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Abstract 

Inspired by the unique neuronal activities, a new time-varying nonlinear autoregressive with 

exogenous input (TV-NARX) model is proposed for modelling nonstationary processes. The NARX 

nonlinear process mimics the action potential initiation and the time-varying parameters are 

approximated with a series of postsynaptic current like asymmetric basis functions to mimic the ion 

channels of the inter-neuron propagation. In the model, the time-varying parameters of the process 

terms are sparsely represented as the superposition of a series of asymmetric alpha basis functions in 

an over-complete frame. Combining the alpha basis functions with the model process terms, the 

system identification of the TV-NARX model from observed input and output can equivalently be 

treated as the system identification of a corresponding time-invariant system. The locally regularised 

orthogonal forward regression (LROFR) algorithm is then employed to detect the sparse model 

structure and estimate the associated coefficients. The excellent performance in both numerical 

studies and modelling of real physiological signals showed that the TV-NARX model with 

asymmetric basis function is more powerful and efficient in tracking both smooth trends and 

capturing the abrupt changes in the time-varying parameters than its symmetric counterparts.  

1. Introduction 

Nonlinear time-varying processes exist universally in numerous science and engineer problems, 

including physical, chemical, biological, physiological, neurobiological, aerospace systems, to name a 

few. Detection of the model structure and estimation of the associated time-varying parameters are 

much more challenging than counterparts in the time-invariant cases. Available methods for 

modelling and identifying time-varying systems include piecewise linear models, recursive least 

squares, least mean squares, Kalman filtering and so on. Among them, the multi-wavelet basis 

function based time-varying nonlinear autoregressive with exogenous input (TV-NARX) model has 

been proved to be powerful in representing complex nonlinear time-varying systems and identifying 

complex nonstationary processes in both time and frequency domains [1-4]. The new system 

identification methods for time-invariant systems, such as Multi-step-length gradient iterative 

algorithm and the Variational Bayesian Approach [5, 6] may be modified and applied to identify time-

invariant systems. 

The multi-wavelet basis function TV-NARX model expands time-varying parameters with multiple 

wavelet basis functions and the time-varying system identification can then be transferred into 

identifying a model with time-invariant coefficients. The orthogonal forward regression algorithms 

were employed to identify a parsimonious model structure and estimated the associated parameters [7].  

One of the main advantages of the TV-NARX method lies in that the time-varying parameters are 

approximated with an over-complete basis function. Under an over-complete basis, the decomposition 

of a signal is not unique but this offers some advantages. Firstly, there is greater flexibility in 

capturing the structure in the data. Instead of a small set of general basis functions, a larger set of 
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more specialized basis functions can be employed such that any particular signal can be reproduced 

with relatively few functions producing more compact representations. Additionally, over-complete 

representations increase the stability of the representation in response to small perturbations of the 

signal. The basis function widely used to construct multi-resolution decompositions includes B-spline, 

Chebyshev polynomials, Legendre polynomials, wavelets, curvelets and so on [4, 8, 9]. For the 

diverse forms of structure that occur in natural signal it is difficult to know a priori what class of 

functions is most appropriate. Although over-complete bases can be more flexible in terms of how the 

signal is represented, there is no guarantee that the hand-selected basis vectors will well match the 

data structure. Ideally, we would like the basis itself to adapt to the data, so that for signal class of 

interest, the basis function captures the maximal amount of structure in the data.   

On the one hand, the over-complete dictionary can be optimised from signal statistics using 

evolutionary algorithms that are of limited relevance to biology [10-12]. However, the process can be 

time-consuming and the results depend on the signals used in the optimisation. On the other hand, the 

neural system has evolved over millions of years to effectively cope with stimulations in the natural 

environment. Since using resources efficiently is important in the competition for survival, it is 

reasonable to think that the neural system has discovered efficient coding strategies for representing 

natural signals. Therefore, the challenge is to develop approaches for deducing computational 

principles relevant to biological systems.  

As the fundamental units of communication between neurons, action potentials which promote the 

interaction of chemical or electrical signals, allow neurons to encode information by generating action 

potentials with a wide range of shapes, frequencies, and patterns [13]. The action potential transfers 

from neuron to neuron through synapses and produces postsynaptic currents (PSC), including 

excitatory PSC and inhibitory PSC. Neuronal communication is regulated as a balance between 

excitatory and inhibitory influences. Different from the action potential, the postsynaptic current is 

graded and can approximately be described as alpha functions [14]. Action potentials occur when the 

sum total of all of the excitatory and inhibitory inputs pushes the neuron’s membrane potential reach 
the firing threshold spiking and propagating as a wave along the axon to synapses of nerve terminals. 

The dynamics demonstrate how changes in the membrane can constitute a signal. Similar activities 

have also been observed in the excitation-contraction pathway of skeletal muscle. The contraction 

force is controlled by a group of motion units. The generated muscle force depends on the number of 

motion unit involved and the fire rate, that is, the temporal spike train from motor neurons [15]. In 

summary, the neuron dynamics possesses the following characteristics: the connection is over-

complete, one neuron can connect with many other neurons; the PSCs are of a similar alpha function 

shape; a nonlinear dynamic process determines how the neuron burst an action potential under the 

effects of EPSCs and IPSCs. 

Based on the above observation, a new time-varying model inspired by the neuron activity is 

proposed. The new model mimics the single neuron dynamics which govern the initiation and 

propagation of action potential.  The model is of a general nonlinear NARX structure with time 

varying parameters. The time varying parameters are approximated by an alpha function train to 

mimic the PSC based neuron interactions. In the practice, the TV-NARX model can be identified 

from nonstationary observations and the time varying parameter can be learned from the over-

completed basis dictionary just as in reservoir computing [16].  

One of the main objectives is to improve the sparse representation of the TV-NARX model. The 

parameters in the model can change smoothly or abruptly in real systems. Inspired by the unique 

shape of the post-synaptic currents, a new type of basis functions which consist of an over-complete 

frame is proved capable of adapting to different parameter varying. Using the novel and more 

powerful alpha basis function, a sparse model structure can be obtained. Compared with the 

traditional TV-NARX model, our new model is closely related to the biological neuronal dynamics, 



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

3 
 

which bridges the gap between mathematical models and biological system and provide a new 

pathway for the design of new generation spike coding neural networks. Additionally, our results give 

a new possible interpretation of the post-synaptic currents (PSC). Results showed that the specific 

PSC shape can help the neurons transmit information more efficiently, that is, transmit the same 

amount of information using fewer action potentials.  

Unlike artificial neural networks, the new TV-NARX model is capable of giving explicit model 

structure and how each of the nonlinear terms and coefficients affects the system behaviours can then 

be analyzed, for example, frequency domain interpretation or bifurcation analysis.  

