
A Novel Learning-based Global Path Planning
Algorithm for Planetary Rovers

Jiang Zhang, Yuanqing Xia, Ganghui Shen

Abstract—Autonomous path planning algorithms are sig-
nificant to planetary exploration rovers, since relying on
commands from Earth will heavily reduce their efficiency of
executing exploration missions. This paper proposes a novel
learning-based algorithm to deal with global path planning
problem for planetary exploration rovers. Specifically, a novel
deep convolutional neural network with double branches
(DB-CNN) is designed and trained, which can plan path
directly from orbital images of planetary surfaces without
implementing environment mapping. Moreover, the planning
procedure requires no prior knowledge about planetary surface
terrains. Finally, experimental results demonstrate that DB-
CNN achieves better performance on global path planning and
faster convergence during training compared with the existing
Value Iteration Network (VIN).

Index Terms—Planetary exploration rovers, learning-based
algorithm, global path planning, orbital images

I. INTRODUCTION

During planetary exploration missions, rovers are required
to explore diverse targets of interest after successful landing.
Since the surfaces of planets (e.g. Mars and Moon) are
covered with dangerous areas (e.g. rocks, steep slope, and
craters) and the power supplied for rovers are limited,
it is important for planetary rovers to find collision-free
and energy-efficient paths to destination [1]. Moreover, the
uncertain planetary environments and the unavoidable com-
munication delays between Earth and other planets make
it impractical to provide real-time decision and control for
rovers from Earth. This means that the design of autonomous
path planning algorithms is indispensable for planetary
rovers.

The planetary path planning problem can be classified
into two types, namely global path planning and local path
planning. For global path planning, the whole trajectories
from rovers’ start positions to their targets are required
to be determined from planetary surface images captured
by orbit satellites. It can be fullfilled offline since global
environments are totally observable. For local path planning,
the partial trajectories from rovers’ current positions to their
ends of sight need to be planned from their observations
of local environments. It is commonly executed online
since only local environments are observable. This paper
concentrates on dealing with global path planning problem
for planetary rovers.

Jiang Zhang, Yuanqing Xia and Ganghui Shen are with the School
of Automation, Beijing Institute of Technology, Beijing 100081, China.
Email: bitzj2015@outlook.com (Zhang), xia yuanqing@bit.edu.cn (Xia),
hxyzsgh@gmail.com (Shen).

Fig. 1. Autonomous global path planning.

Typically, the initial stage of implementing global path
planning algorithms is mapping the real-world environment
[2]. More precisely, observations of global environments are
commonly transformed into configuration space (C-space),
visibility graph, Voronoi diagram or grid maps [3, 4]. Then,
global path planning algorithms can be applied. In [5, 6],
classical shortest path search methods such as Dijkstra algo-
rithm and Floyd algorithm were firstly employed to deal with
global path planning problem. However, since global path
planning with multiple obstacles is non-deterministic poly-
nomial time hard (NP-hard) [2], it is time-consuming to find
the shortest path through traversal search. Therefore, heuris-
tic and evolutionary algorithms were adopted to address
global path planning efficiently. In [7, 8], heuristic search
algorithms such as A∗ and D∗ were applied to achieve
efficient path planning for mobile robots successfully. Then,
inspired by natural and biological intelligence, evolutionary
algorithms such as genetic algorithm [9], particle swarm
optimization [10], ant colony algorithms [11], and neural
network algorithms [12] were extended into global path
planning problems for planetary rovers. It is noteworthy that
these algorithms cannot work without environment mapping,
for which humans’ prior knowledge about planetary environ-
ments are necessary.

In order to achieve autonomous path planning directly
from orbital images, some algorithms have to firstly rep-
resent and learn deep features of orbital images such as the
shape and location of obstacles. Then, according to these
deep feature, the optimal path can be determined. In recent
years, Deep Convolutional Neural Networks (DCNNs) have
received wide attention in computer vision field for their
superior feature representation and learning capability [13].
Inspired by the state-of-the-art performance of DCNNs in

ar
X

iv
:1

81
1.

