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Abstract

In this paper, the ψ-type stability and robust ψ-type stability for reaction-

diffusion neural networks (RDNNs) with Dirichlet boundary conditions, time-

varying discrete delays and bounded distributed delays are investigated, re-

spectively. Firstly, we analyze the ψ-type stability and robust ψ-type stability

of RDNNs with time-varying discrete delays by means of ψ-type functions

combined with some inequality techniques, and put forward several ψ-type

stability criteria for the considered networks. Additionally, the models of

RDNNs with bounded distributed delays are established and some sufficient

conditions to guarantee the ψ-type stability and robust ψ-type stability are

given. Lastly, two examples are provided to confirm the effectiveness of the

derived results.
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1. Introduction

In the past several decades, the study of neural networks (NNs) has been

receiving extensive attentions because of their potential applications in var-

ious disciplines, such as associative memory, pattern recognition, parameter

estimation, optimization [1–8]. As a matter of fact, these applications are

mainly dependent upon the dynamical behaviors of NNs. Especially, as one

of the important dynamical properties, stability of NNs has been widely

studied [9–19]. In [12], several new conditions for the exponential stability

of delayed second-order memristive NNs were obtained. The authors con-

sidered the stability of discrete-time NN with time-varying delays, and a

delay-variation-dependent stability criterion was established in [15]. In [16],

a new Lyapunov-Krasovskii functional approach was established for ensuring

delay-dependent stability of NNs.

Nevertheless, it is noteworthy that most of results about the stability

of NNs now available appear the following natures. On the one side, the

NN model is usually limited to a model with precise parameters. However,

the model with parametric uncertainties is more suitable due to external

disturbance and parameter fluctuation. On the other side, the perturbation

and parameters of NNs are highly demanding for the asymptotic stability

of Lyapunov, which makes it difficult for designing network performance.

In addition, the convergence rate of the system is very hard to estimate in

many practical applications, which motivates some scholars to study a new

type of stability, i.e., general decay stability, which is also called to be ψ-type
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stability. Actually, ψ-type stability is an extension of the traditional stability,

e.g., exponential stability, log-stability, power-rate stability and µ-stability

[20–23]. In [21], the ψ-type stability for recurrent NNs was discussed by

exploiting the differential inequality. The ψ-type stability of delayed chaotic

NNs with discontinuous activations was considered in [23].

As well as we know, reaction-diffusion phenomenon is unavoidable in NNs

once the electrons transport in inhomogeneous magnetic field. Hence, taking

the reaction-diffusion terms into consideration in NN is necessary, and some

researchers have devoted themselves to studying the stability of reaction-

diffusion neural networks (RDNNs) [24–31]. A sufficient condition for the

stability of interval RDNNs was obtained in [24]. In [25], the stability of

RDNN was investigated by making use of the Lyapunov functional method.

Moreover, time-varying delays are inevitable during the implementation of

artificial NNs due to the finite switching speed of amplifiers and the inherent

communication time between neurons, which often result in undesired dy-

namics like oscillation, instability, and divergence. Therefore, it is important

and necessary to take the time-varying delays into account and assess the

effect of delays during studying the stability of NNs [32–34]. In [32], the

delay-dependent stability problem of NNs with time-varying discrete delays

was addressed. The exponential stability of recurrent NNs with time-varying

discrete delays was considered in [33]. In addition, it usually has a spatial

nature because of the presence of a very large number of parallel path ways

with a variety of axon sizes and lengths when implementing a neural network

by VLSI in reality. However, the distribution of propagation is not instan-

taneous, which cannot be modeled by discrete time delays. Therefore, it is
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requisite to introduce distributed delays in NNs’ modeling [20, 35–40]. The

globally asymptotic stability of stochastic NNs with distributed delays was

investigated in [35]. In [20], the authors considered the ψ-type stability for

Cohen-Grossberg NNs with distributed and discrete delays. However, the

ψ-type stability of RDNN with distributed delays and discrete delays has

never been studied.

Based on the discussion aforementioned, we first construct the models

of RDNN with time-varying discrete delays and bounded distributed delays

respectively in this paper. Then, several ψ-type stability and robust ψ-type

stability criteria for these considered networks are established respectively.

The rest of this paper is organized as follows. In Section 2, several im-

portant definitions and lemmas are provided. The network models of RDNN

with time-varying discrete delays are firstly presented in Section 3, and then

the ψ-type stability and robust ψ-type stability for this kind of network are

investigated. Section 4 is devoted to analyzing ψ-type stability and robust

ψ-type stability for RDNNs with bounded distributed delays. Several exam-

ples with simulation results are given in Section 5 to demonstrate the validity

of the obtained theoretical results. Finally, we conclude this paper in Section

6.

2. Preliminaries

Definition 2.1. (see [41]) If the function ψ(t): R+ → (0,+∞) satisfies the

following conditions:

1) ψ(t) is nondecreasing and differentiable;

2) ψ(0) = 1 and ψ(+∞) = +∞;
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3) ψ(t) := ψ̇(t)
ψ(t)

is decreasing;

4) ∀p, q > 0, ψ(p+ q) 6 ψ(p)ψ(q);

then it is called to be ψ-type function.

Definition 2.2. For R
n ∋ ψ(t) = (ψ1(t), ψ2(t), · · · , ψn(t))

T , define

‖ψ(t)‖{η,∞} = min
ι=1,2,··· ,n

{|η−1
ι ψι(t)|};

for y(χ, t) = (y1(χ, t), y2(χ, t), · · · , yn(χ, t))
T , define

‖y(·, t)‖Ω{η,∞} = min
ι=1,2,··· ,n

{η−1
ι

∫

Ω

y2ι (χ, t)dχ},

in which (χ, t) ∈ Ω × R, Ω = {χ = (χ1, χ2, · · · , χq)
T | |χk| < βk, k =

1, 2, · · · , q} ⊂ R
q, η = (η1, η2, · · · , ηn)

T and ηι > 0.

Lemma 2.1. (see [42]) Let Ω be a cube |χk| < βk(k = 1, 2, · · · , q) and

real-valued function Z(χ) ∈ C1(Ω) satisfies Z(χ)|∂Ω = 0. Then

∫

Ω

Z2(χ)dχ 6 β2
k

∫

Ω

(

∂Z(χ)

∂χk

)2

dχ,

where χ = (χ1, χ2, · · · , χq)
T .

Lemma 2.2. Given function h(χ) : [ω1, ω2] → R provide the integral are

well defined, then

(
∫ ω2

ω1

|h(χ)|dχ

)2

6 (ω2 − ω1)

∫ ω2

ω1

h2(χ)dχ.

Proof. From the Hölder inequality integral form (see [43]), we can obtain

∫ w2

w1

|h(χ)g(χ)|dχ 6

(
∫ w2

w1

|h(χ)|pdχ

)1/p(∫ w2

w1

|g(χ)|qdχ

)1/q

,
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where 1
p
+ 1
q
= 1, h ∈ Lp[w1, w2], g ∈ Lq[w1, w2] and 1 < p <∞. Particularly,

take p = q = 2 and g(χ) = 1, then we can deduce

∫ w2

w1

|h(χ)|dχ 6 (w2 − w1)
1/2

(
∫ w2

w1

h2(χ)dχ

)1/2

.