The remainder of the paper is organized as follows: the biological synaptic dynamics and neuron 

spiking are briefly reviewed and the new TV-NARX model is proposed by generalising the 

mathematical model in Section 2. The identification of the TV-NARX model using the locally 

regularised orthogonal forward regression algorithm is discussed in Section 3. Section 4 demonstrates 

the system identification methods and illustrates the efficiency of the new system identification 

method. Conclusions are finally drawn in Section 5.   

2. Neuronal dynamics and the associated PSC TV-NARX model 

There are plenty of studies in both anatomy and functional mechanism of single excitable neurons, 

to reveal the underlining reason for their firing or the action potential (AP). As the fundamental 

mechanism for communication between neurons, AP transfers information predominantly through 

synapses, where electrical particles exchange dynamically between intracellular and extracellular 

environment to change the membrane potential of the post-synaptic neuron. Multiple synaptic inputs 

and integration mechanism are essential for the robust and precise characteristic of neuronal firing and 

encoding information with APs of a wide range of temporal or rate patterns [13]. Neuronal 

communication is exquisitely regulated as balanced between excitatory and inhibitory influences [17], 

and essentially it is the integration of many excitatory and inhibitory inputs with different amplitudes 

and phases in a nonlinear framework. Active dendritic integration as a mechanism for robust and 

precise grid cell firing, nonlinear dendritic processing determines angular tuning of barrel cortex 

neurons in vivo. Contributions of generated post-synaptic conductances and post-synaptic currents are 

often models as ensembles for computational implementation of the kinetics of membrane potential, 

such as the single-neuron paradigm of neural mass model [18].  

The mechanisms of neuronal dynamics will be briefly reviewed in this section and the new TV-

NARX model will be proposed by generalising the signal neuron model. 

2.1 Neuronal dynamics 

Action potentials are the basic currency of the brain and allow neurons to communicate with each 

other, computations to be performed, and information to be processed. The computation performed by 

single neurons can be defined as the mapping from afferent spike trains to the output spike train which 

is communicated to their postsynaptic targets. Single neuron dynamics essentially includes two 

elementary mechanisms: the synaptic dynamics based interneuron interaction and the neuron firing 

dynamics, namely, the initiation and propagation of action potential. 

The neuronal dynamics are often described by voltage-controlled ion channels which integrate the 

effects of action potentials through dendrites and synapses. Ion channels are also key components in a 

wide variety of biological processes that involve rapid changes in cells, such as cardiac, skeletal, and 

smooth muscle contraction, epithelial transport of nutrients and ions, T-cell activation and pancreatic 

beta-cell insulin release.  
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Synaptic conductance can be mostly described as rapid binding followed by slow unbinding of the 

transmitter, and alpha function [19, 20]. An approximate model of synaptic transmission is to assume 

that each spike evokes a change in the conductance of the postsynaptic membrane with a 

characteristic time course which can be described with the alpha function [14]. 

   exp 1
peak peak

t t
t

t t


   
       
   

  (1) 

Voltage-gated ion channels are represented by electrical conductance. For a train of spikes, the 

postsynaptic conductance change of the i -th ion channel is given by the superposition of time-shifted 

alpha functions: 

    , , ,i i j i j i j

j

g t t t     (2) 

where ,i jt  are the spike times. The postsynaptic conductance changes are graded, weight ,i j  

represents the peak conductance change evoked by spike j . 

Electrical input-output membrane voltage models produce a prediction for membrane output 

voltage as a functional electrical stimulation at the input stage.  The various models in this category 

differ in the exact functional relationship between the input current and the output voltage and in the 

level of details. The membrane equation can then be described by combining the effects of each ion 

channel as the following ordinary differential equation 

   0m
i m i

i

dV
C g V E

dt
     (3) 

where mV  is the membrane potential, C  membrane capacitance. Terms  i m ig V E  represent the 

postsynaptic current from the i -th ion channel with the postsynaptic conductance ig . The 

postsynaptic conductance is represented as the superposition of the alpha function train as in (2); iE  is 

the reverse potential of the corresponding ion channel. The alpha functions represents the PSC from 

different synapses and reflect the inter-neuron interaction. The connections through synapse are 

highly over-complete. For example, a typical neuron in the mammalian central nervous system may 

receive several thousands of synaptic inputs from other neurons but not all the neurons are excited and 

generate an action potential.  

The synaptic dynamics is followed by a spike generation process at the soma or axonal initial 

segment. The neuron produces an action potential when the membrane potential is over the threshold 

value under the effects of EPSC and IPSC. The differential equation explains the ionic mechanisms 

underlying the initiation and propagation of action potentials.  

2.2 Generalization of the synaptic model 

According to the discussion above, the neuronal model possesses following three characteristics: 

the connection is over-complete; the post-synaptic conductance is of a special alpha wave shape; the 

firing of the neuron is governed by a nonlinear dynamic process. A TV-NARX model which has all 

these features will be proposed for time-varying system identification by generalizing the neuronal 

model.  

A discrete time model has computational advantages than the continuous dynamical system. The 

existing discrete time model for the neural dynamics include the Rulkov map [21]. However, the 

Rulkov map describes the spiking activity of biological neurons without considering the synaptic 

dynamics. Two neurons are symmetrically coupled with each other through a simplistically defined 

current flow [21]. Other discrete time model for excitable media includes the polynomial form models 
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[22, 23]. These results show that the neural excitation process can be described by nonlinear 

difference equations. Combining with the synaptic dynamics, a nonlinear difference equation with 

time-varying coefficients can be used to describe basic single neuron behaviours.  

Equation (3) represents a time-varying model whose coefficients are composed of a series of alpha 

functions which are sparsely expanded by an over-complete basis dictionary which reflects the 

connections in a neuron network and the sparse expansion reflects the dynamical neuron modulation.  

Discretizing the equation (3) yields a NARX model with time-varying parameters. A general form 

of NARX model can be given as 

             1 , , , 1 , , , ( ),y uy k F y k y k n u k u k n e k k     c   (4) 

where ( ), ( )y k u k  denote observed and measured system output, input, and noise signals with the 

maximum delays ,  y un n  respectively, ( )e k  is the model error that can often be assumed as an 

independent identical distributed white noise sequence with zero mean and a certain variance.  F   is 

any nonlinear function of the output and input with time varying parameters  kc  [1, 7].  

In order to mimic the neuronal dynamics, the time varying coefficients  kc  is a superposition of a 

series of alpha functions and the nonlinear function  F   is designed to capable of describing the 

firing of the action potential.  The obtained model originates from the neuron dynamics but of a much 

general form. In this study, the model will be used as a general model for system identification of 

nonstationary dynamic systems rather than only the single neuron behaviours.  