10
43

7v
1

 [
cs

.C
V

]
 2

3
N

ov
 2

01
8

2

visual feature representation and learning, learning to plan
directly from original images have been researched. Since
global path planning is a sequential decision making process,
one proven techique is formulating it as a Markov Decision
Process (MDP) and finding the optimal path planning policy
through value function estimation. In [14], a novel DCNN
arthitecture—Value Iteration Network (VIN) was proposed
to effectively estimate value functions in MDP. Then, the
goal of planning path directly from Martian orbital images
was achieved. Based on the work of VIN, Memory Aug-
mented Control Network and Neural Map were proposed
to find the optimal path for rovers in partially observable
environment in [15] and [16] respectively. Further, in order
to plan path for rovers under dynamic environments, Value
Propagation Network [17] was designed. However, all these
networks contain the value iteration module in VIN, which
has low training and planning efficiency since it requires
multiple times of iteration inside the network for value
function estimation.

Therefore, in this paper, we design a novel DCNN ar-
chitecture with double branches and non-iteration sturcture
(DB-CNN) for value function estimation, which can achieve
global path planning with higher efficiency and precision.
The main contributions of this paper are summarized as
follows:
• A novel DCNN architecture with double branches (DB-

CNN) is designed to achieve autonomous global path
planning direcly from planetary orbital images.

• We present the global path planning algorithm based on
DB-CNN and illstruate its merits over traditional global
path planning methods.

• Compared with the state-of-the art architecture (VIN),
DB-CNN achieves better performance and faster con-
vergence on planetary global path planning tasks.

• Experimental analysis demonstrates that DB-CNN has
more efficient learning structure and the training time
is alrgely reduced by compared with VIN.

The rest paper is organized as follows. Section II provides
preliminaries of this paper. Section III describes the proposed
DB-CNN for global path planning of planetary rovers.
Experimental results and analysis are illustrated in Section
IV, followed by discussion and conclusions in Section V.

II. PRELIMINARIES

A. Markov Decision Process

A standard MDP for sequential decision making is com-
posed of action space A, state space S, reward fucntion
R : S × A → R, transition probability distribution P :
S × A × S → R and discounted factor γ, where the
policy is denoted by π : S × A → R. At time step t, the
agent can observe its state st from environment and then
choose its action at satisfying at ∼ π(a|st), a ∈ A (or
at = π(st) if the policy is deterministic). After that, its state
will transit into st+1 and the agent will then receive reward
rt = R(st, at) from environment, where st+1 satisfies
st+1 ∼ P (s|st, at), s ∈ S (or st+1 = P (st, at) if the

state trasition process is deterministic). The whole process
is shown in Fig. 2.

Furthermore, denote the discount factor of reward by γ ∈
[0, 1]. The optimal policy is defined as

π∗ = argmax
π

Es0

[+∞∑
i=0

γiri|π, P
]
, (1)

Fig. 2. Markov decision process.

To measure the expected accumulative reward of st and
(st, at), the state value function and the action value function
are defined as

V (st) = E
[+∞∑
i=t

γi−tr(si, ai)|π, P, st
]
, (2)

Q(st, at) = E
[+∞∑
i=t

γi−tr(si, ai)|π, P, st, at
]

= rt + E
[
V (st+1)|π, P, st+1

]
.

(3)

By substituting Eq. (2) into Eq. (1), the optimal policy is
derived as

π∗ = argmax
π

Es0 [V (s0)] = argmax
π

Es0,a0 [Q(s0, a0)].

(4)
However, since both state value function and action value

function are unknown, it is impossible to determine π∗

through Eq. (4) directly. Therefore, value functions of MDP
have to be estimated precisely so that the optimal policy can
be found.

B. Value Function Estimation

Value iteration is an typical method for value function
estimation and then addressing MDP problem [14]. Denote
the estimated state value function at step k by Vk(s), and the
estimated action value function for each state at step k by
Qk(s, a). πk is utilized to represent the deterministic policy
at step k. Then, the value iteration process can be expressed
as

πk(si) = argmax
ai

Qk(si, ai) (i = 0, 1, · · ·), (5)

Vk+1(si) = Qk+1(si, πk(si))

= ri + Esi+1
[Vk(si+1)] (i = 0, 1, · · ·).