Equivalently,

(
∫ w2

w1

|h(χ)|dχ

)2

6 (w2 − w1)

∫ w2

w1

h2(χ)dχ.

The proof is completed.

3. ψ-type stability of RDNN with time-varying discrete delays

3.1. ψ-type stability analysis

The class of considered RDNN with time-varying discrete delays is de-

scribed by:

∂Yι(χ, t)

∂t
=

q
∑

k=1

∂

∂χk

(

aιk
∂Yι(χ, t)

∂χk

)

− bιYι(χ, t) +

n
∑

j=1

cιjfj(Yj(χ, t)) + Pι(t)

+

n
∑

j=1

dιjfj(Yj(χ, t− τιj(t))), (1)

where ι = 1, 2, · · · , n, χ = (χ1, χ2, · · · , χq) ∈ Ω, R ∋ aιk > 0 symbols the

transmission diffusion coefficient along the ιth neuron; R ∋ Yι(χ, t) is the

state of the ιth neuron at time t in space χ; R ∋ bι > 0 is the rate at which

the ιth neuron resets its potential to rest when it disconnects the external

inputs in network; cιj and dιj are the connection strengths of the jth neuron

on the ιth neuron; fj(·) signifies the activation function; the transmission

delay τιj(t) satisfies 0 6 τιj(t) 6 τ (ι, j = 1, 2, · · · , n); Pι(t) is the input of

ιth neuron at time t.
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The boundary condition and initial conditions subject to network (1) are

as follows:

Yι(χ, t) = 0, (χ, t) ∈ ∂Ω× [t0 − τ,+∞), (2)

Yι(χ, t) = φι(χ, t), (χ, t) ∈ Ω× [t0 − τ, t0],

where φι(χ, t) (ι = 1, 2, · · · , n) is bounded and continuous on Ω× [t0 − τ, t0].

Throughout this paper, we assume that the activation function fk(·) sat-

isfies

0 6
fk(α1)− fk(α2)

α1 − α2
6 Fk,

for any α1, α2 ∈ R, α1 6= α2, where 0 6 Fk, k = 1, 2, · · · , n.

Suppose that Y ∗(χ) = (Y ∗
1 (χ), Y

∗
2 (χ), · · · , Y

∗
n (χ))

T ∈ R
n is an equilib-

rium solution of network (1), then it satisfies

q
∑

k=1

∂

∂χk

(

aιk
∂Y ∗

ι (χ)

∂χk

)

− bιY
∗
ι (χ) +

n
∑

j=1

cιjfj(Y
∗
j (χ)) +

n
∑

j=1

dιjfj(Y
∗
j (χ)) + Pι(t) = 0.

Take eι(χ, t) = Yι(χ, t)− Y ∗
ι (χ), we can get

∂eι(χ, t)

∂t
=

q
∑

k=1

∂

∂χk

(

aιk
∂eι(χ, t)

∂χk

)

− bιeι(χ, t) +
n
∑

j=1

cιj
(

fj(Yj(χ, t))− fj(Y
∗
j (χ))

)

+

n
∑

j=1

dιj
(

fj(Yj(χ, t− τιj(t)))− fj(Y
∗
j (χ))

)

, (3)

where ι = 1, 2, · · · , n.

Remark 1. As we all know, time delays often inevitable appear in practical

applications, such as communication, information conversion and biological

systems. Especially, it is usual to expect that time delays exist during the

processing and transmission of signals in most circuits. In addition, the
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existence of time delays may lead to some poor performances, including in-

stability, oscillation, chaos and so on. Hence, it is important to evaluate the

effect of delays on stability analysis of NNs, which has become a research

hotspot in recent decades [10–17, 20–24, 26–29, 32–40, 42, 44, 45]. Fur-

thermore, formulating the NNs with time-varying discrete delays is essential

for the engineering applications because the discretization may not preserve

the dynamics of the continuous time counter part even for a small sam-

pling period [34], which motivates the investigation directly for NNs with

time-varying discrete delays [15, 20, 32–34, 38]. As we mentioned before,

reaction-diffusion phenomenon cannot be avoided in NNs once the electrons

transport in inhomogeneous magnetic field. Therefore, we investigate a class

of RDNN with time-varying discrete delays in this section.

Definition 3.1. If there exists a scalar R ∋ λ > 0 such that

lim sup
t→∞

ln‖e(·, t)‖Ω{η,∞}

ln‖ψ(t)‖{η,∞}

6 −λ,

where e(χ, t) = (e1(χ, t), e2(χ, t), · · · , en(χ, t))
T , ψ(t) = (ψ1(t), ψ2(t), · · · , ψn(t))

T ,

ψι(t)(ι = 1, 2, · · · , n) is ψ-type function as defined in Definition 2.1, then the

network (1) is called to be ψ-type stable with regard to Y ∗(χ).

Remark 2. In the past several decades, NNs have been extensively applied

to various fields, e.g., associative memory, image processing, parameter es-

timation, signal processing and optimization [1–8]. In fact, most of these

applications depend heavily on the dynamic behaviors of NNs. For instance,

in order to solve optimization problems by using NNs, it is necessary that
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each trajectory of the NNs converges to a unique equilibrium point, that is,

the NNs are stable. Hence, many researchers have devoted themselves to

studying the stability of NNs and obtained numerous results, see [9–19] for

instances and the references therein. It is universally known that stability

and convergence are prior conditions for theoretical analysis and design. As

pointed out in [46], it is extremely interesting subject to estimate the solu-

tion’s convergence rate of nonlinear systems. However, the convergence time

or speed of the system is hard to acquire in many practical cases. Due to this,

some new type of convergence rate should be defined, such as convergence

with general decay. In recent years, a new type of stability, i.e. µ-stability, is

proposed, which combines the concepts of exponential stability, log-stability

and power-rate stability of NNs [44, 45]. In 2016, Wang et al. [23] firstly

presented the definition of general decay stability based on ψ-type function,

which is also said to be ψ-type stability. It extends the concept of µ-stability.

Indeed, when NNs possess ψ-type stability, it is helpful to solve the optimiza-

tion problem and implement content-addressable memories [22]. Since then,

a great quantity of literatures of ψ-type stability have been reported [20–23].

Unfortunately, the network models in above-mentioned results about ψ-type

stability do not take the diffusion effects into consideration. Therefore, we

investigate the ψ-type stability of NNs with reaction-diffusion terms in this

paper.