  A polynomial form TV-NARX model is often used, which is defined as  

 
1 1

, 1
0 , , 1 , , 0 1

( ) ( , , , ) ( ) ( ) ( )
y u

p p p q

n n p p qL

p q p q i i

l p q l d d d d d i i p

y k c d d k y k d u k d e k
 




       

            (5) 

where  

  , 1( , , , ) , 1, ,p q p q j j

j

c d d k k j n    r r

r

r r
  (6) 

where the multiple subscript  1: , , , , p qp q d d r , nr  represents the number of PSC’s which 

consist of the time varying coefficients of process term 
0 1

( ) ( )
p p q

i i

i i p

y k d u k d


  

   .  

Model (6) gives a generalised model of a single neuron. Combining a group of models yields a new 

NARX Spiking Neural Network (NSNN) model which considers the spatiotemporal interactions 

between neurons. The NSNN model can be given as follows. 

              

0 1

( ) ( ) ( ) ( )
n n n

n nn n

n n nn

p p q
n n n n n n

j j i i

j i i p

y k k y k d u k d e k 


  

     r r

rr

  (7) 

where the superscript represents the n -th subsystems and  1: , , , ,
n nn n n p qp q d d r .  

The use of this map to study neural networks has computational advantages because the map is 

easier to iterate than a continuous dynamical system. This saves memory and simplifies the 

computation of large neural networks. This study focuses on the system identification of the single 

neuron model, that is, the TV-NARX model (5) used to modelling nonstationary nonlinear processes 

where the alpha function train is determined using a system identification method which is discussed 

in the next section. 
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The new proposed model has two important features which are different from both biological single 

neuron models and general TV-NARX models. On the one hand, the new model is of a NARX model 

form. This enables the model to describe much wider types of nonstationary processes than biological 

neuron models do. On the other hand, different from general TV-NARX model, the time-varying 

parameters are represented as subscription of alpha basis functions. This enhances the flexibility and 

adaptive ability of the TV-NARX model, which will be shown in Section 4.  

Remarks: 

i) Model generalised the neuron activity model. The model differs from the ion model in several 

ways: the new model is a discrete time model which is better suited for simulation than the 

differential equations;  

ii) In the ion channel model, the changing of the conductions in different ion channels may not be 

independent. For example, both sodium and potassium channels will response to the input 

when a neuron action potential is injected through synapses.  

iii) Model (5) may be used as a general model for the system identification of nonstationary 

nonlinear dynamics because of the powerful NARX model structure. The time-varying 

coefficients may have a different physical meaning in real applications, especially when it is 

used to describe the phenomena in macroscopic scales.  

iv) The proposed model has a similar form as the multiple basis function TV-NARX models [1, 

4]. Therefore, the system identification methods used in the references can also be used for the 

new model. 

2.3 Smooth compactly supported alpha basis function 

 Compact support is an important property of wavelet functions and the associated scale function. A 

smooth compactly supported wavelet function has a better approximation ability. For example, an 

arbitrary polynomial of degree N - 1 can be written as a linear combination of integer shifts of the 

scaling function of a compactly supported wavelet with N vanishing moment [24]. Therefore, a 

smooth compactly supported basis function is expected in building a good model.  

A compactly supported Beta wavelet has been proposed [25]. The associate scale function of the 

Beta wavelet is compactly supported and has a similar asymmetric shape as the alpha function. Thus, 

in the paper, we utilized the time shifted scale function, named as alpha basis function, to replace the 

alpha function to approximate the time-varying parameters. According to the original definition given 

by the author Araújo et.al, the new alpha basis function is defined as: 

 

1 1

( 1)/2

1

A ( 0) (1 ) 0 1
( , )

0,                                  

( ) ( )
1

( ) ( )( )

a b

a b

a b

k k k
k a b

otherwise

a b
a b

a bA
a b a b


 

 

 

    
 



 

 
  

， 

  (8) 

where 1 a b  , ,a b are the parameters which control the shape of the alpha basis function. 

With the increase in the difference between the parameters a and b , the asymmetricity of the alpha 

basis function will increase, that is, the first half wave will be sharper and the second half flatter. ( ) 
is the generalized factorial function of Euler. According to the definition (8), the alpha basis function

( | , )k a b  only has a nonzero value in the interval 0 1k  , so it is compactly supported, and the 

length of the support set is 1. An example of the alpha basis function is shown in Fig 1.  
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Figure 1. An example of Alpha basis function with 3, 7a b    

 

Although the alpha basis function is not a wavelet because it doesn’t integrate to zero. However, 

the scale function is more flexible as basis function to fit a curve because different wavelet functions 

can easily be constructed by calculating the difference between two scale functions with time delay.  

Wavelets which are generated from alpha basis functions with different time delay is shown in Fig 2. 

Actually, this mimics the supposition of EPSC and IPSC in intracellular potentials. Zheng et al. 

showed that local field potential (LFP) can be modelled as the combination of EPSC and IPSC [17].  

Figure 2. Generation of Beta wavelet with 1 2      

 

An over-complete frame  
,

( , , , )k a b
 

     can be constructed by varying the translation and 

scale parameters   and    of the scale function, where ( , , , ) ( , , )
k

k a b a b
   




  The 

corresponding discrete time version wavelet function is ( , , , ) ( , , )
k m

k m a b a b  



 , , .k m   

The time-varying coefficients can then be expanded under the frame as 

 
, 1( , , , ) ,

j

p q p q j j j

j j

k m
c d d k a b 



 
  
 
 

 r

r r r

r r

  (9) 

where the multiple subscript  1: , , , , p qp q d d r .  

Substituting (9) for the time varying coefficients in model (5) yields the new TV-NARX model 

 
0 1

( ) , ( ) ( ) ( )
p p q

j

j j j i i

j i i pj

k m
y k a b y k d u k d e k 





  

 
    
 
 

  r

r r r

r r
r

  (10) 
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3. Identification of the new TV-NARX model 

The identification of the proposed model (10) from observations involves three related processes: 

the detection of the polynomial process terms, determination of the wavelet basis function set which 

consists the time-varying parameters, and estimation of the associated parameters.  

Denote the term on the right hand side of the equation as  

 
0 1

, ( ) ( )
p p q

j

j j j i i

i i pj

k m
a b y k d u k d 





  

 
   
 
 

 r

r r r

r

.  

Model (10) becomes 

 ( ) ( )j j

j

y k e k   r r

rr

  (11) 

Denote the number of process term 
0 1

( ) ( )
p p q

i i

i i p

y k d u k d


  

    as  : #R  r , and each time 

varying coefficient consists of 
rn  alpha basis functions for 1, ,r R . The model can be rearranged 

as 

 
1 2 , ,

1 1 1

( ) ( ) ( )
r R

r r

r

n n n nR

j j j j

r j j

y k e k e k   
 

  

       (12) 

Hence, the system identification of the TV-NARX model (10) becomes the detection of the model 

terms   1

1

Rn n

j j


 


 and estimation of the time invariant parameter j ’s. The problem reduces to the 

identification of a time invariant model (12).  