(6)

However, since it is difficult to determine the explicit
representation of πk, Qk and Vk (especially when the
dimension of st is high), VIN is designed to approximate

3

this process successfully, which consists of Value Itera-
tion Module. As illustrated in Fig. 3, the value function
layer Vk is stacked with the reward layer Rk and then
filtered by a convolutional layer and a max-pooling layer
recurrently. Furthermore, through VIN, global information
including orbital images and target position can be conveyed
to each state in the final value function layer. Experiments
demonstrate that this architecture performs well in learning
to plan tasks. However, it takes lots of time to train such
a recurrent convolutional neural network especially when
the value of iteration time (K in Fig. 3) becomes large.
Therefore, replacing Value Iteration Module with a more
efficient architecture without losing its excellent global path
planning performance becomes the focus of this paper.

Fig. 3. Value iteration module.

C. Methods for Value Function Estimation

Generally, there exist two learning-based methods for
value function estimation—reinforcement learning [18] and
imitation learning [19]. In reinforcement learning, no prior
knowledge is required and the agent can find the optimal
policy in complex environment by trial and error [20].
However, the training process of reinforcement learning
is computationally inefficient. In Imitation learning, when
the expert dataset is given {(si, yi)}i=Ni=1 , the training pro-
cess transforms into supervised learning with higher data-
efficiency and fitting accuracy.

Considering that the expert dataset {(si, yi)}i=Ni=1 for
global path planning is available (yi ∈ {0, 1, · · · , 7} is the
optimal action at state st and N is the number of samples),
in this paper, imitation learning method is applied to find
the optimal navigation policy.

III. MODEL DESCRIPTION

A. Global Path Planning Model

In this subsection, we formulate the global path planning
problem of planetary rovers into a MDP defined as M =<
S,A, P,R >.

1) State Space S: The state space of M is denoted as
S = {I,G,X}, consisting of I = {It}, G = {(g1t , g2t)}
and X = {(x1t , x2t)}. More precisely, It ∈ RH×W×C
is the planetary orbital image at time step t with height
H , width W , and C channels, (g1t , g

2
t) ∈ {0, 1, · · · , H −

1} × {0, 1, · · · ,W − 1} is the target position for planetary
rover at time step t, and (x1t , x

2
t) ∈ {0, 1, · · · , H − 1} ×

{0, 1, · · · ,W − 1} is rover’s location at time step t.

2) Action Space A: The action space of M is denoted
as A = {at|at ∈ {0, 1, · · · , 7}}, representing eight potential
moving direction of planetary rover (0: east, 1: south, 2:
west, 3: north, 4: southeast, 5: northeast, 6: southwest,
7:northwest).

3) State Transition Function P : Since state transition
process in this MDP is deterministic, it is defined as P :
S × A → S . After taking action at, the state st will
transit into st+1. Notably, for given exploration mission,
the planetary orbital image It and the target position for
planetary rover (g1t , g

2
t) in state st are constant during each

path planning step t while the rover’s position (x1t , x
2
t) in

state st will change at each step.
4) Reward Function R: If the rover reaches the target

point precisely at time step t + 1 after taking action at, it
will obtain a positive reward rt = φ1 (φ1 > 0). Otherwise,
it will get a negative reward rt = φ2 (φ2 < 0). Therefore,
the optimal path from start position to target position will
have the maximal accumulative rewards.

5) Problem Formulation: Denote the DCNN designed for
value function estimation as Fα : st → softmax[Q̂(st, a =
0), · · · , Q̂(st, a = 7)]T , where α represents the parameter
of this DCNN and Q̂(s, a) is the estimated value of Q(s, a).
Then, the policy for global path planning is derived as

at = π(st) = argmax
a

Q̂(st, a). (7)

Given the expert dataset {(si, yi)}i=Ni=1 for global path
planning, we can view this DCNN as a classifier with 8
classes and define the training loss in cross entropy form
with L2 norm [21] as follows

L(α) = − 1

N

N∑
i=1

Yilog(Fα(si)) + λ||α||2, (8)

where N is the number of training samples, Yi is the one-hot
vector form [22] of yi and λ is the hyperparameter adjusting
the effect of L2 norm on the loss function.

By minimizing the loss function L(α), the optimal pa-
rameter of the DCNN can be determined as follows

α∗ = argmin
α
L(α). (9)

Therefore, the global path planning problem is formulated
as designing and training a DCNN for value function esti-
mation, which best fits the given expert dataset.