Remark 3. It is obvious that functions ψ(t) = eµt, ψ(t) = (1 + t)µ and

ψ(t) = 1 + µln(1 + t) for any µ > 0 satisfy the conditions 1)-4) given in

Definition 2.1, thus they are all ψ-type functions. Moreover, ψ-type function
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offers a basis for the assortment of abstract functions. By introducing ψ-

type function, the ψ-type stability of RDNNs is defined in Definition 3.1. It

follows from Definition 3.1 that exponential stability and polynomial stability

can be regarded as special cases of the ψ-type stability when ψ(t) = eµt and

ψ(t) = (1 + t)µ for any µ > 0, respectively. Therefore, the ψ-type stability

given in Definition 3.1 is a generalization of other stability definitions.

Theorem 3.1. For ι = 1, 2, · · · , n and ∀t > t0 > 0, the network (1) with

respect to Y ∗(χ) is ψ-type stable, if there exists some positive numbers rι and

functions ψι(t)(ι = 1, 2, · · · , n) such that
(

n
∑

j=1

(|cιj|+ |dιj|)Fj − 2

q
∑

k=1

aιk

β2
k

+ rιψι(t)− 2bι

)

(

ψι(t)

ψι(t0)

)−rι

+

n
∑

j=1

|cιj|Fj

(

ψj(t)

ψj(t0)

)−rj

+

n
∑

j=1

|dιj|FjGιj(t) < 0,

where

Gιj(t) =















1, for t0 6 t < t0 + τιj(t),
(

ψj(t− τιj(t))

ψj(t0)

)−rj

, for t > t0 + τιj(t).

Proof. Denote

Vι(t) =

∫

Ω

e2ι (χ, t)dχ,

V (t0) =

n
∑

ι=1

sup
t0−τ6ε6t0

{Vι(ε)} < +∞,

and

Hι(t) =















Vι(t)− V (t0)

(

ψι(t)

ψι(t0)

)−rι

, ∀t > t0 > 0,

Vι(t)− V (t0), ∀t0 − τ 6 t < t0,
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where ι = 1, 2, · · · , n.

Obviously, Hι(t) is continuous and Hι(ε) 6 0 for ∀ε ∈ [t0 − τ, t0]. Then,

we will prove Hι(t) 6 0 for ∀t > t0 and ι = 1, 2, · · · , n. Otherwise, there

exists i and t1(t1 > t0) satisfying






















Hi(t1) = 0,

D+Hi(t)|t=t1 > 0,

Hj(ε) 6 0, ∀ε ∈ [t0 − τ, t1], j = 1, 2, · · · , n.

Then,

D+Hi(t)|t=t1 =V̇i(t)|t=t1 + riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

=2

∫

Ω

ei(χ, t)
∂ei(χ, t)

∂t
dχ

∣

∣

∣

∣

t=t1

+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

=2

∫

Ω

ei(χ, t)

[ n
∑

j=1

dij
(

fj(Yj(χ, t− τij(t)))− fj(Y
∗
j (χ))

)

− biei(χ, t)

+

q
∑

k=1

∂

∂χk

(

aik
∂ei(χ, t)

∂χk

)

+
n
∑

j=1

cij
(

fj(Yj(χ, t))− fj(Y
∗
j (χ))

)

]

dχ

∣

∣

∣

∣

t=t1

+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

. (4)

According to Dirichlet boundary condition and Green’s formula, one can

derive
∫

Ω

ei(χ, t)

q
∑

k=1

∂

∂χk

(

aik
∂ei(χ, t)

∂χk

)

dχ

=−

q
∑

k=1

∫

Ω

aik

(

∂ei(χ, t)

∂χk

)2

dχ.

From Lemma 2.1, we can get
q
∑

k=1

∫

Ω

aik

(

∂ei(χ, t)

∂χk

)2

dχ >

q
∑

k=1

aik

β2
k

∫

Ω

e2i (χ, t)dχ. (5)
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From (4) and (5), we have

D+Hi(t)|t=t1 6− 2

q
∑

k=1

aik

β2
k

∫

Ω

e2i (χ, t1)dχ+ 2

∫

Ω

|ei(χ, t1)|

[ n
∑

j=1

|cij |Fj|ej(χ, t1)|

+
n
∑

j=1

|dij|Fj|ej(χ, t1 − τij(t1))|

]

dχ− 2bi

∫

Ω

e2i (χ, t1)dχ

+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

6− 2(

q
∑

k=1

aik

β2
k

+ bi)

∫

Ω

e2i (χ, t1)dχ+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

+ 2

n
∑

j=1

|dij|Fj

√

∫

Ω

e2i (χ, t1)dχ

√

∫

Ω

e2j(χ, t1 − τij(t1))dχ

+ 2

n
∑

j=1

|cij|Fj

√

∫

Ω

e2i (χ, t1)dχ

√

∫

Ω

e2j(χ, t1)dχ

6− 2(

q
∑

k=1

aik

β2
k

+ bi)

∫

Ω

e2i (χ, t1)dχ+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

+
n
∑

j=1

|dij|Fj

(
∫

Ω

e2i (χ, t1)dχ+

∫

Ω

e2j (χ, t1 − τij(t1))dχ

)

+

n
∑

j=1

|cij|Fj

(
∫

Ω

e2i (χ, t1)dχ+

∫

Ω

e2j (χ, t1)dχ

)

=

(

n
∑

j=1

(|cij |+ |dij|)Fj − 2(

q
∑

k=1

aik

β2
k

+ bi)

)

Vi(t1) +
n
∑

j=1

|cij|FjVj(t1)

+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

+
n
∑

j=1

|dij|FjVj(t1 − τij(t1)).

By Hι(t) 6 0(ι = 1, 2, · · · , n) for any t ∈ [t0 − τ, t1], we can obtain

D+Hi(t)|t=t1 6

(

n
∑

j=1

(|cij |+ |dij|)Fj − 2

q
∑

k=1

aik

β2
k

− 2bi

)

V (t0)

(

ψi(t1)

ψi(t0)

)−ri
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+
n
∑

j=1

|cij|FjV (t0)

(

ψj(t1)

ψj(t0)

)−rj

+
n
∑

j=1

|dij|FjV (t0)Gij(t1)

+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri

ψi(t1)

=V (t0)

[

(

n
∑

j=1

(|cij|+ |dij|)Fj − 2

q
∑

k=1

aik

β2
k

+ riψi(t1)− 2bi

)

(

ψi(t1)

ψi(t0)

)−ri

+

n
∑

j=1

|cij|Fj

(

ψj(t1)

ψj(t0)

)−rj

+

n
∑

j=1

|dij|FjGij(t1)

]

<0,

which is unreasonable. Thus

Vι(t) 6 V (t0)

(

ψι(t)

ψι(t0)

)−rι

, ι = 1, 2, · · · , n, ∀t > t0 > 0.

Moreover, there exist M(t0) and r such that Vι(t) 6 M(t0)ψ
−r
ι (t), where

M(t0) = maxι=1,2,··· ,n{V (t0)ψ
rι
ι (t0)} and r = minι=1,2,··· ,n{rι}. Denote V (t) =

(V1(t), V2(t), · · · , Vn(t))
T and ψ(t) = (ψ1(t), ψ2(t), · · · , ψn(t))

T , we have

‖V (t)‖{ξ,∞} = minι=1,2,··· ,n{|ξ
−1
ι Vι(t)|} 6M(t0)‖ψ(t)‖

−r
{ξ,∞},

where ξ = (ξ1, ξ2, · · · , ξn)
T = (1, 1, · · · , 1)T . Obviously,

ln(M−1(t0)‖V (t)‖{ξ,∞}) 6 −rln(‖ψ(t)‖{ξ,∞}).

