tion. For example, Donoho [8] proposed the CS theory and 

developed the sparse solver with l1-minimization under the 

assumption that natural images are sparse in some trans- 

form domains. Later, various methods, such as K-SVD [9] 

and stochastic approximations [21], were proposed to adap- 

tively learn the transform domains. 

Recently, more constraints have been used to augment 

the original sparse model [8] for high quality CS reconstruc- 

tion. Li et al. [18] employed total variation minimization to 

perform CS reconstruction. Dong et al. [7] modeled the CS 

reconstruction by involving a non-local regularization into 

the optimization function. Metzler et al. [22] incorporated a 

denoising method into the CS reconstruction to effectively 

mitigate effects from noise in CS reconstruction process. 

The algorithms underlying the aforementioned methods 

are iterative, thus can hardly meet the real-time requirement. 

Besides, these methods often require high MR and perform 

much worse for low MR. 

2.2. Deep Learning for CS Reconstruction 

Nowadays, some non-iterative  reconstruction meth- 

ods have been proposed on the basis of deep learning. 

Mousavi et al. [23] used stacked denoising autoencoder to 

recover a sparse signal from its CS measurement. To recon- 

struct an image from this autoencoder, many weights are 

required in the hidden layer. Kulkarni et al. [16] employed 

CNN for CS reconstruction, which effectively reduced the 

number of learned parameters. These methods can retain 

rich semantic content at low measurement rate compared 

with traditional methods for patch-based CS measurement. 

Generally, the CS reconstruction is performed on small 

patches in the image. Therefore, the reconstruction results 

using non-overlapping patches usually suffer from obvi- 

ous blocky artifacts, which require an add-on for artifacts 

removal. To use overlapped patches might alleviate the 

blocky artifacts, which inevitably requires a higher MR. 

2.3. Blocky Artifacts Removal 

Foi et al. [10] constructed an adaptive local filter by ad- 

justing the filter kernel size to remove block edges and pre- 

serve image details. Sun and Cham [30] modeled the nat- 

ural image as a high order Markov random field and the 

distortion as Gaussian noise, which were involved into an 

energy function to reduce block distortions. Li et al. [19] 

presented a structure-texture decomposition method to re- 

move the compression artifacts that were amplified in the 

image contrast enhancement operation. Dong et al. [4] pro- 

duced a CNN model to reduce the compression artifacts. 

BM3D [3] is an effective and robust denoising method. The 

deep learning based CS reconstruction method [16] em- 

ployed BM3D [3] as a denoiser to remove the blocky ar- 

tifacts. Considering that the time complexity of BM3D is 

nontrivial, this add-on in effect undermines the benefit of 

developing a non-iterative CS reconstruction method. In ad- 

dition, its effectiveness under low MR will deteriorate. 

 

3. Residual CNN based CS Restoration 

In this section, we develop an end-to-end full image 

restoration method based on residual CNN, which can di- 

rectly reconstruct the full image and remove blocky artifacts 

from patch-based CS measurement under tight time com- 

plexity restriction. The overview of our method is shown in 

Figure 2. 

3.1. Residual CNN based Network Module 

In contrast to traditional CNN, [11] shows that residual 

CNN can preserve some information in previous layers. In 

our task, we attempt to employ this property to recover more 

image details (e.g., edges). Besides, residual CNN can im- 

prove the convergence rate and accelerate the training pro- 

cess. Therefore, we design our own network module on the 

basis of residual CNN, which is referred to as ResConv in 

the following. 

As shown in Figure 3, the first layer of ResConv uses 
kernel size 11 × 11 and generates 64 feature maps. The 

second layer uses 1 × 1 kernel size and generates 32 feature 

maps. The final reconstruct layer uses 7 × 7 kernel size and 
generates only one feature map, which is the output of this 

module. All the convolutional layers have the same stride of 

1, without pooling operation, so as to guarantee that the final 

output size keeps unchanged. Nonlinear function ReLU is 

used after each convolutional layer except the output layer. 
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Figure 2: Our proposed restoration pipeline including patch reconstruction and de-blocking. 
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When all reconstructed non-overlapping patches are as- 

sembled into a full image, the resulting image appears to be 

blocky. The most relevant study [16] employed an existing 

denoiser, i.e. BM3D, to remove blocky artifacts. BM3D 

performs well for high MR reconstruction, but can not   ef- 
64 32 

 
 

Figure 3: Residual CNN based network module – ResConv. 