B. Proposed DB-CNN for Value Function Estimation

In this subsection, we propose a novel deep neural
network architecture for value funciton estimation—DB-
CNN, which is composed of reprocessing layers, branch one
for global feature representation, and branch two for local
feature representation.

1) Reprocessing Layers: The reprocessing layers com-
prise of two convolutional layers (Conv-00, Conv-01), each
of which is followed by one max-pooling layer (Pool-00,
Pool-01). The aim of reprocessing layers is to filter out
noise and compress the original orbit image It into feature

4

Fig. 4. DB-CNN for global path planning.

map I
′

t ∈ RH
′
×W

′
×C

′

(H = l1H
′
,W = l2W

′
). After

that, global path planning becomes area by area with size
l1 × l2 instead of pixel by pixel, the efficiency of which is
improved.

2) Branch One: Branch one consists of one convolutional
layer (Conv-10), three residual convolutional layers (Res-11,
Res-12, Res-13), four max-pooling layers (Pool-10, Pool-
11, Pool-12, Pool-13) and two fully connected layers (Fc-
1, Fc-2). Notably, residual convolutional layer (Fig. 5) is
one kind of convolutional layer proposed in [23], which not
only increases the training accuracy of convolutional neural
networks with deep feature representations, but also makes
them generalize well to testing data. Considering that DB-
CNN is required to represent deep features of orbital images
and achieves high-precision under unknown environments
(testing images), residual convolutional layers are embedded
in DB-CNN. We denote the deep feature extracted from
feature map I

′

t by this branch as f1 ∈ RD (D is dimension
of feature vector f1). f1 can be viewed as a global guidance
to planetary rover, which represents global features related
to all pixels in orbital image It and target position (g1t, g2t).

3) Branch Two: Branch two is composed of two con-
volutional layers (Conv-20, Conv-21) and four residual
convolutional layers (Res-21, Res-22, Res-23, Res-24). We
denote the deep feature extracted from feature map I

′

t by
this branch as f2 ∈ RD (D is dimension of feature vector
f2). Since convolutional neural layers are locally connected
instead of fully connected, f2 can only extract local feature
and estimate the local value function of It, acting as a local
guidance to planetary rovers.

The diagram of DB-CNN is illustrated in Fig. 4, where
Conv, Pool, Res, Fc and S are short for convolutional
layer, max-pooling layer, residual convolution layer, fully-
connected layer and softmax layer respectively. Compared
with VIN, not only the depth of DB-CNN is reduced
significantly, but also both global and local information of
the image is kept and represented effectively. One typical
parameter setting of DB-CNN is demonstrated in TABLE I.

Fig. 5. Residual convolutional layer.

TABLE I
PARAMETER SETTING OF DB-CNN

Reprocessing layers
Conv-00 6× 5× 5 kernels with stride 1
Pool-00 3× 3 kernels with stride 2
Conv-01 12× 4× 4 kernels with stride 1
Pool-01 3× 3 kernels with stride 2

Branch one

Conv-10 20× 5× 5 kernels with stride 1
Pool-10 3× 3 kernels with stride 2
Res-11 20× 3× 3 kernels with stride 1
Pool-11 3× 3 kernels with stride 2
Res-12 20× 3× 3 kernels with stride 1
Pool-12 3× 3 kernels with stride 1
Res-13 20× 3× 3 kernels with stride 1
Pool-13 3× 3 kernels with stride 1

Fc-1 192 nodes
Fc-2 10 nodes

Branch two

Conv-20 20× 5× 5 kernels with stride 1
Res-21 20× 3× 3 kernels with stride 1
Res-22 20× 3× 3 kernels with stride 1
Res-23 20× 3× 3 kernels with stride 1
Res-24 20× 3× 3 kernels with stride 1

Conv-21 10× 3× 3 kernels with stride 1

Output layers
Fc-3 8 nodes
S-1 8 nodes

C. Learning-based Global Path Planning Algorithm

In this subsection, we illustrate the whole learning-based
global path planning algorithm based on DB-CNN, which
works as follows.

5

1) Training Phase: Since the expert dataset for global
path planning is available, the training phase is offline. For
each training step, we randomly choose one batch of data
(line 3) and calculate the loss L(α) according to Eq. (line 4).
Then, we calculate the stochastic gradient ∇αL(α) and
update α through gradient descent with learning rate δ
(line 5). A training epoch ends when all batches of data are
employed to train for one time (line 2). After the number
of training epoch reaches the maximum, the training phase
will stop (line 1).