According to Definition 2.1, ln(‖ψ(t)‖{ξ,∞}) > 0 for t > t0 > 0 and ln(‖ψ(t)‖{ξ,∞}) →

+∞ as time t→ +∞. Therefore, one has

lim sup
t→+∞

ln(‖V (t)‖{ξ,∞})

ln(‖ψ(t)‖{ξ,∞})
6 −r.

Equivalently,

lim sup
t→+∞

ln(‖e(·, t)‖Ω{ξ,∞})

ln(‖ψ(t)‖{ξ,∞})
6 −r.

In other words, e(χ, t) is ψ-type stable. This completes the proof.
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3.2. Robust ψ-type stability analysis

As we all know, the limitation of equipment and the existence of external

interference in the modeling process of NN may lead to parameter devia-

tions and these deviations are bounded. Therefore, we consider an uncertain

reaction-diffusion neural network (URDNN) with time-varying discrete de-

lays in this section, which can be characterized as follows:

∂Yι(χ, t)

∂t
=

q
∑

k=1

∂

∂χk

(

aιk
∂Yι(χ, t)

∂χk

)

− bιYι(χ, t) +
n
∑

j=1

cιjfj(Yj(χ, t)) + Pι(t)

+

n
∑

j=1

dιjfj(Yj(χ, t− τιj(t))), ι = 1, 2, · · · , n, (6)

where Yι(χ, t), fj(·), Pι(t), τιj(t) have the same definitions as in subsection

3.1. The quantities aιk, bι, cιj, dιj may be intervalized as follows:



























































































AI :={A = (aιk)n×q : A
−
6 A 6 A+, i.e., 0 < a−ιk 6 aιk 6 a+ιk,

ι = 1, 2, · · · , n, k = 1, 2, · · · , q, ∀A ∈ AI},

BI :={B = diag(bι) : B
−
6 B 6 B+, i.e., 0 < b−ι 6 bι 6 b+ι ,

ι = 1, 2, · · · , n, ∀B ∈ BI},

CI :={C = (cιj)n×n : C−
6 C 6 C+, i.e., c−ιj 6 cιj 6 c+ιj , ι,

j = 1, 2, · · · , n, ∀C ∈ CI},

DI :={D = (dιj)n×n : D−
6 D 6 D+, i.e., d−ιj 6 dιj 6 d+ιj, ι,

j = 1, 2, · · · , n, ∀D ∈ DI}.

(7)

For convenience, we denote

c∗ιj = max{|c+ιj|, |c
−
ιj|}, d

∗
ιj = max{|d+ιj|, |d

−
ιj|}.
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For the network (6),

Yι(χ, t) = 0, (χ, t) ∈ ∂Ω× [t0 − τ,+∞),

Yι(χ, t) = φι(χ, t), (χ, t) ∈ Ω× [t0 − τ, t0],

where φι(χ, t) (ι = 1, 2, · · · , n) is bounded and continuous on Ω× [t0 − τ, t0].

Let Y ∗(χ) = (Y ∗
1 (χ), Y

∗
2 (χ), · · · , Y

∗
n (χ))

T ∈ R
n be an equilibrium solution

of network (6), then

q
∑

k=1

∂

∂χk

(

aιk
∂Y ∗

ι (χ)

∂χk

)

− bιY
∗
ι (χ) +

n
∑

j=1

cιjfj(Y
∗
j (χ)) +

n
∑

j=1

dιjfj(Y
∗
j (χ)) + Pι(t) = 0,

where aιj, bι, cιj , dιj belong to the parameter ranges defined by (7).

Take eι(χ, t) = Yι(χ, t)− Y ∗
ι (χ), we can obtain

∂eι(χ, t)

∂t
=

n
∑

j=1

cιj
(

fj(Yj(χ, t))− fj(Y
∗
j (χ))

)

+

q
∑

k=1

∂

∂χk

(

aιk
∂eι(χ, t)

∂χk

)

− bιeι(χ, t) +

n
∑

j=1

dιj
(

fj(Yj(χ, t− τιj(t)))− fj(Y
∗
j (χ))

)

,

where ι = 1, 2, · · · , n, aιk, bι, cιj, dιj belong to the parameter ranges defined

by (7).

Definition 3.2. If for all A ∈ AI , B ∈ BI , C ∈ CI and D ∈ DI , there

exists a constant λ > 0 such that

lim sup
t→∞

ln‖e(·, t)‖Ω{η,∞}

ln‖ψ(t)‖{η,∞}

6 −λ,

where e(χ, t) = (e1(χ, t), e2(χ, t), · · · , en(χ, t))
T , ψ(t) = (ψ1(t), ψ2(t), · · · , ψn(t))

T ,

ψι(t)(ι = 1, 2, · · · , n) is a ψ-type function, then the network (6) is called to

be robustly ψ-type stable with regard to Y ∗(χ).
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Theorem 3.2. The network (6) with respect to Y ∗(χ) is robustly ψ-type

stable, if there exists some positive numbers rι and ψ-type functions ψι(t)(ι =

1, 2, · · · , n) such that for ι = 1, 2, · · · , n and ∀t > t0 > 0
(

n
∑

j=1

(c∗ιj + d∗ιj)Fj − 2

q
∑

k=1

a−ιk
β2
k

+ rιψι(t)− 2b−ι

)

(

ψι(t)

ψι(t0)

)−rι

+
n
∑

j=1

c∗ιjFj

(

ψj(t)

ψj(t0)

)−rj

+
n
∑

j=1

d∗ιjFjGιj(t) < 0,

where

Gιj(t) =















1, for t0 6 t < t0 + τιj(t),
(

ψj(t− τιj(t))

ψj(t0)

)−rj

, for t > t0 + τιj(t).

Proof. Denote

Vι(t) =

∫

Ω

e2ι (χ, t)dχ,

V (t0) =
n
∑

ι=1

sup
t0−τ6ε6t0

{Vι(ε)} < +∞,

and

Hι(t) =















Vι(t)− V (t0)

(

ψι(t)

ψι(t0)

)−rι

, ∀t > t0 > 0,

Vι(t)− V (t0), ∀t0 − τ 6 t < t0,

where ι = 1, 2, · · · , n.