The problem that identifies the non-stationary nonlinear system represented by the formula (10) 

involves selecting the most significant terms from a pre-defined candidate dictionary to build a model 

which is sufficient to describe the observed system behaviours and estimating corresponding 

parameters depended on a certain model structure. Note that some excellent algorithms, such as 

orthogonal forward regression (OFR) algorithm and its variants, could have been applied to solve this 

issue if the parameters are time-invariant. Combining the alpha basis functions with the process term 

transfers the time-varying model into a model with time invariant coefficients. The principle and steps 

of standard OFR algorithm is briefly introduced in Section 3.1 and the pseudocode of OFR algorithm 

is given in Appendix A. 

The system identification process can then be summarised as: 

a) Construct the dictionary of the process terms 
0 1 , ,

( ) ( )

i

p p q

n i n i

i i p p q d

y k d u k d


  

 
  

 
  , and 

denote the cardinality of the set as 
pN  ; 

b) Construct the over-complete alpha basis function basis 
0 1 , ,

( ) ( )

i

p p q

n i n i

i i p p q d

y k d u k d


  

 
  

 
 

 
, , ,

( , , , )
m a b

k m a b


  , and denote the cardinality of the set as bN ; 
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c) Combine the two dictionaries by the Kronecker product  
, , ,

1
( , , , )

2m a b
k m a b


   to produce 

the associated time invariant system term dictionary  
1

p bN N

j j





, where   denote the 

Kronecker product, for example,      1 2 3 1 2 1 1 1 2 2 1 2 2 3 1 3 2, , , , , , , ,a a a b b a b a b a b a b a b a b  .  

d) Using the OFR algorithm to select significant terms from the dictionary  
1

p bN N

j j





 and 

estimate the associated parameters; 

e) Collect all the alpha basis functions with the same process term to reproduce the time varying 

parameters as the weighted sum of the alpha basis functions; 

f) Validate the obtained model.  

3.1 LROFR algorithms for TV-NARX model identification 

Once the time-varying nonlinear model (5) is reduced to the associated time-invariant linear-in-the-

parameter form (12) by expanding the time-varying coefficients with alpha basis functions, the system 

identification methods for time invariant system can be applied. Since both the structures of the 

NARX model and the spike train of the alpha basis functions consisting the parameters are not known 

a prior, an over-complete term dictionary is constructed as the candidates for the model term selection. 

However, the detection of the model structure is entwined with the estimation of the associated 

parameter. Tedious trial-and-error processes for a parsimonious model structure needs to re-estimate 

the parameters for each trial. The combinations can be enormous and the process is computationally 

infeasible. 

The OFR algorithm family which decouples the model structure detection and the parameter 

estimation by orthogonalizing the model terms and selecting model terms stepwise, has successfully 

used for the identification of different kinds of model. Based on the Error Reduction Ratio (ERR) 

significance criterion, a parsimonious model can be constructed in an efficient model selection 

process [26]. OFR with the assistance of local regularization, that is, the LROFR algorithm may 

further enhance the capacity for model selection to produce a sparser model with good generalization 

performance [27]. The LROFR algorithm will be used for the identification of the proposed model. 

The LROFR algorithm is briefly reviewed as follows.  

Collecting the observation and the alpha basis function, model (12) can be written in a matrix form 

as: 

  y Φθ e   (13) 

where y  is the output vector, Φ  is the regression matrix and θ  is associated parameter vector to be 

determined.  

In model (13), y  denotes output data. The column vectors in 1 2[ , , ]
mn    Φ   are candidate 

dictionary consisted of delay of ( )  ( )y k u k，  and alpha basis function according to (10)-(12). Parameter 

vector 1 2=[ , , , ]
m

T

n    . Let an orthogonal decomposition of the regression matrix  : 

 WA    (14) 

where 1[ , , ]
mnW w w  denotes an orthonormal matrix by column, A is an upper triangular matrix 

with unit diagonal elements: 
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1,2 1,

1,

1

0 1
A=

0 0 1

m

m m

n

n n

a a

a 

 
 
 
 
  
 

 

The regression model (14) can alternatively be expressed as: 

 y Wg e    (15) 

where 1[ , , ]
m

T

ng g g  is the orthogonal regression weight vector satisfy: 

 g A   (16) 

The set   is commonly superfluous and over-complete, so we need to choose some important 

terms and reckon the coefficients adapted to terms chosen.  Follow [27], in order to select the l th 

regressor from all mn  candidates, what we should do first at l th stage is setting a small positive 

number zT  to specify the zero threshold and automatically avoid any ill-conditioning or singular 

problem. That is to say, for ml j n  , if ( 1) ( 1)( )l T l

j j zT
    , the j th candidate is not considered. 

Then calculate: 

  ( ) ( 1) ( 1) ( 1) ( 1)( ) ( )j l T l l T l

l j j j jg y           (17) 

  ( ) (j) 2 ( 1) ( 1)[err] ( ) ( )
l

j l T l T

l j j jg y y       (18) 

where   denotes the regularization coefficient and err presents the error reduction ratio which is 

defined in [26], Next find: 

 
( )[ ] [ ] max{[ ] , }lj j

l l l merr err err l j n      (19) 

and swap the 
lj th and l th column each other in 

( 1)l , A  and   respectively. At last, perform the 

orthogonalization and computation as indicated below to obtain the l th row of A  as well as update
( ) ( ), ,l l

lg y , specially (0) (0) , ,1j j my y j n       : 

 

( 1)

( 1)

( ) ( 1)

 1 1 1

l

l l

T l T

lj l j l l m m

l l

j j lj l

w

a w w w l n l j n

a w







 
       


    

，   (20) 

 

( 1)

( ) ( 1)

( ),
 1

,

T l T

l l l l l

ml l

l l

g w y w w
l n

y y g w





    
  

  (21) 

Once the stop criterion (22) is reached, the selection will be stopped with a subset model which is 

composed of 
sn  significant regressors. 

 
1

1- [ ]
sn

l

l

err 


   (22) 

where 0 1   is a chosen tolerance. It should be noted that the selection of   is very significant. 

In the paper, we applied the optimal number of regression terms determined by the APRESS criterion  

[2] to obtain an optimal threshold   based on formula (22) indirectly. Specifically, the model 

selection will stop when the model structure is the best. After that, we used the optimal threshold 
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determined by APRESS to stop the model selection. The parameter θ  can then be derived by 

rearranging equation (16). 