2) Planning Phase: During the planning phase, satellite
will firstly caputure the intial state s0 including current or-
bital image It, the start position of planetary rover (x10, x

2
0),

and the target position (g10 , g
2
0) (line 1). Taking s0 as input,

DB-CNN will output the estimated value function Fα(s0)
(line 3). Hence, the moving direction for planetary rover
a0 can be determined according to a0 = π(s0) (line 4).
After that, the position of planetary rover is changed into
(x11, x

2
1) and the state can be updated into s1 (line 5). By

repeating this planning step until (x1t , x
2
t) = (g10 , g

2
0) (line 2),

the global path for panetary rover will be planned (as shown
in the right part of Fig. 4).

3) Analysis of this Algorithm: As shown in Fig. 4, given
the initial orbital image I0 and target position of rover
(g10 , g

2
0), DB-CNN can output the estimated Q values of

all positions through one forward calculation, since we can
take the whole local feature map (output of layer Conv-
21) as the partial input of layer Fc-3 directly. That is,
the time and resource cost for calculating the Q value
set {Q̂({I0, (g10 , g20), (x1, x2)}, a)|(x1, x2) ∈ X , a ∈ A}
is approximately equal to the time and resource cost for
calculating a single Q value Q̂({I0, (g10 , g20), (x10, x20)}, a).
Therefore, the planning loop (line 3-5) during online plan-
ning phase only requires computation at the initial step. Most
significantly, when multiple rovers distributed in different
places share the same destination, traditional search algo-
rithms (e.g. A*) have to plan path for each rover one by
one. By contrast, DB-CNN is capable of planning paths for
them simultaneously through one forward calculation, the
efficiency of which is enhanced significantly.

IV. EXPERIMENTS AND ANALYSIS

A. Experimental Settings

We evaluate the planetary global path planning performace
of the proposed DB-CNN on two datasets as follows.

1) Grid maps with obstacles. It is composed of 10000
grid maps with size 64 × 64 and random obstacles, where
0 represents free grid and 1 represents obstacle. Each input
consists of one grid map, one target map, and positions of the
rover. Since grid maps can be viewed as simplified planetary
orbital images, this dataset has been widely used to evaluate
global path planning algorithms.

2) Martian surface images from HiRISE [24]. This
dataset is generated from high-resolution Martian images
captured by real orbit detectors, which consists of 10000
images with size 128 × 128. Each input consists of one

Algorithm 1 Learning-based global path planning algorithm
Training phase (offline)

1: for epoch in 1, · · · ,K do
2: for step in 1, · · · ,M do
3: Randomly select one batch of training data.
4: Calculate the loss L(α) and its gradient ∇αL(α)

based on Eq. (8).
5: Update DB-CNN Fα by α

′ ← α− δ∇αL(α).
6: end for
7: end for

Planning phase (online)
1: Receive the initial state s0 = {I0, (g10 , g20), (x10, x20)}.
2: while (x1t , x

2
t) 6= (g1, g2) do

3: Input st into DB-CNN and output Fα(st).
4: Choose action at based on Fα(st) and Eq. (7).
5: Update the state st into st+1 (Note: ∀t ≥ 0, It = I0,

(g1t , g
2
t) = (g10 , g

2
0)).

6: end while
7: Send global path planning results to planetary rover.

gray image of Martian surface, one edge image generated
by Canny algorithm [25] for edge augmentation, one target
image, and input positions of planetary rovers. We choose
Martian surface images because they exhibit typical features
among explorable planets such as craters with various sizes
(as shown in Fig. 6(b)). The global path planning algorithm
based on DB-CNN can also be extended into other planetary
scenarios.

For each dataset, the outputs of each input are the optimal
moving directions of all given positions, and we randomly
choose 6/7 data for training and the remaining 1/7 data for
testing.

(a) Grid maps

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(b) Grey image

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(c) Edge image

0 5 10 15 20 25 30

0

5

10

15

20

25

30

(d) Target image

Fig. 6. Examples for two dataset.

B. Compared Baseline Architectures

We compare DB-CNN with three CNN baselines as
follows.