 

We can regard the convolutional layer with ReLU operation 

as a nonliner unit, which can be described as 

Y = f (X) = max(0, W ∗ X + B), (1) 

where X is the input of the convolutional layer and Y is the 

output. W is the weight and B is the bias of convolutional 

layer. 

3.2. Patch Reconstruction from Patch-based Mea- 
surement 

Let n×n denote the extracted patch size. So, the number 

of pixels in one patch is n2. Given a compressive sensing 

MR of λ, the length of the sensed vector is λn2. 

As illustrated in Figure 2, in the reconstruction process, 

this vector is first fed into a fully connected (FC) layer, 

whose output length is n2. This output is reshaped to n × n 
and used as the input for ResConv. 

We conduct lots of experiments to examine the  effect 

of the number of cascaded ResConv modules, and empiri- 

cally find that the required depth of the cascaded network 

is dependent on the measurement rate. In general, one 

ResConv module already performs very well for high  MR 

(e.g. λ = 0.1) reconstruction, and to increase the depth 

further cannot improve the CS reconstruction quality. On 

the contrary, in the presence of low MR (e.g. λ = 0.01) 

input, a cascaded network with multiple ResConv modules 

can slightly improve the reconstruction performance. Given 

both the time complexity and reconstruction quality, we 

thus use two cascaded ResConv modules to reconstruct the 

patch for low MR. 

fectively remove the blocky artifacts when MR is lower than 

0.1. In our method, we attempt to use deep learning to re- 

move the blocky artifacts as well, and construct an end-to- 

end CS restoration model on the basis of ResConv. 

We use one ResConv module only for artifacts removal, 

since our empirical evaluation shows that one ResConv 

module performs better than cascaded modules for the de- 

block process. 

This de-block process has three major effects. Firstly, it 

removes the blocky artifacts as expected; Secondly, it can 

alleviate the noise originated in reconstruction process; Fi- 

nally, it can predict the high frequency information of the 

image and further restore image details. Because all the 

layers in this network are convolutional layers, there is no 

restriction on the input size. After training this network, it 

is able to handle images of any size. 

As will be shown in the experiment section, this residual 

CNN based de-block process outperforms traditional de- 

noisers. So, it can also be used as an add-on for existing 

patch-based CS reconstruction method to further improve 

the reconstruction performance on full images. 

3.4. Training Details 

Learning the end-to-end mapping function f requires to 

estimate the network parameters {W, B} firstly. This can be 

achieved by minimizing the loss between the reconstructed 
image f (Y; W, B) and the correponding ground truth im- 

age X. The Mean Squared Error (MSE) is employed as the 

loss function, 

2
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1
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i i
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where Yi is the ith input and Xi is the ith corresponding 

ground truth. k is the number of training samples. The loss 

   

   

   

 

   

   

   

 



Table 1: Evaluate on PSNR of test images and running time in seconds of 256 × 256 images for different model parameter 

selection. 
 

Model 
MR=0.25 MR=0.10 MR=0.04 MR=0.01 

PSNR Time PSNR Time PSNR Time PSNR Time 

ReconNet 25.5459 0.008 23.1522 0.008 20.9234 0.007 17.9023 0.008 

Half-ReconNet 26.6286 0.005 23.5820 0.005 21.0520 0.005 17.7952 0.005 

FC-2-ResConv 26.8760 0.008 23.5960 0.008 20.9976 0.007 17.8929 0.008 

FC-1-ResConv 27.2172 0.005 23.6113 0.005 21.2171 0.005 17.7912 0.005 

 

Table 2: Comparison of BM3D and our ResConv method for de-blocking. We evaluate PSNR using four different methods 

for patch reconstruction. 

 

Algorithm 
MR=0.25 MR=0.10 MR=0.04 MR=0.01 

BM3D ResConv BM3D ResConv BM3D ResConv BM3D ResConv 

TVAL3 27.6086 28.8711 23.2905 23.8735 19.6797 20.3906 15.6706 17.1215 

D-AMP 27.4477 28.2917 20.2199 21.5525 14.2572 17.8176 5.3887 13.2846 

ReconNet 25.9285 26.6449 23.5603 24.0359 21.1909 21.4255 17.9993 18.2832 

Ours 27.3472 28.5301 23.9740 24.7082 21.4180 21.7270 17.9848 18.3082 

 
is minimized with the stochastic gradient descent (SGD) 

method [17]. The input and output of the network are single 

channel images. 