The process demonstrated above actually is a standard OFR method if 0  , if not,   can be 

renewed by two steps:  

Step 1: assign the same small enough positive value such as 0.001 to all   and a tolerant number, and 

use the procedure described in (17)-(22) to select a subset model with 
sn  terms.  

Step 2: renew   using (23) with 
m sn n  as follow. If   remains sufficiently unchanged in two 

successive iterations or a pre-set maximum iteration number is reached, stop; otherwise, go to 

Step 1. 

 

2

1

,

( ),  1

m

T
new i
i

i

T T old

i i i i i i m

n

i

i

e e

N g

w w w w i n




 

 



  

   






  (23) 

Combined with wavelet basis function decomposition, the system identification method for the new 

TV-NARX model can be summarized as follow: 

Step 1: The output and input data of TV-NARX model should be expressed as model (4) first. 

Step 2: Complete the candidate dictionary definition and expand the time-varying coefficients with 

alpha basis function according to (10)-(12), finally get the model (13) to be identified. 

Step 3: Initialize the   and select the significant 
sn  terms and corresponding parameters to represent 

the system to be decided employing (14)-(23). 

4. Numerical studies and application to real nonstationary signal 

In this section, a numerical experiment is first employed to demonstrate the advantages of 

asymmetric basis function in fitting arbitrary changing signals over their symmetric counterparts. 

Linear and nonlinear numerical examples and real applications in modelling of physiological signals 

were used to demonstrate the efficiency of the new TV-NARX model and the associated system 

identification algorithms. In the numerical studies, a modified 10-fold cross validation method and 

the model prediction output of the system were applied to validate the obtained model and the 

performance of the proposed model is compared with state-of-the-art time-varying system 

identification methods. The model sparsity and prediction error of the time-varying coefficients are 

used to evaluate the new time-varying system identification method. Modelling of real EMG signal 

showed that the new model is powerful to characterize real physiological signals and can also 

provide spike train as the extra information for explaining muscle activation. The application of the 

new TV-NARX method in the clinical detection of freezing of gait of Parkinson’s disease showed 
that the new method provides an explicit model structure and can be used for further model based 

analysis. This is the advantage of the new method over traditional neural networks which only 

provide the input-output description. 

4.1 Example 1: A numerical example 

In the part, we performed a numerical experiment to prove that the asymmetric alpha basis function 

inspired by the neural dynamic has a better performance than the symmetric basis function in fitting 

randomly changing signals. We constructed a set of basis functions with different asymmetricities 

using the formula (8) with the two parameters a and b ranging from 1 to 70 to control the 
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asymmetricity of the basis. Shifting each basis function yielded a term dictionary for signal fitting, 

where all the terms in the dictionary are of same shape/asymmetricity but different phases. One 

hundred uniform random signals were generated and the empirical mode decomposition (EMD) was 

applied to smoothen the signals. The denoised signals were used as the signal set for evaluating the 

descriptive ability of the basis functions with different asymmetricities. For computational simplicity, 

we used the OFR rather than the LROFR algorithm to fit the signals. For each dictionary, fixed the 

model size were used and the average R squared value [28] over the 100 signals were used to evaluate 

the efficiency of the basis function in tracking the sequence. The results are shown in Fig 3.  

The results showed that the models with asymmetric terms had better performance than the 

symmetric ones which are located along a=b in the plots and the best model performance achieved 

along the two ridges in Fig 3(a). It is easy to check that the basis functions with parameters along each 

of the ridges have similar asymmetricity. In other words, the models with greater R-squared value will 

use less terms to achieve the same accuracy, namely, a sparser model structure. 

(a)  (b)  
Figure 3. (a). The mean R squared at the combination of a and b ranging from 1 to 70, where the ridge 

represents the maximum of mean R squared; (b). The contour plot of the mean R squared at the combination of 

a and b ranging from 1 to 70, where the different color represents the corresponding value of the mean R 

squared. 

 

The experimental results indicate that asymmetric basis functions have a better descriptive ability in 

capturing the signal features with fewer model terms than the symmetric basis functions do. It is 

straightforward to conclude that a sparse model structure can be obtained when an appropriate 

asymmetric basis function is used to replace the symmetric basis function to fitting the time-varying 

parameters in a TV-NARX model. 

4.2 Example 2: A linear time-varying system 

 Consider the system as follows: 

 
1 2 1 2

1

( ) ( ) ( 1) ( ) ( 2) ( ) ( 1) ( ) ( 2)

1
( ) ( ) ( )

1 0.8

v k a k y k a k y k b k u k b k u k

y k v k e k
z


       



  

  (24) 

where the input ( )u k  is a Pseudo-Random Binary Sequence (PRBS); ( )e k is Gaussian distributed 

noise with zero mean and variance 0.001, namely, with a 20dB SNR. The time-varying parameters are 

defined as: 
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1

2

1

0.32cos(1.5 cos(4 )),1 4,

( ) 0.32cos(3 cos(4 2)), 4 1 3 4,

0.32cos(1.5 cos(4 )),3 4 ,

( ) 0.4cos(4 ),1 ,

0.65,1 4,

0.5, 4 1 2,
( )

0.65, 2 1 3 4,

0.5,3 4 1 ,

k N k N

a k k N N k N

k N N k N

a k k N k N

k N

N k N
b k

N k N

N k N

 
 
 



   
     
    

  

 
   


  

   

2 ( ) 0.6,1 ,b k k N








  

  (25) 

respectively, where 2048N   is the number of samples. 

In order to identify a sparse model structure, an over-complete dictionary which consists of time-

shifted alpha basis function is constructed. Assuming the support length of the basic alpha basis 

function ( ,0, , )k a b  , then the dictionary is defined as    
 1

1
( , , , )

s

m s
D k m a b




  



 
 , 

1, ,k N  is s ,where, for simplicity, all the basis functions are set to have the same shape 

parameters 3a  , 7b  , and scale  . The scale was optimised in the identification by comparing 

the model performance under different scale parameters. This dictionary composes of an over-

complete frame because there are a total number of 1N s N    vectors in the dictionary. 

Dictionaries with more basis functions with different scales and shape parameters can be constructed. 

However, in this and following examples we restricted the dictionary to the simplest setting to 

illustrate the powerful descriptive ability of the new asymmetric basis function. The dictionary of 

process terms is constructed as   4

1p d
D y k d


  . Therefore, the dictionary for the associated time 

invariant problem will be     
,

, , ,
d m

D k m a b y k d   , 1 4d  , 1 1s m s      . 

