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Abstract

Generative Adversarial Networks (GANs) have achieved great success in gener-

ating realistic images. Most of these are conditional models, although acquisi-

tion of class labels is expensive and time-consuming in practice. To reduce the

dependence on labeled data, we propose an un-conditional generative adversarial

model, called K-Means-GAN (KM-GAN), which incorporates the idea of updat-

ing centers in K-Means into GANs. Specifically, we redesign the framework of

GANs by applying K-Means on the features extracted from the discriminator.

With obtained labels from K-Means, we propose new objective functions from

the perspective of deep metric learning (DML). Distinct from previous works,

the discriminator is treated as a feature extractor rather than a classifier in

KM-GAN, meanwhile utilization of K-Means makes features of the discrimina-

tor more representative. Experiments are conducted on various datasets, such

as MNIST, Fashion-10, CIFAR-10 and CelebA, and show that the quality of

samples generated by KM-GAN is comparable to some conditional generative

adversarial models.
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1. Introduction

Generative models have been an active but challenging research field in tra-

ditional machine learning because of the intractability of many probabilistic

computations arising in approximating maximum likelihood estimation (MLE).

To avoid these computations, Generative Adversarial Network (GAN) [1] greatly

improves the quality of generated images by implicitly modeling the target dis-

tribution via neural networks instead of approximation of intractable likelihood

functions in capturing data distribution. To better utilize the information about

data structure in labeled data, Conditional GAN (CGAN) [2] feeds real labels

along with images and generate more realistic images. Unfortunately, CGAN

and subsequent extensions [3, 4, 5, 6, 7] suffer from a challenge that they require

large amounts of labeled data which is expensive or even impossible to acquire

in practice.

To decrease the dependence of GANs on labeled data, it would be nicer to

find a substitution to replace the role of real labels. It is well known that

representation learning enables machine learning models to get more infor-

mation about data structure and class distribution. A commonly and widely

used method in representation learning is to employ K-Means. Recent works

[8, 9, 10, 11] have improved clustering results through jointly training K-Means

and deep neural networks. By fusing K-Means with the powerful nonlinear

expressiveness of neural networks, they get “K-Means-friendly” [9] representa-

tions, i.e., features that are more representative for clustering tasks. But most

of these neural networks are realized by a pre-trained auto-encoder on large-

scale datasets like ImageNet, which means they still utilize prior knowledge

(real-label) supervision.

Inspired by the success of jointly training of neural networks and K-Means

on clustering tasks, Variational deep embedding (VaDE) [12] and Joint Gen-

erative MomentMatching Network (JGMMN) [13] instead combine generative

models with clustering methods and achieve competitive results not only on

clustering, but also on generating tasks. More specifically, VaDE proposes con-
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tinuous clustering objectives for Variational Autoencoder (VAE) [14] and JG-

MMN augments original loss functions of Generative Moment Matching Net-

works (GMMN) [15] with regularization terms to constrain latent variables. On

the other hand, authors of [16] perform K-Means on features of the top layer of

discriminators in GAN and Info-GAN [17] respectively and show that features

of Info-GAN are obviously more “K-Means-friendly” than regular GAN. This

implies that constrains on the latent space of GANs induce more representative

features. Furthermore, extensions of GANs [18, 19] give state-of-the-art results

on clustering by fusing GANs with clustering methods. Although these works

have achieved exciting results on clustering results by combining advantages of

GANs and clustering method, utilizing clustering methods to improve the qual-

ity of generating images of GANs also deserves more attentions. This brings the

main motivation of our work: Can we re-design the framework of GANs

in an un-conditional manner and utilize the capability of K-Means on

representation learning to replace the role of real labels?

In order to make use of clustering labels of K-Means to direct the gener-

ating process as real labels in GANs, we consider operating K-Means on the

top layer of the discriminator. But the main difficulty is how to deal with the

un-differentiable objective of K-Means using Stochastic Gradient Decent (SGD)

[20]. Deep Embedded Clustering (DEC) [8] straightforwardly separates the

optimization into updating centers and network parameters successively. An-

other CNN-based method [21] also adopts this technique and further proposes

a feature drift compensation scheme to mitigate the drift error caused differ-

ent optimization direction of K-Means and regular loss functions. Then Deep

Clustering Network (DCN) [9] introduces a defined “pretext” objective, a math-

ematical combination of reconstruction loss and K-Means clustering objective,

and optimize K-means with back-propagation. Quite recently, Deep K-Means

[22] proposes a continuous reparametrization of the objective of K-Means clus-

tering to optimize it with SGD.