6

1) VIN. This is the state-of-the-art deep neural network
structure on path planning with fully observations. The
parameter settings are the same as those in [14] and the
iteration number K in VIN is set as 80.

2) ResNet. This is a classical residual network, which
keeps branch two of DB-CNN while deletes branch one
of DB-CNN. By comparing DB-CNN with ResNet, we
can evaluate whether branch one of DB-CNN enhances the
global path planning accuracy for rovers.

3) DCNN. This is a common CNN comprised of con-
volutional layers, max-pooling layers and fully connected
layers, which is also modified from branch two of DB-CNN.
However, compared with ResNet, it replaces residual layers
with basic convolutional layers.

The metrics we employed to evaluate their performace on
global path planning tasks are global path planning accuracy
and global path planning success rate, where accuracy is
defined as the percentage of optimal moving direction pre-
dicted by them and success rate is defined as the percentage
of safe paths planned by them.

C. Results and Discussions

The training performance of all architectures on two
datasets are shown in Fig. 7 and the final experimental results
are reported in TABEL II.

1) Training Results Analysis: As illustrated in Fig. 7, both
training accuracy and training loss of DB-CNN converge
faster than other baseline CNNs. After 100 training epoches,
DB-CNN achieves both the higher Acc1 and the higher
SR1 on all datasets, outperforming other baselines CNNs
significantly (as shown in TABLE II). Moreover, compared
with the state-of-the-art architecture—VIN, the training time
of DB-CNN is largely reduced, which means that DB-
CNN has more efficient structure that VIN. Notably, the
training time of ResNet and DCNN is smaller than DB-
CNN because they only keep partial structure of DB-CNN.
Therefore, it can be conclude that DB-CNN is a more
accurate and efficient architecture for planning path directly
from planetary orbital images.

2) Testing Results Analysis: As reported in TABLE II,
DB-CNN also keeps its superior global path planning per-
formance on testing data. Remarkably, the planetary orbital
images in testing data are totally different from those in
training data, which demonstrates that DB-CNN is capable
of planning path from unknown planetary orbital images
after training. Since planetary rovers are commonly required
to explore unknown environments, the algorithms also need
to plan path from unknown planetary environments. Hence,
DB-CNN is more effective for planning path from planetary
orbital images in practice compared with other baselines.

Fig. 8 presents some successful path planned by DB-CNN
from Martian orbital images. It can be seen that the paths
for rover avoid craters with varying size precisely under
the guidance of DB-CNN. Furthermore, the trajectories
are nearly optimal. It is noteworthy that prior knowledge
of craters are unknown and DB-CNN has to learn and

TABLE II
ACCURACY AND SUCCESS RATE OF ALL ARCHITECTURES ON TWO

DATASETS.

Dataset Metrics DB-CNN VIN ResNet DCNN

Grid maps

Acc1 93.8% 80.3% 83.6% 80.3%
Acc2 88.5% 80.8% 73.1% 76.4%
SR1 94.7% 47.5% 40.0% 39.9%
SR2 80.2% 49.5% 33.8% 37.5%
ET 25.0s 56.4s 19.9s 19.2s

Martian images

Acc1 96.5% 93.1% 87.4% 13.0%
Acc2 96.5% 93.0% 86.1% 12.7%
SR1 96.3% 83.7% 69.0% 1.1%
SR2 92.3% 83.8% 67.5% 1.3%
ET 53.4s 151.6s 41.0s 40.8s

1 Acc1: global path planning accuracy on training data.
2 Acc2: global path planning accuracy on testing data.
3 SR1: global path planning successful rate on training data.
4 SR2: global path planning successful rate on testing data.
5 ET: the time cost for each training epoch.

Fig. 7. Training performance of all architectures on two datasets.

understand these deep features of original Martian images
through training. Therefore, the performance of DB-CNN is
marvellous.

3) Model Ablation Analysis of DB-CNN: To evaluate
whether DB-CNN could keep its performance after ablating
some of its components, we compare DB-CNN with ResNet
and DCNN, since ResNet ablates branch one of DB-CNN
and DCNN replaces the residual layers on ResNet further.
According to the results in TABLE II, both ResNet and
DCNN perform poor on planetary global path planning
tasks. Specifically, without branch one, DB-CNN will lose
its path planning accuracy on testing data. Moreover, without
residual layers, training DB-CNN will be difficult, making it
almost unable to plan path from original planetary images.
Therefore, it can be concluded that the double branch struc-
ture of DB-CNN indeed contributes to its final performance
on global path planning, and the residual layers can enhance
the training efficieny of DB-CNN.