The extracted patch size n = 32, and four different MRs 

are used, i.e.   λ = 0.25, 0.10, 0.04 and 0.01.   Thus, the 

number of measurements is 256, 102, 40 and 10 for patches 

under different MRs, respectively. 

Each convolution layer’s weights are initialized by ran- 

dom sampling from a Gaussian distribution with zero mean 

and fixed standard deviation. Similar with [16], for the 

patch-based CS reconstruction, the initialized standard de- 

viation for the fully connected layer is 0.01 and 0.1 for other 

convolutional layers. The learning rate is different for each 

layer in the full network. [5] have found that the last  layer 

with smaller learning rate is important for the network to 
converge. Therefore, we set the learning rate 10−5 for the 

first two convolutional layers and 10−6 for the last layer. 

For the de-block network, the standard deviation for all the 
convolutional layers is 0.001. The learning rate is 10−3 for 

the first two layers and 10−4  for the last layer. 

The momentum for both patch-based CS reconstruction 

and de-block networks is 0.9, and the biases are initialized 

to be zero. All the networks have been trained with the deep 

learning tools Caffe [13] on the NVIDIA Titan X GPU. 

 

4. Experimental Results 

In this section, we will firstly introduce the generation 

of our training dataset and discuss the setting of model pa- 

rameters. Then, qualitative evaluation on synthetic data is 

shown. To demonstrate the effectiveness of our approach, 

we also perform the proposed method on the real capture 

data and extend the block removal process to the task of 

compression artifacts removal in JPEG images. 

4.1. Training Dataset 

We use the same set of 91 images as in [5, 16] to generate 

our training set. The Set 5 [2] constitutes our validation set, 

which is used to evaluate the performance of our model dur- 

ing the training process. In this paper, we use the luminance 

channel of each image to construct the training dataset. 

Our restoration pipeline includes CS reconstruction from 

patch-based measurement and blocky artifact removal. 

Thus, different training datasets are generated for these two 

parts, respectively. 

 
4.1.1    Dataset for Patch Reconstruction 

 

To formulate the training and validation datesets, we uni- 

formly extract patches with the size of 32 × 32. The stride 

of extraction is 14 for training and 21 for validation. Thus, 

the training dataset has 22144 patches and the validation set 

includes 1112 patches. These patches constitute the ground 

truth. Then, we conduct a measurement matrix φ. The size 

of φ is λn2 × n2, where n = 32 and λ is the measure- 

ment rate.  We use four MR = 0.25, 0.10, 0.04 and 0.01  as 

mentioned above. φ is generated from a random Gaussian 

matrix with appropriate size, and its rows are orthonormal- 

ized. 

The input of the patch-based CS reconstruction network 

reads 

y = φxvec, (3) 

where xvec is the vectorized version of the input image 

patch x, the length of xvec is n2, and the training set is 

labeled as (y, x). 
Four different training datasets are produced for different 

MRs, and they are used to train our patch-based CS recon- 

struction network. We thus obtain four models correspond- 

ing to four different rates. 
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Then, we extract patches xblock in the same way as 
preparing the reconstruction dataset. Since the patch  size 

n = 32 is not divisible for stride 14 and 21, almost all ex- 

tracted patches contain blocky artifacts. Besides, the blocky 

artifacts location would be different for extracted patches, 

which ensures the diversity of datasets. These overlapped 

patches make up the inputs of our de-block network.    The 

ground truth is the same as the reconstruct net dataset x. 

We label the de-block training set as (xblock , x). 
Note that, according to the MR, the dataset for de-block 

network should also be different. We therefore generate dif- 

ferent datasets for their corresponding measurement rates, 

separately. 

4.2. Evaluation on Patch-based CS Reconstruction 

For the simulated data in all our experiments, we evalu- 

ate the proposed method on the same test images as in [16], 

which consists of 11 grayscale images,  with 9 images    of 

size 256 × 256 and 2 images of size 512 × 512. In the fol- 

lowing experiments, we compute the average PSNR  value 

for the total 11 images and the average running time for the 

9 images of size 256 × 256. 

We  first examine the effect of different network   struc- 

tures and depths for patch-based  CS  reconstruction un- 

der different  MRs.  ReconNet  is  the  same  network  as 

in [16]. Half-ReconNet is a compact version of Recon- 

Net by removing the last three convolution layers. FC-1- 

ResConv denotes one ResConv module with a fully con- 

nected layer in precedence. FC-2-ResConv denotes two 

cascaded ResConv modules with a fully connected layer. 