Motivated by these works, we propose an un-conditional generative adver-

sarial model, named K-Means-GAN (KM-GAN), which embeds the idea of up-
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dating centroids of K-means into the framework of GANs. As the illustration

of the framework of our model in Fig. 1, it conducts the discriminator as a non-

linear feature extractor and utilizes K-Means clustering algorithm for getting

more representative features. Further, we employ obtained results of K-Means

instead of one-hot real labels to direct the generator in the generating process.

Then we propose objectives containing clustering labels from the perspective of

deep metric learning (DML) to let the optimization direction of K-Means agree

with the generating process. The specific optimization process includes three

terms to alternately optimize, of which the “center-loss” term tries to pull the

corresponding centers of real and generated images closer. Furthermore, the

objective of the discriminator is to minimize the distance between real samples

and their corresponding centers and maximize the distance between fake sam-

ples and their corresponding real centers. Meanwhile, the loss function of the

generator, which is interpreted as an adversarial term, attempts to approximate

the target distribution by decreasing the distance between generated samples

and their corresponding real centers.

··
· ··
· 

··
· 

Feature Extractor(Discriminator MLP/CNN)

··
· 

···
 

···
 

··
· 

··
· 

Generator(MLP/CNN)

Feature Clustering(K-Means)

Input Pictures

The First Forward to Get Clustering Label

Noise

The Second Forward to Get the Loss
Loss Function

Clustering Label

Figure 1: The framework of KM-GAN. Notice that the first forward pass is to get the clustering

labels. In the second forward pass, the clustering labels and data are feeded to back-propagate

the obtained loss functions.

Contribution To the best of our knowledge, our work is the first to at-

tempt to combine training unsupervised K-Means algorithm with GAN model

4



simultaneously through SGD for generating tasks. Our main contributions are

summarized as follows:

• We propose an un-conditional implementation of GANs, called K-Means-

GAN (KM-GAN), and equip it with new objective functions from the

perspective of DML.

• We incorporate GANs with the idea of traditional K-Means and utilize

obtained labels, replacing the role of real labels, to direct the generating

process and get more representative features.

• We empirically show that KM-GAN is capable to generate diverse samples

and the quality of generated images on several real datasets is competitive

to that of conditional GANs.

2. Background

In this section, we introduce notations and briefly review preliminary knowl-

edge, including the framework of GANs and K-Means. The notations provided

in this section will also be used in subsequent sections.

2.1. Notations

Throughout the paper, we use b for the batch size, D for the discriminator,

G for the generator and k for the pre-defined number of classes.

2.2. Framework of GANs

GAN [1] consists of two components: a discriminator D and a generator

G which are both realized by the neural networks. The main idea is actually

an adversarial training procedure between them. Throughout the adversarial

training, the generator G maps samples from a prior noise distribution, such

as gaussian distribution, to the data space while the discriminator D estimates

the probability that its inputs coming from real data distribution rather than

generated distribution.
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More specifically, given a noise distribution Pz and training samples x ∼ Px,

the adversarial training contains two steps. Firstly, the generator maps noises z

from Pz toG(z) and update parameters of the discriminator while fix parameters

of the generator by optimizing the objective of D as follows:

min
D

Ex∼px [logD(x)] + Ez∼pz [log(1−D(G(z)))]. (1)

Then fix parameters of D and update parameters of G to approximate target

distribution by optimizing the loss function of G as follows:

max
G

Ez∼pz [log(1−D(G(z)))]. (2)

In order to generate more realistic images, CGANs [2] implements GANs

with one-hot real labels, which provides supplementary information of class dis-

tribution for generating process. This method qualitatively and quantitatively

improve the performance in generating tasks. Recent works [23, 24] then extend

VAE and GMMN based on this technique for more realistic images. Further-

more, Deep Convolutional GAN (DCGAN) [4] designs a stable architecture

utilizing convolutional neural networks and raises several tricks to stabilize the

adversarial training process. On the other hand, lots of works [5, 3, 25, 26, 27]

propose objectives for GANs to improve stability and image quality.