Obviously, Hι(t) is continuous and Hι(ε) 6 0 for ∀ε ∈ [t0 − τ, t0]. Then,

we will prove Hι(t) 6 0 for ∀t > t0 and ι = 1, 2, · · · , n. Otherwise, there

exists i and t1(t1 > t0) satisfying






















Hi(t1) = 0,

D+Hi(t)|t=t1 > 0,

Hj(ε) 6 0, ∀ε ∈ [t0 − τ, t1], j = 1, 2, · · · , n.
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Then,

D+Hi(t)|t=t1 =V̇i(t)|t=t1 + riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

=2

∫

Ω

ei(χ, t)

[ n
∑

j=1

dij
(

fj(Yj(χ, t− τij(t)))− fj(Y
∗
j (χ))

)

− biei(χ, t)

+

q
∑

k=1

∂

∂χk

(

aik
∂ei(χ, t)

∂χk

)

+

n
∑

j=1

cij
(

fj(Yj(χ, t))− fj(Y
∗
j (χ))

)

]

dχ

∣

∣

∣

∣

t=t1

+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

. (8)

According to Dirichlet boundary condition, Lemma 2.1 and Green’s formula,

one has

∫

Ω

ei(χ, t)

q
∑

k=1

∂

∂χk

(

aik
∂ei(χ, t)

∂χk

)

dχ

6−

q
∑

k=1

aik

β2
k

∫

Ω

e2i (χ, t)dχ

6−

q
∑

k=1

a−ik
β2
k

∫

Ω

e2i (χ, t)dχ. (9)

From (8) and (9), we have

D+Hi(t)|t=t1 6− 2(

q
∑

k=1

a−ik
β2
k

+ b−i )

∫

Ω

e2i (χ, t1)dχ+ 2

∫

Ω

|ei(χ, t1)|

[ n
∑

j=1

c∗ijFj |ej(χ, t1)|

+

n
∑

j=1

d∗ijFj |ej(χ, t1 − τij(t1))|

]

dχ+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

6− 2(

q
∑

k=1

a−ik
β2
k

+ b−i )

∫

Ω

e2i (χ, t1)dχ+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

+
n
∑

j=1

d∗ijFj

(
∫

Ω

e2i (χ, t1)dχ+

∫

Ω

e2j(χ, t1 − τij(t1))dχ

)
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+
n
∑

j=1

c∗ijFj

(
∫

Ω

e2i (χ, t1)dχ+

∫

Ω

e2j (χ, t1)dχ

)

=

(

n
∑

j=1

(c∗ij + d∗ij)Fj − 2(

q
∑

k=1

a−ik
β2
k

+ b−i )

)

Vi(t1) +
n
∑

j=1

c∗ijFjVj(t1)

+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

+

n
∑

j=1

d∗ijFjVj(t1 − τij(t1))

6

(

n
∑

j=1

(c∗ij + d∗ij)Fj − 2

q
∑

k=1

a−ik
β2
k

− 2b−i

)

V (t0)

(

ψi(t1)

ψi(t0)

)−ri

+
n
∑

j=1

c∗ijFjV (t0)

(

ψj(t1)

ψj(t0)

)−rj

+
n
∑

j=1

d∗ijFjV (t0)Gij(t1)

+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri

ψi(t1)

=V (t0)

[

(

n
∑

j=1

(c∗ij + d∗ij)Fj − 2

q
∑

k=1

a−ik
β2
k

+ riψi(t1)− 2b−i

)

(

ψi(t1)

ψi(t0)

)−ri

+
n
∑

j=1

c∗ijFj

(

ψj(t1)

ψj(t0)

)−rj

+
n
∑

j=1

d∗ijFjGij(t1)

]

<0,

which is unreasonable. Thus

Vι(t) 6 V (t0)

(

ψι(t)

ψι(t0)

)−rι

, ι = 1, 2, · · · , n, t > t0 > 0.

Similar to the proof of Theorem 3.1, we can get

lim sup
t→+∞

ln(‖e(·, t)‖Ω{ξ,∞})

ln(‖ψ(t)‖{ξ,∞})
6 −r.

Therefore, e(χ, t) is robustly ψ-type stable. The proof is completed.
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4. ψ-type stability of RDNN with bounded distributed delays

4.1. ψ-type stability analysis

The class of considered RDNN with bounded distributed delays is de-

scribed by:

∂Yι(χ, t)

∂t
=

q
∑

k=1

∂

∂χk

(

aιk
∂Yι(χ, t)

∂χk

)

− bιYι(χ, t) +
n
∑

j=1

cιjfj(Yj(χ, t)) + Pι(t)

+

n
∑

j=1

dιj

∫ t

t−υj(t)

fj(Yj(χ, ς))dς, (10)

where ι = 1, 2, · · · , n, Yι(χ, t), fj(·), Pι(t), aιk, bι, cιj, dιj have the same

definitions as in subsection 3.1, υj(t) is the distributed delays which satisfies

0 6 υj(t) 6 υ (j = 1, 2, · · · , n).

For the network (10),

Yι(χ, t) = 0, (χ, t) ∈ ∂Ω× [t0 − υ,+∞),

Yι(χ, t) = φι(χ, t), (χ, t) ∈ Ω× [t0 − υ, t0],

where φι(χ, t) (ι = 1, 2, · · · , n) is bounded and continuous on Ω× [t0 − υ, t0].

Suppose that Y 0(χ) = (Y 0
1 (χ), Y

0
2 (χ), · · · , Y

0
n (χ))

T ∈ R
n is an equilib-

rium solution of network (10), then it satisfies

q
∑

k=1

∂

∂χk

(

aιk
∂Y 0

ι (χ)

∂χk

)

− bιY
0
ι (χ) +

n
∑

j=1

dιj

∫ t

t−υj(t)

fj(Y
0
j (χ))dς

+

n
∑

j=1

cιjfj(Y
0
j (χ)) + Pι(t) = 0.

Take eι(χ, t) = Yι(χ, t)− Y 0
ι (χ), we can obtain

∂eι(χ, t)

∂t
=

q
∑

k=1

∂

∂χk

(

aιk
∂eι(χ, t)

∂χk

)

− bιeι(χ, t) +

n
∑

j=1

cιj
(

fj(Yj(χ, t))− fj(Y
0
j (χ))

)
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+
n
∑

j=1

dιj

∫ t

t−υj(t)

(

fj(Yj(χ, ς))− fj(Y
0
j (χ))

)

dς,

where ι = 1, 2, · · · , n.

Remark 4. Due to the existence of a lot of parallel pathways of varying axon

size and lengths, NNs often have a spatial extent. Then, a distribution of

conduction velocities along these pathways or a distribution of propagation

delays over a period of time may exist in some situations, which lead to

another kind of time delays, that is, distributed delays in NNs. Therefore, it is

necessary to take the distributed delays into account in the study of NNs, and

many literatures on NNs with distributed delays have been published recently

[20, 24, 26, 27, 29, 35–40]. As far as we know, the ψ-type stability of RDNN

with bounded distributed delays has never been considered. Therefore, we

concern this topic and derive several ψ-type stability criteria for the RDNNs

with bounded distributed delays in this section.