The results of the patch-based CS reconstruction for dif- 

ferent network structures are shown in Table 1. When 

MR=0.01, the best network is ReconNet and results from 

FC-2-ResConv are slightly better than those from FC-1- 

ResConv. This observation implies that a deeper network 

performs better when MR is very low. In all other cases, FC- 

1-ResConv network performs best, which indicates that in 

general, only one ResConv module in the network is enough 

to reconstruct the patch under CS measurement. 
Figure 4:  Comparison of BM3D and our de-block method 
when used to remove the blocky effects at different mea- 

surement rates. 

 
 

4.1.2    Dataset for Blocky Artifact Removal 
 

To generate the blocky artifacts removal dataset, we extract 

non-overlapping patches of size 32 × 32 from the original 

image, compress each patch with CS measurement, and re- 

construct them with our patch-based CS reconstruction net- 

work mentioned above. The reconstructed non-overlapping 

patches are assembled into a full image, which contains se- 

rious blocky artifacts. By repeating this operation on all 

images in the training set, we obtain 91 blocky images. 

As for time complexity, the running speed of ResConv 

is similar to that of ReconNet with the same depth. FC- 1-

ResConv and Half-ReconNet are almost twice as fast as 

deeper models. Given the tradeoff between reconstruc- 

tion performance and time complexity, we select the FC- 

1-ResConv model in general and the FC-2-ResConv model 

for a very low MR (e.g. λ = 0.01). 

4.3. Evaluation on Blocky Artifacts Removal 

In [16], BM3D follows ReconNet to remove blocky ar- 

tifacts. In Table 2, we mainly compare our de-block net- 

work with BM3D for blocky artifacts removal. Three state- 

of-the-art CS reconstruction methods under patch-based 

measurement  are  used  here,  including  TVAL3  [18],  D- 
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Figure 5: Final restoration samples of different methods with block removal at MR=0.10. BM3D is used in competing 

methods for block removal, while the ResConv model is used for our block removal. 

 
 

AMP [22], and ReconNet [16]. We can see that our de- 

block network outperforms BM3D for all the three CS re- 

construction methods. 

For illustration, we show the de-block results of BM3D 

and our de-block network for the blocky images produced 

by our patch-based CS reconstruction method under differ- 

ent MRs in Figure 4. We can see that BM3D performs well 

when the MR is high, but its de-block results still suffer 

from blocky artifact for low MRs. Our de-block network 

performs better for all MRs and provides more shape de- 

tails in the final results. 

4.4. Comparison of End-to-End Full Restoration 

Here, we compare our approach with three state-of-the- 

art methods, including two traditional CS reconstruction 

methods ( TVAL3 [18] and D-AMP [22] ) and a deep learn- 

ing based method ReconNet [16], in term of end-to-end full 

restoration performance. All competing methods employs 

BM3D [3] for the de-block process, while our method uses 

the aforementioned network.  All methods are qualitatively 

 

evaluated by measuring the PSNR and the running time in 

seconds. We use the same compressively sensed random 

measurements for all compared methods. In Table 3, we 

show the evaluation results for 5 images and provide the 

mean PSNR for all images in the testing dataset. 

We can see that deep learning based methods often per- 

form better than traditional CS reconstruction methods un- 

der patch-based measurement, except that MR is 0.25. In 

terms of the two learning based methods, our method out- 

performs ReconNet in most cases, but is slightly worse than 

ReconNet when MR is 0.01. However, after the de-block 

process, we can see our algorithm performs best among all 

the compared methods for all MRs.  Three samples at  MR 

= 0.10 are shown in Figure 5. Compared with other meth- 

ods, our method produces more details in the final generated 

pictures. 

Table 4 shows the average time complexity for 256×256 
image of all compared methods. We can see that our method 
has shorter running time than the three competing methods. 

These evaluations have demonstrated the effectiveness and 



Table 3: Comparison between our method and existing ones using different algorithms at different measurement rates. BM3D 

is used for previous methods for block removal, while ResConv is used for our block removal. We compute mean PSNR 

value with all the 11 test images. 