2.3. K-Means

K-Means [28] is a traditional clustering method used to group a set of given

data points {xi}i=1,2,...,N ∈ Rm into k clusters, where k is a pre-defined number.

After randomly choosing k points of data samples as initialized center, the main

algorithm is composed of two steps. The first is to assign clustering labels to

each point according to the Euclidean distance between the point and current

the k centers. Then update new centers as the weighted average of points in

each class. The algorithm stops until each center do no change. Formally, the

cost function is as follows:

min
M∈Rm∗k,si∈Rk

N∑
i=1

‖xi −Msi‖22

s.t. sij ∈ {0, 1},1T si = 1,∀i, j,

(3)
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where si is the one-hot clustering label of data point xi, sij denotes the jth

element of vector si and M is a matrix, whose k columns correspond to the k

centers.

As we can see from this formula, the performance of K-Means depends on

both features and initialized centers. So K-Means++ [29] is proposed to initial-

ize centers with a better procedure. Extensions [21, 22, 16] adopt the procedure

and achieve surprising results. Then to deal with large-scale datasets and online

scenarios, Minibatch K-Means [30] proposes to use a batch of samples to update

centers in each iteration.

3. Proposed Method

As mentioned before, we consider re-designing the framework of GANs and

utilize results of K-means to replace the role of one-hot real labels in a un-

conditional manner. So we treat the discriminator as a feature extractor instead

of a classifier and operate K-Means on extracted features to produce clustering

labels which are viewed as substitution of real labels. With the obtained features

and labels, we propose our objectives from the perspective of DML to carry out

adversarial learning. More importantly, we come up with a “center-loss” term

to connect the optimization of adversarial learning and centers updating in K-

Means. In the following subsections, we first introduce proposed objectives and

optimization procedure in regular K-Means-GAN (KM-GAN). Then generalize

it with regularization terms in order to deal with more general datasets.

3.1. Regular KM-GAN

We first introduce the “center-loss” term since it fills the gap between two

different optimization procedures of adversarial learning and K-Means, which is

important for the whole algorithm to work effectively. The term is interpreted

as a role to decrease the distance between corresponding centers of real and
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generated images. Formally, the formula is as follows:

min
D,G

Lcenter = ‖
k∑

m=1

cm +
∑jcm
j=1D(xnj,cm

)

1 + jcm
−

k∑
m=1

ĉm +
∑jĉm
j=1D(G(znj,ĉm

))

1 + jĉm
‖1

s.t. Lcenter ≥ dround,

(4)

where k is the pre-defined number of classes, cm (ĉm) is the m-th center of

features of real data (generated data) updated after last iteration, jcm (jĉm) is

the number of features belonging to the center cm (ĉm), nj,cm (nj,ĉm) denotes

the position of corresponding feature of real data (generated data) that is in

class m according to results of K-Means in the first forward pass and dround

is a hyperparameter needed to tune according to different datasets to avoid

degeneration.

Indeed, Lcenter calculates the difference of second order statistical magni-

tude, i.e., the average of k centers, between features of real and generated im-

ages. The intension is to keep centers of synthesized data not far away from

that of real data and accelerate distribution approximation. The exploration of

minimizing statistical magnitudes is motivated by improvements of recent works

[31, 5, 15] on classification and generation tasks. Especially, GMMN success-

fully approximates data distribution through minimizing all orders of statistics,

which is realized by the Gaussian kernel. So we intuitively utilize the second or-

der statistics and reuse the results of K-Means to propose the continuous term.

Experiments further show that KM-GAN fails to generate meaningful images

even on MNIST without “center-loss” term.

Although the “center-loss” term is proposed to approximate the target dis-

tribution, we still need objective functions for the discriminator and the gener-

ator to finish the regular adversarial training. Firstly, we define the objective

function of discriminator as follows:

min
D

LD = ‖D(x)− Creal‖2 − ‖D(G(z))− Cgen‖2, (5)

where Creal (Cgen), computed based on real centers, consists of b center pieces

for the pre-defined batch size b. Each of these center pieces is the centroid of

8



the real class that the feature piece in the corresponding position of this batch

belongs to. It’s natural to see that LD penalizes the distance between each

class of real data and their corresponding k centers. The interpretation is to

minimize intra-class distance of each class in the feature space of real data from

the viewpoint of DML. On the contrary, LD maximizes the distance between

generated data and centers of their corresponding real classes to discriminate

the counterfeit from real data.