  Collecting the data and system (24) is identified using both OFR and LROFR algorithms. Results are 

shown in Fig 4 (c) and (d). The model performance is evaluated using the mean absolute error of the 

reconstructed time varying parameters, which is defined as 

       
1

1 ˆ
N

k

MAE c k c k c k
N 

    (26) 

where  c k and  ĉ k  represent the original and identified model parameters, respectively. 

  In order to illustrate the efficiency of the new proposed model. The results are compared with those 

of state-of-the-art methods [1, 4]. System (24) was also identified using multiple wavelet TVNAX 

model where the coefficients were approximated using symmetric B-spline wavelet basis function. 

The model dictionaries were organized in two different ways. In the first case, the wavelet basis 

functions constructed by time-shifting a basis 4th order B-spline wavelet as we did in the new 

proposed method. The results for this kind of model is shown in Fig 4 (a). Secondly, a multiple 

discrete B-spline wavelet basis was constructed including 3rd, 4th, and 5th B-spline wavelets with 

different scales. For more details, please refer to [4]. The results of this kind of model are shown in 

Fig 4(b). The four methods are summarized in Tab 1 and a comprehensive comparison of these four 

methods under different SNR levels are given in Tab 2. 

 
Table 1.  Summary of four TVNARX identification methods 

Methods Basis functions Algorithm 
Model 

complexity* 
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Method1 
Time shifted 4th order B-spline 

wavelet functions 
OFR  172 

Method2 
Multiple B-spline wavelet basis 

functions 
OFR  133 

Method3 
Time shifted asymmetric alpha 

basis functions 
OFR 124 

Method4 
Time shifted asymmetric alpha 

basis functions 
LROFR 115 

* The model complexity was determined by the APRESS criterion [2]. 

 

Results show that the asymmetric alpha basis function characterizes both sharp and smooth changes 

in the time-varying coefficients better than the symmetric B-spline wavelets even when the multi-

wavelets basis with multi-order and scales were used. Fig 4(c) shows that OFR algorithm estimates 

may have undesired peaks when the coefficients change sharply while this problem has successfully 

been solved by introducing the local regularisations in Fig 4(d).    

  
(a) OFR with Time-shifted 4th order B-spline 

wavelet functions 
(b) OFR with Multiple B-spline wavelet basis 

functions 

  
(c) OFR Time shifted asymmetric alpha basis 

functions 
(d) LROFR Time shifted asymmetric alpha basis 

functions 
Figure 4. Identification results of TVARX defined by  employing different methods. The bold black line 

indicates the true value of TV parameters, and the red line denotes the approximation value of the parameters. 

 

In order to validate the robustness and effectiveness of the new method, the four system 

identification approaches are compared under three different noise level, that is, SNR equals 20dB, 

15dB, and 10dB. The simulations were run 100 times for each case with random noise. The mean 

MAE value over the 100 simulations is shown in Tab 2. The hyper-parameters, such as the model 

complexity and the wavelet scales, in each method, were optimised to produce the best performance. 
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It can be observed that the proposed method with asymmetric alpha basis functions and LROFR 

algorithm is superior to the other methods using fewer terms and single wavelet scale. It is reasonable 

to believe that the new method may characterise the time-varying process better when multi-scale 

alpha basis function is used.  

Model validation is essential and has been widely used for evaluating the efficiency of models or 

system identification algorithms. However, there are limited results on the model validation of 

nonstationary models. Many validation methods cannot directly be adopted for nonstationary cases. 

We conducted a modified 10-fold cross validation to validate the obtained models using the proposed 

methods. Specifically, 10% of the data were randomly sampled as the test data. The R squared and 

root mean square error (RMSE) defined in (27) of the system output were then computed and 

compared with those for the 90% training. Ten rounds modified cross validation were performed and 

the average of the result was shown in Tab 3. Results show that not an obvious difference in the two 

evaluation metrics between the training and test sets. In order to further validate the model 

performance, the model prediction output under 20dB noise was shown in Fig 5, where only the initial 

values of the time output and the identified time-varying coefficients were used to reproduce the 

system output. Both the cross-validation and model prediction output indicate excellent prediction 

power and efficiency of the obtained model. 

         2

1

1 ˆ
N

k

RMSE y k y k y k
N 

    (27) 

where  y k and  ŷ k represent the original and identified model output, respectively. N denotes the 

length of the observations. 
Table 2.  A comparison of methods performance for system (24) 

with SNR=10, 15, 20dB 

Approach SNR(dB) 
MAE of estimated parameters 

1( )a k   2 ( )a k  1( )b k  2 ( )b k  

OFR with Time shifted 4th 
order B-spline wavelet 

functions 

10 0.0627 0.0412 0.0590 0.0429 

15 0.0475 0.0305 0.0449 0.0315 

20 0.0401 0.0248 0.0469 0.0258 

OFR with Multiple B-
spline wavelet basis 

functions 

10 0.0574 0.0377 0.0471 0.0384 

15 0.0462 0.0287 0.0394 0.0293 

20 0.0404 0.0239 0.0361 0.0242 

OFR Time shifted 
asymmetric alpha basis 

functions 

10 0.0450 0.0292 0.0331 0.0310 

15 0.0283 0.0181 0.0207 0.0191 

20 0.0192 0.0120 0.0144 0.0131 

LROFR Time shifted 

asymmetric alpha basis 

functions 

10 0.0439 0.0283 0.0303 0.0302 

15 0.0274 0.0174 0.0179 0.0174 

20 0.0177 0.0111 0.0116 0.0116 

where the bold font represents the best results. 

 
 

Table 3.  Average model prediction error by cross validation 
 for Example 2   

SNR(dB) 
Train dataset Test dataset 

R squared  RMSE R squared RMSE 
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10 0.9570 0.1118 0.9346 0.1324 

15 0.9843 0.0659 0.9731 0.0832 
20 0.9946 0.0386 0.9794 0.0716 

 

 
Figure 5. The origin output and model prediction output under SNR = 20 dB in linear Example 2. 

4.3 Example 3: A nonlinear time-varying system  

In this example, a time-varying system with both input and output nonlinearities are identified to 

illustrate the efficiency of the proposed new method for identifying general nonlinear systems. 

Consider the following system 

 

2 2
1,0 2,0 0,1 0,2

1

( ) (1, ) ( 1) (2,2, ) ( 2) (1,1, ) ( 1) (2, ) ( 2)

1
( ) ( ) ( )

1 0.5

v k c k y k c k y k c k u k c k u k

y k v k e k
z


        



  

  (28) 

where the input is a Gaussian random sequence and ( ) (0,1)u k N , 1 k N  ; ( )e k  is Gaussian 

distributed with variance 20.075  and the SNR is 20dB. The time varying parameters are defined as: 

 

1,0

2,0

0,1

0,2

0.1,1 2,
(1, )

0.2, 2+1 ,

(2,2, ) 0.05+0.02cos(10 ),1 ,

0.8,1 2 5,

(1,1, ) 1,2 5 1 7 10,

0.6,7 10 1 ,

0.6,1 5,

(2, ) 0.8, 5 1 4 5,

0.5,4 5 1 ,

k N
c k

N k N

c k k N k N

k N

c k N k N

N k N

k N

c k N k N

N k N



 
   

   

 
   
   
  
    
   

  (29) 

respectively. 