Theorem 4.1. The network (10) with respect to Y 0(χ) is ψ-type stable, if

there exists some positive numbers rι and functions ψι(t)(ι = 1, 2, · · · , n)

such that for ι = 1, 2, · · · , n and ∀t > t0 > 0
(

n
∑

j=1

(|cιj|+ |dιj|)Fj − 2

q
∑

k=1

aιk

β2
k

+ rιψι(t)− 2bι

)

(

ψι(t)

ψι(t0)

)−rι

+

n
∑

j=1

|cιj|Fj

(

ψj(t)

ψj(t0)

)−rj

+ υ

n
∑

j=1

|dιj|FjWj(t) < 0,

where

Wj(t) =



















∫ t

t0

(

ψj(ς)

ψj(t0)

)−rj

dς + t0 + υ − t, for t0 6 t 6 t0 + υ,

∫ t

t−υ

(

ψj(ς)

ψj(t0)

)−rj

dς, for t > t0 + υ.
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Proof. Denote

Vι(t) =

∫

Ω

e2ι (χ, t)dχ,

V (t0) =
n
∑

ι=1

sup
t0−υ6ε6t0

{Vι(ε)} < +∞,

and

Hι(t) =















Vι(t)− V (t0)

(

ψι(t)

ψι(t0)

)−rι

, ∀t > t0 > 0,

Vι(t)− V (t0), ∀t0 − υ 6 t < t0,

where ι = 1, 2, · · · , n.

Obviously, Hι(t) is continuous and Hι(ε) 6 0 for ∀ε ∈ [t0−υ, t0]. We will

prove the inequality Hι(t) 6 0 for ∀t > t0 and ι = 1, 2, · · · , n. Otherwise,

there exists i and t1(t1 > t0) satisfying























Hi(t1) = 0,

D+Hi(t)|t=t1 > 0,

Hj(ε) 6 0, ∀ε ∈ [t0 − υ, t1], j = 1, 2, · · · , n.

Then,

D+Hi(t)|t=t1 =V̇i(t)|t=t1 + riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

=2

∫

Ω

ei(χ, t)
∂ei(χ, t)

∂t
dχ

∣

∣

∣

∣

t=t1

+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

=2

∫

Ω

ei(χ, t)

[ q
∑

k=1

∂

∂χk

(

aik
∂ei(χ, t)

∂χk

)

+
n
∑

j=1

cij
(

fj(Yj(χ, t))− fj(Y
0
j (χ))

)

− biei(χ, t) +

n
∑

j=1

dij

∫ t

t−υj(t)

(

fj(Yj(χ, ς))− fj(Y
0
j (χ))

)

dς

]

dχ

∣

∣

∣

∣

t=t1
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+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

6− 2

q
∑

k=1

aik

β2
k

∫

Ω

e2i (χ, t1)dχ+ 2

∫

Ω

|ei(χ, t1)|

[ n
∑

j=1

|cij|Fj|ej(χ, t1)|

+
n
∑

j=1

|dij|Fj

∫ t1

t1−υ

|ej(χ, ς)|dς

]

dχ− 2bi

∫

Ω

e2i (χ, t1)dχ

+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

6− 2(

q
∑

k=1

aik

β2
k

+ bi)

∫

Ω

e2i (χ, t1)dχ+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

+ 2
n
∑

j=1

|dij|Fj

√

∫

Ω

e2i (χ, t1)dχ

√

∫

Ω

(
∫ t1

t1−υ

|ej(χ, ς)|dς

)2

dχ

+ 2
n
∑

j=1

|cij |Fj

√

∫

Ω

e2i (χ, t1)dχ

√

∫

Ω

e2j (χ, t1)dχ.

From Lemma 2.2, we have

D+Hi(t)|t=t1 6− 2(

q
∑

k=1

aik

β2
k

+ bi)

∫

Ω

e2i (χ, t1)dχ+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

+ 2

n
∑

j=1

|dij|Fj

√

∫

Ω

e2i (χ, t1)dχ

√

∫

Ω

υ

∫ t1

t1−υ

e2j (χ, ς)dςdχ

+ 2

n
∑

j=1

|cij|Fj

√

∫

Ω

e2i (χ, t1)dχ

√

∫

Ω

e2j(χ, t1)dχ

6− 2(

q
∑

k=1

aik

β2
k

+ bi)

∫

Ω

e2i (χ, t1)dχ+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

+
n
∑

j=1

|dij|Fj

(
∫

Ω

e2i (χ, t1)dχ+ υ

∫ t1

t1−υ

∫

Ω

e2j (χ, ς)dχdς

)

+

n
∑

j=1

|cij|Fj

(
∫

Ω

e2i (χ, t1)dχ+

∫

Ω

e2j (χ, t1)dχ

)
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=

(

n
∑

j=1

(|cij |+ |dij|)Fj − 2(

q
∑

k=1

aik

β2
k

+ bi)

)

Vi(t1) +

n
∑

j=1

|cij|FjVj(t1)

+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

+ υ

n
∑

j=1

|dij|Fj

∫ t1

t1−υ

Vj(ς)dς.

By Hι(t) 6 0(ι = 1, 2, · · · , n) for any t ∈ [t0 − υ, t1], we can obtain

D+Hi(t)|t=t1 6

(

n
∑

j=1

(|cij |+ |dij|)Fj − 2

q
∑

k=1

aik

β2
k

− 2bi

)

V (t0)

(

ψi(t1)

ψi(t0)

)−ri

+

n
∑

j=1

|cij|FjV (t0)

(

ψj(t1)

ψj(t0)

)−rj

+ υ

n
∑

j=1

|dij|FjV (t0)Wj(t1)

+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri

ψi(t1)

=V (t0)

[

(

n
∑

j=1

(|cij|+ |dij|)Fj − 2

q
∑

k=1

aik

β2
k

+ riψi(t1)− 2bi

)

(

ψi(t1)

ψi(t0)

)−ri

+
n
∑

j=1

|cij|Fj

(

ψj(t1)

ψj(t0)

)−rj

+ υ

n
∑

j=1

|dij|FjWj(t1)

]

<0,

which is unreasonable. Thus

Vι(t) 6 V (t0)

(

ψι(t)

ψι(t0)

)−rι

, ι = 1, 2, · · · , n, ∀t > t0 > 0.

Similar to the proof of Theorem 3.1, we can obtain

lim sup
t→+∞

ln(‖e(·, t)‖Ω{ξ,∞})

ln(‖ψ(t)‖{ξ,∞})
6 −r.

In other words, e(χ, t) is ψ-type stable. This completes the proof.
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4.2. Robust ψ-type stability analysis

The RDNN with parametric uncertainties and bounded distributed delays

is described by:

∂Yι(χ, t)

∂t
=

q
∑

k=1

∂

∂χk

(

aιk
∂Yι(χ, t)

∂χk

)

− bιYι(χ, t) +
n
∑

j=1

cιjfj(Yj(χ, t)) + Pι(t)

+

n
∑

j=1

dιj

∫ t

t−υj(t)

fj(Yj(χ, ς))dς, (11)

where ι = 1, 2, · · · , n, Yι(χ, t), fj(·), Pι(t), υj(t), have the same definitions

in subsection 4.1, and the parameters aιk, bι, cιj, dιj are defined by (7).