On the other hand, the corresponding objective function of the generator is

defined as follows:

min
G

LG = ‖D(G(z))− Cgen‖2. (6)

Obviously, the effect of the objective is to compete with the discriminator

to approximate the target distribution. When decreasing the distance between

synthesized data and centers of their corresponding k real classes, the features

of generated images are distributed around each real center like features of real

data. Then with the impact of “center-loss” to pull centers of real and fake data

close, fake data distribution would approximate target distribution finally. The

term also plays a role as an adversarial term in the framework of KM-GAN.

3.2. Three-Step Alternating Optimization

Optimizing network parameters of GANs and updating centers step by step

is straightforward as in DEC [8]. But the different directions of these two steps

make the optimization more difficult. To deal with this issue, we utilize “center-

loss” term to bridge the gap. Especially, the “center-loss” term reuses results

of K-Means and obtained features from the discriminator, which builds a con-

nection between these two steps. In the specific optimization, we first solve the

subproblem of adversarial learning, i.e., updating parameters of the discrimi-

nator and generator, respectively. Then inspired by alternating optimization

in [9], we utilize “center-loss” to re-update parameters of D and G via SGD.

With current parameters, we obtain centers in feature space at last by Equa-

tion 3. The concretely three-step alternating optimization procedure is shown
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Algorithm 1 Training algorithm for regular KM-GAN

Input: Real images X, noise distributionPZ, pre-defined number of classes k,

number of iterations T , batch size b and hyper-parameters of Adam α, β1, β2

Output: Generated samples G(z)

Initialize parameters of D and G networks

Initialize k real centers of mapped features D(X) by K-Means++

for t = 1 : T do

Sample a batch {xi}bi=1 from real data X

Sample a batch {zi}bi=1 from noise distribution PZ

Obtain features {D(xi)}bi=1 and {D(G(zi))}bi=1

Obtain clustering labels according to Euclidean distance with current k

centers

gradθd = OθdLD

θd =Adam(gradθd , θd, α, β1, β2)

gradθg = OθgLG

θg =Adam(gradθg , θg, α, β1, β2)

gradθd,θg = Oθd,θgLcenter

θd, θg =Adam(gradθd,θg , θd, θg, α, β1, β2)

Update centers via K-Means objective in Equation 3

end for
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in Algorithm 1.

In the described algorithm, we conduct K-Means++ technique to better

initialize centers of features. In addition, since the optimization of network

parameters employs Adam [20] and depends on the pre-defined batch size, it’s

natural to come up with Minibatch K-Means. With this procedure, the “center-

loss” further plays a role to mitigate the error caused different optimization

direction of K-Means and regular loss functions in each iteration of a whole

epoch similar to [21].

3.3. Generalized KM-GAN

Although common used datasets have obvious criterions to cluster, such as

MNIST [32] and CIFAR-10 [33]. However, there exist datasets that do not have

these obvious criterions. For example, CelebA [34] and LFW [35] contains too

many personalities and images for each personality are not enough for generation

tasks. It’s even hard to find a suitable number for the pre-defined k. In this

case, operating K-Means to cluster features is too difficult. To handle with

such problem, we generalize regular KM-GAN with two regularization terms.

They act as constraints [5] on the whole class of real and fake images. Before

explaining the constraints, we define two necessary terms Lintra and Linter used

to generalize KM-GAN as follows:

Lintra =
∑

xi,xj∈Bd

‖D(xi)−D(xj)‖1 +
∑

G(zi),G(zj)∈Bg

‖D(G(zi))−D(G(zj))‖1,

Linter =
∑

xi∈Bd,G(zj)∈Bg

‖D(xi)−D(G(zj)))‖1,

where Bd and Bg denote the corresponding batch of real samples {xi}bi=1 and

generated samples {G(zi)}bi=1, respectively.