Repeat the same process as in Example 1. The reconstructed time-varying parameters using the four 

system identification methods are shown in Fig 6. The model sizes used in the four different methods 

were 150, 120, 114 and 94, respectively. It can be observed that the new method with asymmetric 

alpha basis functions and LROFR produced the best results using the least model terms.  

A comprehensive comparison of the four system identification under different SNR level is shown 

in Tab 4. Results show that the new asymmetric wavelet TV-NARX model with LROFR algorithm 

can produce the best estimation in all the four time varying parameters.  

 
Table 4: A comparison of methods performance for TVNARX model  (28) 

with SNR=10, 15 ,20dB 
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Approach SNR(dB) 
MAE of estimated parameters 

1,0 (1, )c k   1,0 (2,2, )c k  0,1(1,1, )c k  0,2 (2, )c k  

OFR with Time shifted 4th 
order B-spline wavelet 

functions 

10 0.0393 0.0165 0.0426 0.0638 
15 0.0282 0.0984 0.0275 0.0377 
20 0.0175 0.0054 0.0181 0.0228 

OFR with Multiple B-
spline wavelet basis 

functions 

10 0.0492 0.0126 0.0381 0.0644 

15 0.0313 0.0075 0.0268 0.0396 

20 0.0188 0.0046 0.0198 0.0250 

OFR Time shifted 
asymmetric alpha basis 

functions 

10 0.0368 0.0140 0.0382 0.0585 
15 0.0249 0.0081 0.0230 0.0359 

20 0.0142 0.0044 0.0129 0.0198 

LROFR Time shifted 

asymmetric alpha basis 

functions 

10 0.0334 0.0120 0.0318 0.0522 

15 0.0232 0.0070 0.0203 0.0325 

20 0.0127 0.0039 0.0117 0.0182 

where the bold line represents the better results. 

 

  
(a) OFR with Time-shifted 4th order B-spline 

wavelet functions 
(b) OFR with Multiple B-spline wavelet basis 

functions 

  
(c) OFR Time shifted asymmetric alpha basis 

functions 
(d) LROFR Time shifted asymmetric alpha basis 

functions 

 
Figure 6. Identification results of TVNARX defined by (28) using four approaches. The dotted line with 

different color indicates the true value of TV parameters and the real line with the corresponding color denotes 

the approximation value of the parameters. 

 

The same model validation processes as Example 2 have been performed and the results were 

shown in Tab 5 and Fig 7. It can clearly be observed that the proposed model has excellent 

performance in both identifying the model structure and capturing the changes in parameters. 
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Table 5.  Average model prediction error by cross validation 
 for Example 3  

SNR(dB) 
   Train dataset Test dataset 

MAE  RMSE MAE RMSE 

10 0.9211 0.4284 0.9041 0.4750 

15 0.9696 0.2410 0.9616 0.2737 
20 0.9924 0.1364 0.9901 0.1529 

 

 
Figure 7. The origin output and model prediction output under SNR = 20 dB in nonlinear Example 3. 

 

Both linear and nonlinear examples showed that the proposed TV-NARX model which inspired by 

neuron dynamics is more powerful in the characterisation of the time-varying processes than its 

counterparts with symmetric wavelet basis functions. This, to some extent, evidenced the adaptive 

functions of the alpha basis function shape PSCs in neuron dynamics.  

4.4 Example 4: Application to real nonstationary EMG signal identification 

Previous numerical studies show the efficiency of the new system identification method. In this part, 

the TV-NARX model and the associated algorithm will be used to investigate real time-varying 

nonlinear EMG signals. It can be seen that the changes in the signal frequency will be reflected in the 

time-varying coefficients and some extra information of the spike train can be obtained for the study 

of skeletal muscle activation. 

It is known that the muscle contraction force is controlled by a group motion units. The generated 

muscle force depends on the activation of the involved motion units, that is, the temporal spike train 

of motor neurons [15]. The study about how muscle activation is related to the EMG measurement is 

crucial for evaluating the correctness of neuro-musculoskeletal models [29, 30].  

The EMG data were recorded from the left leg anterior muscle of a patient with Parkinson's disease 

at Beijing Tiantan Hospital, China. The patient was at rest. Written informed consent was signed and 

procedures were approved by the Beijing Tiantan Hospital Ethics Committee. A 10s data is randomly 

selected from a total of 5 minutes of recording with a sampling rate of 500 Hz. Considering the range 

of tremor frequency in Parkinson's disease is usually 6-8 Hz, the origin EMG signal was low-pass 

filtered with a cutoff frequency 15 Hz. The data are shown in Fig 8 as the blue solid line.  
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Figure 8. A comparison of the real EMG data and reconstructed data established by TV-NARX model (31), 

where the bold black line denotes the original EMG signal while the red line is the fitting line. 

 

The initial guess of the TV-NARX model structure was chosen as  

  
4 4 4

1 0 2,0 0,0
1 1 1

( ) ( , ) ( ) ( , , ) ( ) ( ) ( )
i i j

y k c i k y k i c i j k y k i y k j c k e k
  

       ，   (30) 

including 15 candidates process terms. The asymmetric alpha basis functions were used to fit the 

time-varying parameters. The LROFR algorithm is adopted to select the significant terms. Results 

showed that only linear terms are significant in the description of the EMG dynamics and the obtained 

model is given as (31).  

 
4

1 0
1

( ) ( , ) ( - ) ( )
i

y k c i k y k i e k


  ，   (31) 

A total number of 350 alpha basis functions were used to fit the time-varying parameters. The 

reconstruction of the parameters are shown in Fig 9 and the model prediction output is represented by 

the red broken line in Fig 8. The corresponding spike train which leads to the parameter fluctuations 

can also be obtained from the model, which is shown in Fig 9 represented by the pulses. These spike 

trains provide extra information which may relate to the activation of the motor units which contribute 

to the muscle force. 

 
Figure 9. The time-varying coefficients in the model (31) identified using the new proposed method. The red 

curves show the time-varying parameters synthesised using the alpha basis function trains which are presented 

as the black pulses. 