 

picture Algorithm 
MR=0.25 MR=0.10 MR=0.04 MR=0.01 

Reconstruct Block Remove Reconstruct Block Remove Reconstruct Block Remove Reconstruct Block Remove 

 

 

TVAL3 
D-AMP 

ReconNet 

Ours 

27.7400 
26.5705 

23.9278 

25.8561 

27.1806 
25.9058 

24.3815 

27.9254 

20.9922 
18.4640 

21.4352 

22.0095 

21.4172 
18.3990 

21.8109 

23.6167 

17.3358 
14.0495 

18.7001 

19.0982 

17.5422 
13.9152 

18.8474 

19.5695 

13.6735 
6.4607 

15.4344 

15.4737 

13.7573 
6.4384 

15.4877 

15.6417 

 

 

TVAL3 

D-AMP 

ReconNet 

Ours 

27.0146 

26.3903 

25.4951 

27.2395 

27.2521 

26.1105 

25.7676 

28.4585 

23.3383 

21.0717 

23.3751 

24.0308 

23.7386 

21.1997 

23.7141 

24.9242 

20.2940 

14.9773 

21.8940 

22.0241 

20.6357 

13.9325 

22.1238 

22.3591 

16.1746 

5.3321 

19.2428 

19.1768 

16.3014 

5.3126 

19.3654 

19.7481 

 

 

TVAL3 

D-AMP 

ReconNet 

Ours 

28.6675 

29.1559 

27.0910 

28.5385 

28.3067 

28.3220 

27.2909 

29.7123 

23.6453 

21.0940 

24.3535 

24.7562 

24.0747 

21.0898 

24.6834 

25.7705 

20.2760 

14.8545 

22.0232 

22.3830 

20.5544 

14.9804 

22.3106 

22.8226 

16.0676 

5.5725 

18.6871 

18.6825 

16.2306 

5.5397 

18.7933 

19.0747 

 

 

TVAL3 

D-AMP 

ReconNet 

Ours 

22.7216 

24.9449 

24.9941 

26.9628 

23.2908 

24.2569 

24.9610 

27.0305 

18.5989 

16.3546 

20.7998 

21.3349 

18.9084 

16.3073 

20.9898 

21.9216 

16.3993 

12.9779 

17.2718 

17.4230 

16.5071 

13.0233 

17.3177 

17.6853 

13.5555 

4.9674 

15.0251 

15.0408 

13.6345 

4.8652 

15.0428 

15.2393 

 

 

TVAL3 
D-AMP 

ReconNet 

Ours 

23.8337 
24.7688 

21.5438 

23.7391 

24.5624 
24.3754 

22.0976 

25.6027 

18.7738 
16.6163 

18.7744 

19.3888 

19.2193 
16.5357 

19.1155 

20.7252 

15.7998 
12.3578 

16.4678 

16.8458 

15.9804 
12.2899 

16.6533 

17.2736 

12.3468 
4.5302 

14.0030 

13.9177 

12.4396 
4.5140 

14.0642 

14.2895 

 
 

Mean PSNR 

TVAL3 

D-AMP 

ReconNet 

Ours 

27.7025 

28.0766 

25.5459 

27.2172 

27.6086 

27.4478 

25.9285 

28.5301 

22.7967 

20.1821 

23.1522 

23.6113 

23.2906 

20.2199 

23.5603 

24.7082 

19.4125 

14.2305 

20.9234 

21.2171 

19.6797 

14.2572 

21.1909 

21.7270 

15.4811 

5.4430 

17.9023 

17.8929 

15.6076 

5.3887 

17.9993 

18.3082 

 

Table 4: Time complexity for 256 × 256 images using different algorithms at different measurement rates. BM3D is used for 

previous method for block removing, ResConv model is used for our block removal. 

 

Algorithm 
MR=0.25 MR=0.10 MR=0.04 MR=0.01 

Reconstruct Block Remove Reconstruct Block Remove Reconstruct Block Remove Reconstruct Block Remove 

TVAL3 3.5812 4.1603 3.9359 4.4877 4.4821 5.0103 5.0879 5.6544 

D-AMP 26.5497 27.2017 33.9030 33.9487 38.3642 38.7258 39.4764 39.9886 

ReconNet 0.0079 0.5492 0.0073 0.5539 0.0076 0.5456 0.0076 0.5534 

Ours 0.0054 0.0217 0.0049 0.0229 0.0047 0.0221 0.0073 0.0235 

 
 

efficiency of our proposed method. 
 

4.5. Performance on Real Images 

We also perform our method on real data captured by a 

block single pixel camera [16]. This designed capture sys- 

tem consists of two optical arms and a discrete micro-mirror 

device (DMD) acting as a spatial light modulator, which is 

used to obtain the CS measurements. 383 patches under CS 

measurement are captured for each full image and the  size 

of the patch is 33 × 33. 

Since the block size of these real data is 33×33, we need 

to retrain our model on patches of this size.  We thus   gen- 

erate corresponding training and validation sets by follow- 

ing the protocol mentioned in Section 4.1, while keeping all 

other parameters unchanged except the patch size. 

