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Abstract

Prostate cancer is the most common malignant tumors in men but prostate

Magnetic Resonance Imaging (MRI) analysis remains challenging. Besides

∗Corresponding author.
E-mail address: leonardo.rundo@disco.unimib.it; lr495@cam.ac.uk (L. Rundo)

†These authors contributed equally.

Preprint submitted to Neurocomputing July 18, 2019

ar
X

iv
:1

90
4.

08
25

4v
2 

 [
cs

.C
V

] 
 1

7 
Ju

l 2
01

9



whole prostate gland segmentation, the capability to differentiate between

the blurry boundary of the Central Gland (CG) and Peripheral Zone (PZ)

can lead to differential diagnosis, since the frequency and severity of tu-

mors differ in these regions. To tackle the prostate zonal segmentation task,

we propose a novel Convolutional Neural Network (CNN), called USE-Net,

which incorporates Squeeze-and-Excitation (SE) blocks into U-Net, i.e., one

of the most effective CNNs in biomedical image segmentation. Especially, the

SE blocks are added after every Encoder (Enc USE-Net) or Encoder-Decoder

block (Enc-Dec USE-Net). This study evaluates the generalization ability of

CNN-based architectures on three T2-weighted MRI datasets, each one con-

sisting of a different number of patients and heterogeneous image character-

istics, collected by different institutions. The following mixed scheme is used

for training/testing: (i) training on either each individual dataset or multiple

prostate MRI datasets and (ii) testing on all three datasets with all possible

training/testing combinations. USE-Net is compared against three state-

of-the-art CNN-based architectures (i.e., U-Net, pix2pix, and Mixed-Scale

Dense Network), along with a semi-automatic continuous max-flow model.

The results show that training on the union of the datasets generally out-

performs training on each dataset separately, allowing for both intra-/cross-

dataset generalization. Enc USE-Net shows good overall generalization un-

der any training condition, while Enc-Dec USE-Net remarkably outperforms

the other methods when trained on all datasets. These findings reveal that

the SE blocks’ adaptive feature recalibration provides excellent cross-dataset

generalization when testing is performed on samples of the datasets used dur-

ing training. Therefore, we should consider multi-dataset training and SE
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blocks together as mutually indispensable methods to draw out each other’s

full potential. In conclusion, adaptive mechanisms (e.g., feature recalibra-

tion) may be a valuable solution in medical imaging applications involving

multi-institutional settings.

Keywords: Prostate zonal segmentation, Prostate cancer, Anatomical

MRI, Convolutional neural networks, USE-Net, Cross-dataset generalization

1. Introduction

According to the American Cancer Society, in 2019 the Prostate Cancer

(PCa) is expected to be the most common malignant tumor with the second

highest mortality for American males [1]. Given a clinical context, several

imaging modalities can be used for PCa diagnosis, such as Transrectal Ul-

trasound (TRUS), Computed Tomography (CT), and Magnetic Resonance

Imaging (MRI). For an in-depth investigation, structural T1-weighted (T1w)

and T2-weighted (T2w) MRI sequences can be combined with the functional

information from Dynamic Contrast Enhanced MRI (DCE-MRI), Diffusion

Weighted Imaging (DWI), and Magnetic Resonance Spectroscopic Imaging

(MRSI) [2]. Recent advancements in MRI scanners, especially those related

to magnetic field strengths higher than 1.5T, did not decrease the effect of

magnetic susceptibility artifacts on prostate MR images, even though the

shift from 1.5T to 3T theoretically leads to a doubled Signal-to-Noise Ratio

(SNR) [3]. However, 3T MRI scanners permitted to obtain high-quality im-

ages with less invasive procedures compared with 1.5T, thanks to a pelvic

coil that reduces prostate gland compression/deformation [4, 5].

Therefore, MRI plays a decisive role in PCa diagnosis and disease mon-
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itoring (even in an advanced status [6]), revealing the internal prostatic

anatomy, prostatic margins, and PCa extent [7]. According to the zonal

compartment system proposed by McNeal, the prostate Whole Gland (WG)

can be partitioned into the Central Gland (CG) and Peripheral Zone (PZ) [8].