Then the objective functions of the discriminator and the generator become:

LD = min
θD
‖D(X)− Creal‖2 − ‖D(G(z))− Cgen‖2 + λ ∗ (Lintra − Linter),

LG = min
θG
‖D(G(z))− Cgen‖2 + λ ∗ Linter.

(7)
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In the case described above, the objective functions of regular KM-GAN

are not effective enough since they are dependent on k. However these two

terms, one decreases intra-class distances of the whole real and fake data in

feature space while the other minimizes inter-class distance to approximate data

distribution, help to approximate the data distribution as a whole class. With

above regularization terms, experimental results also show that the final centers

reduce to the same one whatever the pre-defined k is (such as k = 10 or k =

20), which coincides with the goal of these regularization terms. This implies

that KM-GAN could adapt to more general scenarios with them. We use the

hyperparameter λ in experiments to balance the regular loss functions and these

two regularization terms.

4. Experiments

In this section, we first conduct experiments on a synthetic dataset to show

the capability of the discriminator of KM-GAN to represent features. Then

we qualitatively and quantitatively show that KM-GAN is able to generate

realistic and diverse images on real-world datasets including MNIST, Fashion-

10, CIFAR-10 and CelebA. Details about these datasets are shown in Table ??.

Note that the hyperparameter λ is set to 0 in experiments except CelebA, where

it is set to 5.

Dataset Numbers of Images Feature Dimensions Classes

Synthesis 10,000 100 4

MNIST 70,000 28×28 10

Fashion-10 70,000 28×28 10

CIFAR-10 70,000 32×32×3 10

CelebA 202,599 64×64×3 No

Table 1: Details of synthetic data and real-world datasets.
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(a) Real data (b) Epoch 0 (c) Epoch 50 (d) Epoch 150 (e) Epoch 200

Figure 2: Subfigure (a) is the visualization of intrinsic 2-dimension structure of synthetic data.

Subfigures (b)-(e) are visualization of features on the top layer of corresponding discrimina-

tors of DCGAN and KM-GAN in the training process on synthetic dataset. The four kinds

of colored points represent different categories. Obviously, the features of KM-GAN could

separate most of them while that of DCGAN is ineffective.

4.1. KM-GAN on Synthetic Data

As we can see from loss functions of KM-GAN, features of the discriminator

play an important role not only on the objective function of the discriminator

itself, but also on that of the generator. To demonstrate that features of KM-

GAN are really representative, we compare with that of DCGAN which shows its

capability to do representation learning by conducting classification experiments

using its trained discriminator. The obtained features of KM-GAN and DCGAN

on a synthetic dataset in the training process are shown in Fig. 2.

The synthetic dataset consists of 10, 000 points that belong to R100 and has

“K-Means-friendly” [9] structure in a two-dimensional domain which we could

not observe. In fact, we first choose four two-dimensional gaussian distributions

with different means and covariance matrices as in Fig. 2a. Then sample 2, 500

points from each distribution and map them into R100 through a mapping func-

tionM, which is realized by a non-linear neural network showed in Table 4.1. In

this experiment, we set dround as 0, and the network structures of DCGAN[1]

and KM-GAN are the same and both shown in Table 4.1. The visualization

of the features learned in the training process by discriminators of these two

models are showed in Fig. 2. Compared with features of DCGAN, those of
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our proposed KM-GAN are obviously more representative to show the intrinsic

structure although they are both capable to generate high-quality images on

real-world datasets.

Mapping function M Generator Discriminator

Input {hi}ni=1 ∈ R2 Input {zi}ni=1 ∈ R100 Input {xi}ni=1 ∈ R100

FC 10 Sigmoid FC 10 ReLU BN FC 100 ReLU BN

FC 100 Sigmoid FC 50 ReLU BN FC 50 ReLU BN

{xi}ni=1 ∈ R100 FC 100 ReLU BN FC 10 ReLU BN

{G(zi)}ni=1 ∈ R100 FC 2 Sigmoid

{D(xi), D(G(zi))}ni=1 ∈ R2

Table 2: Architectures of M, generator and discriminator.

4.2. KM-GAN on MNIST

MNIST [32] dataset has 70, 000 gray images of handwritten digits of size

28 × 28. We first conduct experiments to compare KM-GAN with its reduced

version which operates K-Means in pixel space as introduced in Algorithm 2.