Furthermore, to explain why DB-CNN works well, we

7

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Fig. 8. Experiments on 128 × 128 Martian images. (Green points are the landing points. Blue points are the target points. Navigation trajectories are
red.)

visualize the value function estimation results of DB-CNN,
VIN and ResNet (we ignore DCNN due to its poor perfor-
mace). Since the final layer of these architectures will output
the estimated Q value (Q̂(s, a)) for each input and rover’s
moving direction for next step, the state value function
V̂ (s, a) can be derived as Eq. (5) and Eq. (6), which is
illustrated in Fig. 9. It can be seen that the state value
functions estimated by DB-CNN are more in coincidence
with the original Martian orbital images compared with
VIN and ResNet. It is clear that risky areas are darker
(smaller value) and the lighter locations (larger value) are
around target points in state value function estimated by
DB-CNN. By contrast, ResNet without global deep features
cannot estimate the value function as precisely as DB-CNN.
VIN also fails to recognize risky areas of Martian images
evidently. Since the paths for planetary rover planned by
these architectures follows the locations with higher value
according to Eq. (5) and Eq. (6), the accuracy and successful
rate of global path planning are determined by the precision
of value function estimation. Therefore, from Fig. 9, we can
find that DB-CNN indeed works better of planetary path
planning tasks than other baseline architectures.

V. CONCLUSIONS

In this paper, we first propose a novel DCNN architecture
with double branches—DB-CNN to path path for planetary
rovers directly from orbital images, which requires no prior
knowledge about the planetary orbital images. Then, we
present the complete global path planning algorithm based
on DB-CNN. Moreover, through comparison experiments
on two global path planning datasets, we demonstrate
that DB-CNN achieves higher precision and efficiency on
global path planning tasks compared with the existing best

architecture—VIN. Finally, we analyze why DB-CNN works
well through model ablation analysis and visualization anal-
ysis. In future research, more effective deep neural network
architecture will be explored and the robustness of the
architecture will be researched further.

VI. ACKNOWLEDGEMENT

This work was supported by the National Key Re-
search and Development Program of China under Grant
2018YFB1003700, the Beijing Natural Science Foundation
under Grant 4161001, the National Natural Science Foun-
dation Projects of International Cooperation and Exchanges
under Grant 61720106010, and by the Foundation for In-
novative Research Groups of the National Natural Science
Foundation of China under Grant 61621063.

REFERENCES

[1] M, Sutoh et al., “The right path: comprehensive path plan-
ning for lunar exploration rovers.” IEEE Robotics & Automa-
tion Magazine, vol. 22, no. 1, pp. 22-23, 2015.

[2] P. Raja, S. Pugazhenthi, “Optimal path planning of mobile
robots: A review.” International Journal of Physical Sciences,
vol. 7, no. 9, pp. 1314-1320, 2012.

[3] T. Lozano-Prez, M. A. Wesley, “An algorithm for planning
collision-free paths among polyhedral obstacles.” Communi-
cations of the ACM, vol. 22, no. 10, pp. 560-570, 1979.

[4] T. Lozano-Perez, “Spatial planning: A configuration ap-
proach.”, IEEE Transactions on Computers, vol. 32, no. 3,
pp. 108-120, 1983.

[5] Q. Guo, Z. Zhang, Y. Xu, “Path-planning of automated
guided vehicle based on improved Dijkstra algorithm.” Chi-
nese Control and Decision Conference, pp. 7138-7143, 2017.

[6] J. Wang et al., “Route planning based on Floyd algorithm
for intelligence transportation system.” IEEE International
Conference on Integration Technology, pp. 544-546, 2007.

8

(a) Original Martian images

(b) Value functions estimated by DB-CNN

0 5 10 15 20 25 30

0

5

10

15

20

25

30
2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

0 5 10 15 20 25 30

0

5

10

15

20

25

30
2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(c) Value functions estimated by ResNet

(d) Value functions estimated by VIN

Fig. 9. Value function estimated by different CNNs.