In prostate imaging, T2w MRI serves as the principal sequence [9], thanks

to its high resolution that enables to differentiate the hyper-intense PZ and

hypo-intense CG in young male subjects [10].

Besides manual detection/delineation of the WG and PCa on MR im-

ages, distinguishing between the CG and PZ is clinically essential, since

the frequency and severity of tumors differ in these regions [11, 12]. As

a matter of fact, the PZ harbors 70-80% of PCa and represents a target

for prostate biopsy [13]. Furthermore, the PZ volume ratio (i.e., the PZ

volume divided by the WG volume) can be considered for PCa diagnostic

refinement [14], while the CG volume ratio can help monitoring prostate hy-

perplasia [15]. Therefore, according to the Prostate Imaging-Reporting and

Data System version 2 (PI-RADSTM v2) [16], radiologists must perform a

zonal partitioning before assessing the suspicion of PCa on multi-parametric

MRI. However, an improved PCa diagnosis requires a reliable and automatic

zonal segmentation method, since manual delineation is time-consuming and

operator-dependent [17, 18]. Moreover, in clinical practice, the generaliza-

tion ability among multi-institutional prostate MRI datasets is essential due

to large anatomical inter-subject variability and the lack of a standardized

pixel intensity representation for MRI (such as for CT-based radiodensity

measurements expressed in Hounsfield units) [19]. Hence, we aim at au-

tomatically segmenting the prostate zones on three multi-institutional T2w

4



MRI datasets to evaluate the generalization ability of Convolutional Neural

Network (CNN)-based architectures. This task is challenging because images

from multi-institutional datasets are characterized by different contrasts, vi-

sual consistencies, and heterogeneous characteristics [20].

In this work, we propose a novel CNN, called USE-Net, which incorpo-

rates Squeeze-and-Excitation (SE) blocks [21] into U-Net after every Encoder

(Enc USE-Net) or Encoder-Decoder block (Enc-Dec USE-Net). The ratio-

nale behind the design of USE-Net is to exploit adaptive channel-wise feature

recalibration to boost the generalization performance. The proposed USE-

Net is conceived to outperform the state-of-the-art CNN-based architectures

for segmentation in multi-institutional studies, whilst the SE blocks (ini-

tially proposed in [21]) were originally designed to boost the performance

only for classification and object detection via feature recalibration, by cap-

turing single dataset characteristics. Unlike the original SE blocks placed

in InceptionNet [22] and ResNet [23] architectures, we introduced them into

U-Net after the encoders and decoders to boost the segmentation perfor-

mance with increased generalization ability, thanks to the representation of

channel-wise relationships in multi-institutional clinical scenarios, analyzing

multiple heterogeneous MRI datasets. This study adopted a mixed scheme

for cross- and intra-dataset generalization: (i) training on either each in-

dividual dataset or multiple datasets, and (ii) testing on all three datasets

with all possible training/testing combinations. To the best of our knowl-

edge, this is the first CNN-based prostate zonal segmentation on T2w MRI

alone. By relying on both spatial overlap-/distance-based metrics, we com-

pared USE-Net against three CNN-based architectures: U-Net, pix2pix, and
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Mixed-Scale Dense Network (MS-D Net) [24], along with a semi-automatic

continuous max-flow model [25].

Contributions. Our main contributions are:

• Prostate zonal segmentation: our novel Enc-Dec USE-Net achieves

accurate CG and PZ segmentation results on T2w MR images, remark-

ably outperforming the other competitor methods when trained on all

datasets used for testing in multi-institutional scenarios.

• Cross-dataset generalization: this first cross-dataset study, inves-

tigating all possible training/testing conditions among three different

medical imaging datasets, shows that training on the union of multiple

datasets generally outperforms training on each dataset during testing,

realizing both intra-/cross-dataset generalization—thus, we may train

CNNs by feeding samples from multiple different datasets for improving

the performance.

• Deep Learning for medical imaging: this research reveals that

SE blocks provide excellent intra-dataset generalization in multi-insti-

tutional scenarios, when testing is performed on samples from the

datasets used during training. Therefore, adaptive mechanisms (e.g.,

feature recalibration in CNNs) may be a valuable solution in medical

imaging applications involving multi-institutional settings.