Take eι(χ, t) = Yι(χ, t)− Y 0
ι (χ), we can obtain

∂eι(χ, t)

∂t
=

q
∑

k=1

∂

∂χk

(

aιk
∂eι(χ, t)

∂χk

)

− bιeι(χ, t) +
n
∑

j=1

cιj
(

fj(Yj(χ, t))− fj(Y
0
j (χ))

)

+

n
∑

j=1

dιj

∫ t

t−υj(t)

(

fj(Yj(χ, ς))− fj(Y
0
j (χ))

)

dς,

where aιk, bι, cιj , dιj belong to the parameter ranges defined by (7).

Theorem 4.2. The network (11) with respect to Y s(χ) is ψ-type stable, if

there exists some positive numbers rι and ψ-type functions ψι(t)(ι = 1, 2, · · · , n)

such that for ι = 1, 2, · · · , n and ∀t > t0 > 0
(

n
∑

j=1

(c∗ιj + d∗ιj)Fj − 2

q
∑

k=1

a−ιk
β2
k

+ rιψι(t)− 2b−ι

)

(

ψι(t)

ψι(t0)

)−rι

+
n
∑

j=1

c∗ιjFj

(

ψj(t)

ψj(t0)

)−rj

+ υ

n
∑

j=1

d∗ιjFjWj(t) < 0,

where

Wj(t) =



















∫ t

t0

(

ψj(ς)

ψj(t0)

)−rj

dς + t0 + υ − t, for t0 6 t 6 t0 + υ,

∫ t

t−υ

(

ψj(ς)

ψj(t0)

)−rj

dς, for t > t0 + υ.
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Proof. Denote

Vι(t) =

∫

Ω

e2ι (χ, t)dχ,

V (t0) =
n
∑

ι=1

sup
t0−υ6ε6t0

{Vι(ε)} < +∞,

and

Hι(t) =















Vι(t)− V (t0)

(

ψι(t)

ψι(t0)

)−rι

, ∀t > t0 > 0,

Vι(t)− V (t0), ∀t0 − υ 6 t < t0,

where ι = 1, 2, · · · , n.

Obviously, Hι(t) is continuous and Hι(ε) 6 0 for ∀ε ∈ [t0−υ, t0]. We will

prove the inequality Hι(t) 6 0 for ∀t > t0 and ι = 1, 2, · · · , n. Otherwise,

there exists i and t1(t1 > t0) satisfying























Hi(t1) = 0,

D+Hi(t)|t=t1 > 0,

Hj(ε) 6 0, ∀ε ∈ [t0 − υ, t1], j = 1, 2, · · · , n.

Then,

D+Hi(t)|t=t1 =V̇i(t)|t=t1 + riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

=2

∫

Ω

ei(χ, t)

[ n
∑

j=1

dij

∫ t

t−υj(t)

(

fj(Yj(χ, ς))− fj(Y
0
j (χ))

)

dς − biei(χ, t)

+

q
∑

k=1

∂

∂χk

(

aik
∂ei(χ, t)

∂χk

)

+

n
∑

j=1

cij
(

fj(Yj(χ, t))− fj(Y
0
j (χ))

)

]

dχ

∣

∣

∣

∣

t=t1

+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)
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6− 2(

q
∑

k=1

a−ik
β2
k

+ b−i )

∫

Ω

e2i (χ, t1)dχ+ 2

∫

Ω

|ei(χ, t1)|

[ n
∑

j=1

c∗ijFj |ej(χ, t1)|

+
n
∑

j=1

d∗ijFj

∫ t1

t1−υ

|ej(χ, ς)|dς

]

dχ+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

6− 2(

q
∑

k=1

a−ik
β2
k

+ b−i )

∫

Ω

e2i (χ, t1)dχ+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri
(

ψ̇i(t1)

ψi(t1)

)

+

n
∑

j=1

d∗ijFj

(
∫

Ω

e2i (χ, t1)dχ+ υ

∫ t1

t1−υ

∫

Ω

e2j(χ, ς)dχdς

)

+
n
∑

j=1

c∗ijFj

(
∫

Ω

e2i (χ, t1)dχ+

∫

Ω

e2j (χ, t1)dχ

)

6

(

n
∑

j=1

(c∗ij + d∗ij)Fj − 2

q
∑

k=1

a−ik
β2
k

− 2b−i

)

V (t0)

(

ψi(t1)

ψi(t0)

)−ri

+
n
∑

j=1

c∗ijFjV (t0)

(

ψj(t1)

ψj(t0)

)−rj

+ υ

n
∑

j=1

d∗ijFjV (t0)Wj(t1)

+ riV (t0)

(

ψi(t1)

ψi(t0)

)−ri

ψi(t1)

=V (t0)

[

(

n
∑

j=1

(c∗ij + d∗ij)Fj − 2

q
∑

k=1

a−ik
β2
k

+ riψi(t1)− 2b−i

)

(

ψi(t1)

ψi(t0)

)−ri

+

n
∑

j=1

c∗ijFj

(

ψj(t1)

ψj(t0)

)−rj

+ υ

n
∑

j=1

d∗ijFjWj(t1)

]

<0,

which is unreasonable. Thus

Vι(t) 6 V (t0)

(

ψι(t)

ψι(t0)

)−rι

, ι = 1, 2, · · · , n, t > t0 > 0.

Similar to the proof of Theorem 3.1, we can obtain

lim sup
t→+∞

ln(‖e(·, t)‖Ω{ξ,∞})

ln(‖ψ(t)‖{ξ,∞})
6 −r.
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Therefore, e(χ, t) is robustly ψ-type stable. The proof is completed.

5. Numerical Examples

Example 5.1. Given the following RDNN with time-varying discrete

delays and parametric uncertainties:

∂Yι(χ, t)

∂t
=aι

∂Yι(χ, t)

∂χ2
− bιYι(χ, t) +

3
∑

j=1

cιjfj(Yj(χ, t)) + Pι(t)

+
3
∑

j=1

dιjfj(Yj(χ, t− τιj(t))), (12)

where ι = 1, 2, 3, −1 < χ < 1, fj(ǫ) = |ǫ+1|−|ǫ−1|
8

(j = 1, 2, 3), τιj(t) =

1
ι+j

(1− e−t), τ = 0.5, P1(t) = P2(t) = P3(t) = 0.

Obviously, F1 = F2 = F3 = 0.25. In particular, we choose t0 = 0, r1 =

r2 = r3 = 1 and ψ1(t) = ψ2(t) = ψ3(t) = e0.02t. The parameters aι1, bι, cιj , dιj

in the network (12) can be changed in the following given precisions:











































AI :={A = (aι)3×1 : 0.7 6 a1 6 0.8, 0.8 6 a2 6 0.9, 0.9 6 a3 6 1},

BI :={B = diag(b1, b2, b3) : 0.8 6 b1 6 0.9, 0.9 6 b2 6 1, 1 6 b3 6 1.1},

CI :={C = (cιj)3×3 :
1

2(ι+ j)
+ 0.005 6 cιj 6

1

2(ι+ j)
+ 0.01},

DI :={D = (dιj)3×3 :
1

2(ι+ j)
+ 0.015 6 dιj 6

1

2(ι+ j)
+ 0.02}.