The deep learning based models are trained on two MRs, 

i.e. 0.10 and 0.04. To effectively show the comparison re- 

sults, we also test the real capture data on TVAL3 [18],  D- 

 

AMP [22] and ReconNet [16]. Again, different from the 

competing methods using BM3D for artifacts removal, we 

use our ResConv module to remove the blocky artifacts af- 

ter patch reconstruction. The restored full images are shown 

in Figure 6. We can see that our algorithm offers visually 

better restoration results than the other three methods un- 

der different MRs, which verifies the effectiveness of our 

method for real CS capture data. 
 

4.6. Extension on JPEG Images 

JPEG is a lossy compression method, which tends to in- 

troduce compression artifacts, such as blocky artifacts and 

ringing effects. The blocky artifacts result from discontinu- 

ities at 8×8 borders, while the ringing effects usually appear 

along strong edges. We have presented a de-block network 

based on residual CNN in Section 3 for patch-based CS re- 

construction. To show the extensibility, we also implement 

our de-block network to decrease the compression artifacts 



TVAL3 D−AMP ReconNet Ours 

 
 
 
 
 
 

 
(a) MR=0.10 

TVAL3 D−AMP ReconNet Ours 

JPEG Compressed 
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Li ARCNN Ours 

 
 
 

(b) MR=0.04 

Figure 6: Comparison results on real data with different 

MRs. The restoration results from our method are quali- 

tatively better than those from the competing methods. 
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Table 5: PSNR comparison of different de-block algorithms 

for JPEG images at three different quality Q1, Q2 and Q3. 
 

Quality Q1 Q2 Q3 

JPEG Compressed 28.0207 27.5422 24.7479 

SA-DCT 29.4862 28.9951 26.3670 

FoE 29.1744 28.7301 26.0072 

Li 28.5778 28.2004 25.5359 

AR-CNN 29.6337 29.1661 26.3359 

ResConv 29.7456 29.2335 26.5167 

 

Table 6: Time costs comparison for 256 × 256 images be- 

tween different de-block algorithms towards JPEG images 
at three different quality Q1, Q2 and Q3. 

 

Quality Q1 Q2 Q3 

SA-DCT 3.0932 3.1160 3.2651 

FoE 46.9423 47.2292 46.1712 

Li 2.7990 2.8155 2.8290 

AR-CNN 0.0211 0.0217 0.0208 

ResConv 0.0147 0.0150 0.0147 

 
 

in JPEG images, especially for the blocky artifacts. 

Here, we compare our de-block method with four state- 

of-the-arts de-blocking methods, including FoE [30], SA- 

DCT [10], Li [19] and AR-CNN [4]. The last one is a deep 

learning based method. 

In the experiment, we use three JPEG quality setting Q1, 

Q2 and Q3, which are the same as in previous work [10, 30]. 

We compress our training dateset and get 91 compressed 

samples. Patches are extracted in the same way as in gen- 

erating training dataset for de-block process in Section 4.1. 

The JPEG de-block model is trained on this training dataset. 

To make fair comparison, we use the same training dataset 

for AR-CNN [4]. 

The results on PSNR are shown in Table 5. We can see 

that our de-block method achieves higher PSNR values than 

Figure 7: PSNR values of different methods for JPEG arti- 

facts removal. The quality criterion here is Q3. 

 

 
all the competing methods, and has lower time complex- 

ity, as shown in Table 6. To visualize the artifacts removal 

performance, we also show the restored JPEG images for 

all competing approaches in Figure 7. All these results 

demonstrate the effectiveness and extensibility of our de- 

block method. 

 

5. Conclusion 

In this paper, we have developed a non-iterative image 

reconstruction method based on residual convolution neural 

network, which involves the patch reconstruction and de- 

block process into an integrated end-to-end network. The 

proposed method can directly reconstruct the full image 

without blocky artifacts from patch based CS measurement. 

We have properly designed the network structure and depth 

for different measurement rates, by trading off restoration 

quality and time complexity. The effectiveness of our pro- 

posed method has been verified by using synthetic and real 

capture data. We have also extended the de-block process 

in our proposed method for JPEG compression artifacts re- 

duction, and achieved superior performance compared with 

the state-of-the-art methods. 

Our current network is designed for monochromatic 

images and it is worth investigating how to extend our 

method into RGB/mutispectal/hyperspectal image capture 

and restoration. 
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