The manuscript is structured as follows. Section 2 outlines the back-

ground of prostate MRI zonal segmentation, especially related work on CNNs.
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Section 3 describes the analyzed multi-institutional MRI datasets, the pro-

posed USE-Net architectures, the investigated state-of-the-art CNN- and

max-flow-based segmentation approaches, as well as the employed evaluation

metrics; the experimental results are presented and discussed in Section 4.

Finally, conclusive remarks and future directions of this work are given in

Section 5.

2. Related Work

Due to the crucial role of MR image analysis in PCa diagnosis and

staging [2], researchers have paid specific attention to automatic WG de-

tection/segmentation. Classic methods mainly leveraged atlases [19, 26] or

statistical shape priors [27]: atlas-based approaches realized accurate segmen-

tation when new prostate instances resemble the atlas, relying on a non-rigid

registration algorithm [27, 28]. Unsupervised clustering techniques allowed

for segmentation without manual labeling of large-scale MRI datasets [17, 29].

In the latest years, Deep Learning techniques [30] have achieved accurate

prostate segmentation results by using deep feature learning combined with

shape models [31] or location-prior maps [32]. Moreover, CNNs were used

with patch-based ensemble learning [33] or dense prediction schemes [34]. In

addition, end-to-end deep neural networks achieved outstanding results in

automated PCa detection in multi-parametric MRI [35, 36].

Differently from WG segmentation and PCa detection, less attention has

been paid to CG and PZ segmentation despite its clinical importance in PCa

diagnosis [12]. In this context, classic Computer Vision techniques have been

mainly exploited on T2w MRI. For instance, early studies combined classi-
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fiers with statistical shape models [37] or deformable models [38]; Toth et

al. [28] employed active appearance models with multiple level sets for si-

multaneous zonal segmentation; Qiu et al. [25] used a continuous max-flow

model—the dual formulation of convex relaxed optimization with region con-

sistency constraints [39]; in contrast, Makni et al. [40] fused and processed

3D T2w, DWI, and contrast-enhanced T1w MR images by means of an ev-

idential C-means algorithm [41]. As the first CNN-based method, Clark et

al. [42] detected DWI MR images with prostate relying on Visual Geometry

Group (VGG) net [43], and then sequentially segmented WG and CG using

U-Net [44].

Regarding the most recent computational methods in medical image seg-

mentation, along with traditional Pattern Recognition techniques [45], sig-

nificant advances have been proposed in CNN-based architectures. For in-

stance, to overcome the limitations related to accurate image annotations,

DeepCut [46] relies on weak bounding box labeling [47]. This method aims at

learning features for a CNN-based classifier from bounding box annotations.

Among the architectures devised for biomedical image segmentation [48, 49],

U-Net [44] showed to be a noticeably successful solution, thanks to the com-

bination of a contracting (i.e., encoding) path, for coarse-grained context

detection, and a symmetric expanding (i.e., decoding) path, for fine-grained

localization. This fully CNN is capable of stable training with reduced sam-

ples. The authors of V-Net [34] extended U-Net for volumetric medical im-

age segmentation, by introducing also a different loss function based on the

Dice Similarity Coefficient (DSC ). Schlemper et al. [50] presented an At-

tention Gate (AG) model for medical imaging, which aims at focusing on
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target structures or organs. AGs were introduced into the standard U-Net,

so defining Attention U-Net, which achieved high performance in multi-class

image segmentation without relying on multi-stage cascaded CNNs. Recently

MS-D Net [24] was shown to yield better segmentation results in biomedi-

cal images than U-Net [44] and SegNet [51], by creating dense connections

among features at different scales obtained by means of dilated convolutions.

By so doing, features at different scales can be contextually extracted using

fewer parameters than full CNNs. Finally, also image-to-image translation

approaches—e.g., pix2pix [52] that leverages conditional adversarial neural

networks—were exploited for image segmentation.

However, no literature method so far coped with the generalization ability

among multi-institutional MRI datasets, making their clinical applicability

difficult [53]. In a previous work [54], we compared existing CNN-based

architectures—namely, SegNet [51], U-Net [44], and pix2pix [52]—on two

multi-institutional MRI datasets. According to our results, U-Net gener-

ally achieves the most accurate performance. Here, we thoroughly verify

the intra-/cross-dataset generalization on three datasets from three different

institutions, also proposing a novel architecture based on U-Net [44] incor-

porating SE blocks [21]. To the best of our knowledge, this is the first study

on CNN-based prostate zonal segmentation on T2w MRI alone.