Then we improve KM-GAN with weight-clipping which stabilizes the training

process. The network structures of KM-GAN for training MNIST are the same

as that of DCGAN and hyperparameter dround is set as 10, 000.

4.2.1. Feature Space vs. Original Space

To demonstrate the effect of carrying out K-Means in feature space rather

than pixel space, we compare KM-GAN with reduced KM-GAN, in which we

operate K-Means in pixel space and cluster original data. Indeed, computations

in K-Means appear to increase quickly as the dimensionality of data increases

when experimenting with reduced KM-GAN. However, the capability of dimen-

sionality reduction of KM-GAN avoids such computational difficulties. In the

following, we further qualitatively show the advantage of operating K-Means on

latent space as exhibited images in Fig. 3.

From images in Fig. 3b and Fig. 3c, it is obvious that the quality of

generated digits is significantly better when clustering is operated in the feature
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Algorithm 2 Training algorithm for reduced KM-GAN

Input: Real Images X, noise distributionPZ, pre-defined number of classes k,

number of iterations T , batch size b and hyper-parameters of Adam α, β1, β2

Output: Generated samples G(z)

Initialize k real centers C̃ of data X by K-Means++

Initialize parameters of D and G networks

for t = 1 : T do

Sample a batch {xi}bi=1 from real data X

Sample a batch {zi}bi=1 from noise distribution PZ

Obtain features {D(xi)}bi=1 and {D(G(zi))}bi=1

Obtain clustering labels according to Euclidean distance with current k

centers

L̃center = ‖D(C̃real)−D(C̃gen)‖1
gradθd,θg = Oθd,θg L̃center

θd, θg =Adam(gradθd,θg , θd, θg, α, β1, β2)

L̃D = ‖D(x)−D(C̃real)‖2
gradθd = OθdL̃D

θd =Adam(gradθd , θd, α, β1, β2)

L̃G = ‖D(G(z))−D(C̃gen)‖2
gradθg = Oθg L̃G

θg =Adam(gradθg , θg, α, β1, β2)

Update centers in original pixel space via K-Means objective in Equation 3

end for
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(a) Real data (b) Reduced KM-GAN (c) KM-GAN

Figure 3: Comparison of generated samples of KM-GAN and reduced version of KM-GAN on

MNIST dataset.

space. Regular KM-GAN successfully generates realistic handwritten digits not

only in different classes and angles while reduced KM-GAN even suffers mode

collapse, i.e., most of generated images are similar or identical.

4.2.2. Improvement on KM-GAN

Although KM-GAN is proven to be capable to generate realistic and diverse

images, it still fails to generate images sometimes. So we utilize a common

technique called weight clipping to constrain parameters of the discriminator

(feature extractor). Specifically, we clamp the weights of D to a fixed box

so that it could only output values in a certain range. The technique further

guarantees the property that points close in pixel space are not far away from

each other after mapped into feature space.

As synthesized images shown in Fig. 4a and Fig. 4b, the performance of KM-

GAN without weight clipping is already competitive with DCGAN on MNIST

dataset. This demonstrates that the utilization of clustering labels successfully

replaces the role of real labels to direct generating process and encourages us

to pay more attention to un-conditional generative models. What’s more, to

stabilize the three-step alternating optimization process, we equip KM-GAN

with weight clipping and the clipping threshold is set to [−1, 1]. The synthesized

images shown in Fig. 4c are competitive or even better than KM-GAN without
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(a) DCGAN (b) KM-GAN (c) KM-GAN with weight

clipping

Figure 4: Subfigures (a) and (b) compare generated images of DCGAN and KM-GAN on

MNIST dataset, and subfigure (c) shows generated images of KM-GAN improved with weight

clipping.

weight clipping.

4.3. KM-GAN on Fashion-10

Fashion-10 dataset, consisting of various types of more complicated fashion

products rather than handwritten digits, has the same number of images as

MNIST and the size of each image is also 28×28. So we use the same architecture

as used on MNIST to examine KM-GAN on Fashion-10. The hyperparameter

dround is also the same as on MNIST. From the experimental results shown

in Fig. 5a and Fig. 5b, the quality of synthesized images of KM-GAN is

comparable to that of DCGAN.