[7] C.H. Chiang et al., “A comparative study of implementing
Fast Marching Method and A* search for mobile robot path
planning in grid environment: Effect of map resolution.”
IEEE Workshop on Advanced Robotics and Its Social Im-
pacts, pp. 1-6, 2007.

[8] D. Ferguson, A. Stentz, “Using interpolation to improve path
planning: The Field D* algorithm”, Journal of Field Robotics,
vol. 23, no. 2, pp. 79-101, 2006.

[9] C. Zeng, Q. Zhang, X. Wei, “Robotic global path-planning
based modified genetic algorithm and A* algorithm.” Inter-
national Conference on Measuring Technology and Mecha-
tronics Automation, pp. 167-170, 2011.

[10] HI. Kang, B. Lee, K. Kim, “Path planning algorithm using
the particle swarm optimization and the improved Dijkstra
algorithm.” Workshop on Computational Intelligence and
Industrial Application, vol. 17, no. 4, pp.1002-1004, 2009.

[11] M. Brand et al., “Ant colony optimization algorithm for

robot path planning.” International Conference On Computer
Design and Applications, vol. 3, pp. 436-440, 2010.

[12] Y. Bassil, “Neural network model for path-planning of robotic
rover systems’, International Journal of Science and Technol-
ogy, vol. 2, no.2, pp. 94-100, 2012.

[13] J. Gu et al., “Recent advances in convolutional neural
networks.” arXiv preprint arXiv:1512.07108, 2015.

[14] A. Tamar et al., “Value Iteration Networks.” In Advances
in Neural Information Processing Systems, pp. 2146-2154,
2016.

[15] A. Khan, et al., “Memory augmented control networks.”
International Conference on Learning Representations, 2018.

[16] E. Parisotto, R. Salakhutdinov, “Neural Map: sturctured
memory for deep reinforcement learning.” International Con-
ference on Learning Representations, 2018.

[17] N. Nardelli et al., “Value Propagation Networks.” Workshops
on International Conference on Learning Representations,
2018.

[18] R. S. Sutton, A. G. Barto, “Reinforcement learning: An
introduction.” MIT Press, 1998.

[19] A. Attia, S. Dayan, “Global overview of Imitation Learning.”
arXiv preprint arXiv:1801.06503, 2018.

[20] Y. Li, “Deep reinforcement learning: An overview.” arXiv
preprint arXiv:1701.07274, 2017.

[21] I. Goodfellow et al, “Deep Learning.” MIT Press, 2016.
[22] D. Harris et al, “Digital design and computer architecture.”

Chian Machine Press, pp. 770-778, 2014.
[23] K. He et al, “Deep residual learning for image recognition.”

IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 770-778, 2016.

[24] S. A. McEwen et al, “Mars Reconnaissance Orbiter’s High
Resolution Imaging Science Experiment (HiRISE).” Journal
of Geophysical Research Planets, vol. 112, no. E05S02, pp.
1-40, 2007.

[25] J. Canny, “A Computational Approach To Edge Detection.”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 8, no. 6, pp. 679-698, 1986.

http://arxiv.org/abs/1512.07108
http://arxiv.org/abs/1801.06503
http://arxiv.org/abs/1701.07274

	I Introduction
	II Preliminaries
	II-A Markov Decision Process
	II-B Value Function Estimation
	II-C Methods for Value Function Estimation

	III Model Description
	III-A Global Path Planning Model
	III-A1 State Space S
	III-A2 Action Space A
	III-A3 State Transition Function P
	III-A4 Reward Function R
	III-A5 Problem Formulation

	III-B Proposed DB-CNN for Value Function Estimation
	III-B1 Reprocessing Layers
	III-B2 Branch One
	III-B3 Branch Two

	III-C Learning-based Global Path Planning Algorithm
	III-C1 Training Phase
	III-C2 Planning Phase
	III-C3 Analysis of this Algorithm

	IV Experiments and Analysis
	IV-A Experimental Settings
	IV-B Compared Baseline Architectures
	IV-C Results and Discussions
	IV-C1 Training Results Analysis
	IV-C2 Testing Results Analysis
	IV-C3 Model Ablation Analysis of DB-CNN

	V Conclusions
	VI Acknowledgement