(13)

Then,

(

n
∑

j=1

(c∗1j + d∗1j)Fj − 2a−1 + ψ1(t)− 2b−1

)

(

ψ1(t)

ψ1(0)

)−1

+

n
∑

j=1

c∗1jFj

(

ψj(t)

ψj(0)

)−1

+
n
∑

j=1

d∗1jFjG1j(t) < −2.3918
1

e0.02t
< 0,
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Figure 1: Trajectory of
ln‖e(·,t)‖Ω

{1,∞}

ln‖ψ(t)‖{1,∞}
with respect to the relative convergence rate λ = 1.

(

n
∑

j=1

(c∗2j + d∗2j)Fj − 2a−2 + ψ2(t)− 2b−2

)

(

ψ2(t)

ψ2(0)

)−1

+

n
∑

j=1

c∗2jFj

(

ψj(t)

ψj(0)

)−1

+
n
∑

j=1

d∗2jFjG2j(t) < −2.9422
1

e0.02t
< 0,

(

n
∑

j=1

(c∗3j + d∗3j)Fj − 2a−3 + ψ3(t)− 2b−3

)

(

ψ3(t)

ψ3(0)

)−1

+
n
∑

j=1

c∗3jFj

(

ψj(t)

ψj(0)

)−1

+

n
∑

j=1

d∗3jFjG3j(t) < −3.4257
1

e0.02t
< 0.

According to Theorem 3.2, the network (12) with the given parameters de-

fined in (13) is robust ψ-type stable with regard to zero solution. The simu-

lation results are displayed in Figures 1 and 2.

Example 5.2. Consider a RDNN with bounded distributed delays and
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Figure 2: ‖eι(·, t)‖
Ω
{1,∞}, ι = 1, 2, 3.

parametric uncertainties which can be described as follows:

∂Yι(χ, t)

∂t
=aι

∂Yι(χ, t)

∂χ2
− bιYι(χ, t) +

3
∑

j=1

cιjfj(Yj(χ, t)) + Pι(t)

+

3
∑

j=1

dιj

∫ t

t−vj(t)

fj(Yj(χ, ς))dς, (14)

where ι = 1, 2, 3, −1 < χ < 1, fj(ǫ) = 0.2 (j = 1, 2, 3), vj(t) =
j
50
(1 − e−t),

v = 0.06, Pι(t) = −0.2
∑3

j=1(dιjvj(t) + cιj).

Obviously, F1 = F2 = F3 = 0. In particular, we choose t0 = 0, r1 = r2 =

r3 = 1 and ψ1(t) = ψ2(t) = ψ3(t) = 1 + t. The parameters aι, bι, cιj, dιj in

the network (14) are defined by (13). Then,

(

n
∑

j=1

(c∗1j + d∗1j)Fj − 2a−1 + ψ1(t)− 2b−1

)

(

ψ1(t)

ψ1(0)

)−1

+

n
∑

j=1

c∗1jFj

(

ψj(t)

ψj(0)

)−1
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+ v

n
∑

j=1

d∗1jFjWj(t) < −2
1

1 + t
< 0,

(

n
∑

j=1

(c∗2j + d∗2j)Fj − 2a−2 + ψ2(t)− 2b−2

)

(

ψ2(t)

ψ2(0)

)−1

+
n
∑

j=1

c∗2jFj

(

ψj(t)

ψj(0)

)−1

+ v

n
∑

j=1

d∗2jFjWj(t) < −2.4
1

1 + t
< 0,

(

n
∑

j=1

(c∗3j + d∗3j)Fj − 2a−3 + ψ3(t)− 2b−3

)

(

ψ3(t)

ψ3(0)

)−1

+
n
∑

j=1

c∗3jFj

(

ψj(t)

ψj(0)

)−1

+ v

n
∑

j=1

d∗3jFjWj(t) < −2.8
1

1 + t
< 0.

According to Theorem 4.2, the network (14) with the given parameters de-

fined in (13) is robust ψ-type stable with regard to zero solution. The simu-

lation results are displayed in Figures 3 and 4.

Remark 5. Generally speaking, the ψ-type stability is related to the selec-

tion of ψ-type functions. Moreover, the ψ-type stability criteria are slightly

different because of the different selection of ψ-type function. If exponen-

tial functions or polynomial functions are chosen as ψ-type functions, then

exponential stability or polynomial stability as the special cases of ψ-type

stability can be obtained. As in Example 5.1, the function ψ(t) is given by

exponential function, some analogous results have been studied in [24] and

[27], in which equilibrium points are exponentially convergent for their con-

sidered networks. Therefore, our results can be regarded as the extension

of previous results on other type stability (e.g., exponential stability, poly-

nomial stability and µ-stability) of RDNN [12, 24, 27, 29]. To illustrate the

ψ-type stability is different from the exponentially stability, we also provide

Example 5.2, in which equilibrium points are polynomially convergent for
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the network.

Remark 6. Due to the difficulty of estimating the convergence rate of the

system in practical applications, some researchers have devoted themselves

to investigating a new type of stability, namely ψ-type stability, which gen-

eralizes some traditional stability definitions, e.g., exponential stability, log-

stability, power-rate stability and µ-stability [20–23]. In [21], the multiple

ψ-type stability of recurrent NNs with time-varying delays was investigated.

Wang et al. [23] studied the ψ-type synchronization problem of NNs by

using the conception of ψ-type stability. However, the reaction-diffusion

phenomena of NNs has been neglected in the above literatures. In a strict

sense, reaction-diffusion effects are unavoidable in NNs once the electrons

transport in inhomogeneous magnetic field. Therefore, taking the reaction-

diffusion terms into consideration in NNs is necessary and meaningful, and

some researchers have studied the traditional stability of RDNNs [12, 24–

31, 40, 42]. To our knowledge, the ψ-type stability of RDNNs has not yet

been considered until now and this is the first paper toward to investigating

ψ-type stability and robust ψ-type stability for RDNNs with time-varying

discrete delays and bounded distributed delays.

6. Conclusion

This paper has investigated the ψ-type stability and robust ψ-type sta-

bility for RDNNs with and without parametric uncertainties, respectively.

By utilizing several new inequality techniques, several ψ-type stability and
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Figure 3: Trajectory of
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ln‖ψ(t)‖{1,∞}
with respect to the relative convergence rate λ = 1.
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robust ψ-type stability criteria have been proposed for RDNN and URDNN

with time-varying discrete delays. Then, the models of RDNNs with bounded

distributed delays have been studied and several sufficient conditions to guar-

antee the ψ-type stability and robust ψ-type stability for these networks have

been given. Finally, the validity of these obtained results has been verified

through some examples with simulation results.
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