To further quantitatively show that our proposed method is also capable to

generate diverse images without the help of one-hot real labels, we train a three-

layer convolutional classifier on Fashion-10 separately (97% accuracy on training

set and 91% on test set) and use the classifier to classify 5, 000 synthesized

images of KM-GAN and DCGAN. The result of the frequency of each class is

shown in Fig. 5c. Indeed, since Fashion-10 equally contains images of each

class, conditional models easily generate images equally for each class with the

help of real labels. So we compare with results of DCGAN to further show that

KM-GAN is also capable achieve this. Specifically, in the frequency chart of
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(a) DCGAN (b) KM-GAN (c) Frequency chart

Figure 5: Evaluation of synthesized images of KM-GAN on Fashion-10 dataset. Subfigures (a)

and (b) exhibit a random batch of generated images of DCGAN and KM-GAN, and subfigure

(c) shows the distributions of generated images of DCGAN and KM-GAN, respectively.

generated images, numbers 0 ∼ 9 denote 10 classes of the dataset and two colors,

“blue” and “gray”, represent results of KM-GAN and DCGAN, respectively.

From the class distributions, most classes are generated with probability close

to 10% by KM-GAN except the class “shirts”, which is under-represented with

7.0%. We infer this is because that “shirts” are very similar to “T-shirts” and

“pullovers”.

4.4. KM-GAN on CIFAR-10

CIFAR-10 [33] is a dataset with 60, 000 RGB images of size 32 × 32 in 10

classes. There are 6, 000 images in each class with 5, 000 for training and 1, 000

for testing. All these images are used here to train KM-GAN. The network struc-

tures are shown in Table 3 and we set dround to 20, 000 and clipping threshold

to [−0.01, 0.01].

We first evaluate the generated images of KM-GAN on CIFAR-10 dataset

and show the experimental results in Fig. 6. To demonstrate the capability of

our proposed objective functions, we compare with MBGAN which also proposes

different objective functions from the perspective of DML. Results shows that

synthesized images of KM-GAN are obviously more realistic and meaningful.

We further compare with DCGAN and there is no visual difference between the

quality of synthesized images of these two models, which again demonstrates
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the effectiveness of KM-GAN.

Table 3: Architectures of generator and discriminator on CIFAR-10.

Generator Discriminator

Input {zi}ni=1 ∈ R100 Input {xi}ni=1 ∈ R64×64×3

FC 4× 4× 512 BN ReLU 5× 5 Conv

64 stride 2 ReLU

5× 5 Upconv 5× 5 Conv

256 stride 2 BN ReLU 128 stride 2 BN ReLU

5× 5 Upconv 5× 5 Conv

128 stride 2 BN ReLU 256 stride 2 BN ReLU

5× 5 Upconv 5× 5 Conv

64 stride 2 BN ReLU 512 stride 2 BN ReLU

5× 5 Upconv FC 4096 BN ReLU

3 Stride 2 Sigmoid

FC 100 BN ReLU

Since we use clustering labels of K-Means to replace one-hot real labels in

KM-GAN, i.e., a purely un-supervised training, we quantitatively evaluate the

diversity of images synthesized by our model with another index called inception

score [36] on CIFAR-10 dataset. The index applies Inception model [37] to every

generated image and computes the following metric:

IS(G(z)) = exp(EzKL(p(y|G(z))‖p(y))). (8)

Indeed, the main idea of Equation 8 is that diverse generated images which

contain meaningful objects are supposed to have a conditional label distribution

p(y|G(z)) with low entropy and a marginal distribution
∫
p(y|G(z))dz with high

entropy. As in Table 4, we report inception scores of both conditional and un-

conditional models to characterize the performance of KM-GAN. Specifically,

WGAN, Improved GANs, and MIX+WGAN are trained without feeding real

labels, while ALI is itself an un-conditional model utilizing an auto-encoder to

assist the generator to approximate target distribution. Obviously, KM-GAN
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performs much better than these models which demonstrates the effectiveness

of KM-GAN. We then compare with two conditional methods based on DML,

MLGAN and MBGAN. KM-GAN also works better than than them. Further-

more, we compare with DCGAN, a very stable and common used conditional

method in the research field of GANs. Results show that KM-GAN are compa-

rable to DCGAN just like from above synthesized images. We infer that this is

because synthesized images of KM-GAN shown in Fig. 6c are more meaningful

while the backgrounds of generated images of DCGAN shown in Fig. 6b are

more clear.