4.5 Example 5: Application in the detection of freezing of gait in Parkinson’s disease 

In this part, the proposed TV-NARX model with asymmetric alpha basis function expansion was 

used to modelling the nonstationary gait data of Parkinson’s disease where the accelerations in 
Daphnet Freezing of Gait Dataset were used [31]. A typical 4.5s vertical accelerometion at the ankle 

including both normal locomotion and freezing of gait were low pass filtered and the preprocessed 

data are shown in Fig 10(a).   

By selecting the significant terms using the LROLR algorithm, a second order linear time varing 

model of form (32) was obtained   
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2

1 0
1

( ) ( , ) ( - ) ( )
i

y k c i k y k i e k


  ，
  (32) 

A total number of 89 alpha basis functions were selected to fit the two time-varying parameters and 

the reconstructed parameters was shown in Fig 10(b).  

Unlike purely phenomenological models, TV-NARX models can provide an explicit model 

structure and can be used for further model based analysis. In this example, the obtained TV-NARX 

model was then used to estimate the time varying time-frequency spectrum of the gait data according 

to formula (33): 

 

2

2

2
2

1,01

1
( , )

1 ( , ) s

TDS e j if
f

i

P k f

c i k e
 






  (33) 

where ( , )TDSP k f  is the time-frequency spectral estimation value at continuous independent variables 

time k  and frequency f , 
1,0
ˆ ( , )c i k is the estimation of model parameters 

1,0 ( , )c i k ,  2
e  is the variance of 

model residual, 
s

f = 64Hz is the sampling frequency and -1j   denotes the imaginary part of a 

complex number. 

Results have shown that the model based method is capable of providing a time-frequency 

spectrum with high resolution in both time and frequency domain [32]. The obtained time-frequency 

spectrum which characterises the variation of frequency components over time is shown in Fig 10(c). 

A biomarker, namely, Freeze Index (FI) [33] for the detection of FOG can then be defined based on 

the time-frequency spectrum as the ratio of energy in freezing band (3-8Hz) and normal locomotion 

band (0.5-3Hz). The calculated FI using formula (34) is shown in Fig 10 (d). 

 

8

3
3

0.5

( , )
( )

( , )

TDS

TDS

P k f df
FI k

P k f df
 


  (34) 

The results in Fig 10(b,c,d) showed that the FI can accurately detect the occurrence of the FOG. 

The trend of parameters and time-frequency spectrum is consistent with the occurrence of FOG 

episodes in Fig 10(b,c). Based on the new proposed method a convenient framework can be 

constructed for discriminating FOG events easily and accurately. 

 

  
(a)  (b)  
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(c)  (d)  

Figure 10. (a). The extracted vertical accelerometer data with a 10s window from subject 02, and the color bar at 

the bottom shows the ground truth labeled by experts, where red color denotes freeze of gait episodes and green 

no freeze of gait periods, respectively; (b). The reconstructed time-varying coefficients; (c). The time-frequency 

spectrum identified using the new proposed method; (d). The FI obtained by the new time-frequency spectrum. 

The black horizontal broken lines in the FI represented a proper threshold that discriminates the FOG events and 

normal movement. The magenta shadowed area demonstrated the FOG episodes identified by FI calculation 

method.  

 

5. Conclusions and discussion 

In this paper, we addressed the system identification of nonstationary signals with the TV-NARX 

model. Inspired by the neuronal dynamics, a new type TV-NARX model has been proposed by 

generalised the neuronal models. A new over-complete asymmetric basis function dictionary has 

proposed to sparsely represent time varying coefficients. Simulations show that the PSC shape basis 

can efficiently characterise the time varying systems with fast and slow changing coefficients even 

under low SNR. This may explain the unique time course of synaptic dynamics and the adaptive 

ability of the neural system to varying environments. Combining with the OFR algorithms, a general 

system identification method which is applicable to complex time varying dynamics is proposed.  

The new TV-NARX model with the alpha basis function surpasses the one with symmetric basis 

functions in performance. This can be interpreted by the unique shape of the asymmetric alpha basis 

which is composed of a steep rising part and a relatively flat falling part so that it can characterise 

both sharp and smooth changes in a signal. Additionally, the decomposition process of time-varying 

data using asymmetric alpha basis functions is alike to the formation process of biological signals 

such as LFP through superposition of excitatory and inhibitory PSCs. This paper bridged the 

mathematical model and nonstationary biological processes, may be helpful to understand the neural 

and cognitive processes underlying the generation of biological signals, such as EEG, EMG.    

The new proposed model can be used as the basic blocks for advanced spiking artificial neural 

networks which considers the spatiotemporal neural interactions. The time varying coefficients 

describes the effects of action potentials from other neurons and the output can be considered as the 

membrane potential. The NARX nonlinear process characterising the nonlinear firing process and the 

threshold can be described when the NARX dynamics is well designed. Connecting a group of the 

TV-NARX model, a new spiking neural network model NSNN can be constructed and this will be 

studied in future work.
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Appendix A  

For the linear-in-the-parameter system: 

 
1

( ) ( ) ( )      1,
M

i i

i

y k p k e k i N


   ，     (A.1) 

where ( )y k  is the output data or the term to regress upon, the ( )ip k denotes functions of past inputs, 

outputs and noise. ( )e k  is the modelling error, and i is the time-invariant coefficients to be 

estimated. M  and N are the size of  candidate terms and the length of sample data, respectively. The 

formula (A.1) can be rewritten in a matrix form as: 

 Y=PΘ+Ξ   (A.2) 

where 1 2[    ]MP p p p  is the regression matrix. For the system, the standard OFR algorithm for 

the detection of the model structure and the estimation of the associated parameters, is listed below: 

Step 1.  Set 1 {1,2, , };   T
I M Y Y  ；  

             for 1i   to M   

                   2

11

 ;

( , , ) 100%  ;

1 ;

i i

i i i i

w p

ERR Y w w w

a





     


  

             end for 

             1

1

1

0 0 0 0 0
1 1 1 1 1

arg max{ } ;

 ;  , ,  ;

i
i I

l

l ERR

w w g Y w w w




     
  

Step .j  Set 2j   and 1010  ;    

              for 2j   to M  

                    1 1{ } ;j j jI I l  ＼   

                    for all 
ji I   

                              
1

0 0 0 0

1

( , , )  ;
j

i i i k k k k

k

w p p w w w w




        

                              2( , , ) 100% ;i i i iERR Y w w w       

                    end for (end loop for i  ) 

                    
0 0 0 0 0

{arg( ) } ;    ;

arg max{ } ;

 ;  , ,  ;

1 ;

j

j

j

T

j i i j j j
i I

j i
i I

j l j j j j

jj

J w w I I J

l ERR

w w g Y w w w

a






  



     



＼
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                     for 1k   to 1j    

                            0 0 0, ,  ;kj lj k k ka p w w w       

                     end for (end loop for k ) 

           end for (end loop for j ) 
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