Table 4: Inception Score on CIFAR-10 Dataset.

Model Inception Score

MBGAN 4.27 ± 0.07

Conditional MLGAN-clipping [5] 5.23 ± 0.29

Models DCGAN 5.37 ± 0.06

MIX + WGAN [38] 4.04 ± 0.07

Un-conditional Improved GANs [36] 4.36 ± 0.04

Models ALI [39] (from [40]) 4.79

Wasserstein GANs [25] (from [38]) 3.82 ± 0.06

KM−GAN 5.39 ± 0.05

(a) MBGAN (b) DCGAN (c) KM-GAN

Figure 6: Comparison of generated samples of MBGAN, DCGAN and KM-GAN on CIFAR-

10.
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4.5. KM-GAN on CelebA

CelebA [34], as a large-scale face dataset, contains more than 200, 000 RGB

face images from 10, 177 celebrity identities, and there are 40 binary attributes

and 5 landmarks for each image. In this experiment, we crop images into 64×64,

and the network structures are shown in Table 5. The hyperparameters dround

and clipping threshold are set the same as in CIFAR-10 dataset. Besides, we

set λ set as 5 since we could not find an appropriate k for this CelebA while

other datasets have determinate categories. Following are samples generated by

DCGAN and KM-GAN, respectively.

Table 5: Architectures of generator and discriminator on CelebA.

Generator Discriminator

Input {zi}ni=1 ∈ R100 Input {xi}ni=1 ∈ R64×64×3

FC 4× 4× 512 BN ReLU 5× 5 Conv

64 stride 2 BN ReLU

5× 5 Upconv 5× 5 Conv

256 stride 2 BN ReLU 128 stride 2 BN ReLU

5× 5 Upconv 5× 5 Conv

128 stride 2 BN ReLU 256 stride 2 BN ReLU

5× 5 Upconv 5× 5 Conv

128 stride 2 BN ReLU 512 stride 2 BN ReLU

5× 5 Upconv FC 100 Sigmoid

3 Stride 2 Tanh

From results in Fig. 7, we see that KM-GAN also works well on CelebA.

Then we interpolate synthesized images to demonstrate the generalization ca-

pability of KM-GAN rather than only generating the training face images. We

first interpolate z ∈ R100 and then map interpolated z with the generator.

The results are as shown in Fig. 8. The leftmost and rightmost images are

mapped from z0 and z1, respectively. The other images are generated from

zβ = βz0 + (1− β)z1 (β ∈ [0, 1]), i.e., interpolations of corresponding noise vec-

tors. As examples in Fig. 8, generated images change smoothly from leftmost
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(a) DCGAN (b) KM-GAN

Figure 7: Comparison of generated samples of DCGAN and KM-GAN on CelebA.

to rightmost. Indeed, we choose features of faces, including hair color, angles

of faces, with or without eyeglasses and some other special features, to exhibit

the continuous change clearly. Especially, on the first row, the face of a smiling

woman with golden hair transitions to the face of a seriously man with dark hair

slowly. In addition, on the second row, the face of a woman with dark hair and

close mouth changes to the face of a smiling woman with golden hair. These

interpolations indicate that our proposed KM-GAN is able to generate images

continuously instead of only memorizing training data.
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Figure 8: Interpolations of generated images on CelebA dataset.

5. Conclusion

In this paper, we propose an un-conditional extension of GANs, called KM-

GAN, by fusing with the idea of K-Means and utilizing the clustering results

to propose objective functions that direct the generating process. The purpose

is to replace the role of one-hot real labels with the clustering results, which

generalizes GANs to applications where real labels are expensive or impossible

to obtain. In addition, we conduct experiments on several real-world datasets

to demonstrate that KM-GAN is really capable to generate realistic and diverse

images without mode collapse. In the future, we would further pay attention

to proving the positive correlation between high-quality synthesized images and

high clustering accuracy and utilize the relationship to improve performance of

both tasks.
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