3. Materials and Methods

This section first describes the analyzed multi-institutional MRI datasets

collected by different institutions. Afterwards, we explain the proposed USE-

Net, the other investigated CNN-based architectures, as well as a state-of-
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the-art prostate zonal segmentation method based on a continuous max-flow

model [25]. Finally, the used spatial overlap- and distance-based evaluation

metrics are reported.

3.1. Multi-institutional MRI Datasets

We segment the CG and PZ from the WG on three completely different

multi-parametric prostate MRI datasets, namely:

#1 dataset (21 patients/193 MR slices with prostate), acquired with a

whole body Philips Achieva 3T MRI scanner at the Cannizzaro Hospital

(Catania, Italy) [17]. MRI parameters: matrix size = 288× 288 pixels;

slice thickness = 3.0 mm; inter-slice spacing = 4 mm; pixel spacing

= 0.625 mm; number of slices per image series (including slices without

prostate) = 18. Average patient age: 65.57± 6.42 years;

#2 Initiative for Collaborative Computer Vision Benchmarking (I2CVB)

dataset (19 patients/503 MR slices with prostate), acquired with a

whole body Siemens TIM 3T MRI scanner at the Hospital Center Re-

gional University of Dijon-Bourgogne (Dijon, France) [2]. MRI param-

eters: matrix size ∈ {308× 384, 336× 448, 360× 448, 368× 448} pixels;

slice thickness = 1.25 mm; inter-slice spacing = 1.0 mm; pixel spac-

ing ∈ {0.676, 0.721, 0.881, 0.789} mm; number of slices per image series

= 64. Average patient age: 64.36± 9.69 years;

#3 National Cancer Institute – International Symposium on Biomedical

Imaging (NCI-ISBI) 2013 Automated Segmentation of Prostate Struc-

tures Challenge dataset (40 patients/555 MR slices with prostate) via
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The Cancer Imaging Archive (TCIA) [55], acquired with a whole body

Siemens TIM 3T MRI scanner at Radboud University Medical Center

(Nijmegen, The Netherlands) [56]. The prostate structures were manu-

ally delineated by five experts. MRI parameters: matrix size ∈ {256×

256, 320×320, 384×384} pixels; slice thickness ∈ {3.0, 4.0} mm; inter-

slice spacing ∈ {3.6, 4.0}mm; pixel spacing ∈ {0.500, 0.600, 0.625}mm;

number of slices per image series ranging from 15 to 24. Average pa-

tient age: 63.90± 7.17 years.

All the analyzed MR images are encoded in the 16-bit Digital Imaging

and Communications in Medicine (DICOM) format. It is worth noting that

even MR images from the same dataset have intra-dataset variations (such

as the matrix size, slice thickness, and number of slices). Furthermore, inter-

rater variability for the CG and PZ annotations exists, as different physicians

delineated them. For clinical feasibility [10], we analyzed only axial T2w MR

slices—the most commonly used sequence for prostate zonal segmentation—

among the available sequences. In our multi-centric study, we conducted

the following seven experiments resulting from all possible training/testing

conditions:

• Individual dataset #1, #2, #3: training and testing on dataset #1

(#2, #3, respectively) alone in 4-fold cross-validation, and testing also

on whole datasets #2 and #3 (#1 and #3, #1 and #2, respectively)

separately for each round;

• Mixed dataset #1/#2, #2/#3, #1/#3: training and testing on both

datasets #1 and #2 (#2 and #3, #1 and #3, respectively) in 4-fold
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(a) (b) (c)

Figure 1: Examples of input prostate T2w MR axial slices in their original image ratio:

(a) dataset #1; (b) dataset #2; (c) dataset #3. The CG and PZ are highlighted with red

and blue transparent regions, respectively. Alpha blending with α = 0.2.

cross-validation, and testing also on whole dataset #3 (#1, #2, respec-

tively) separately for each round;

• Mixed dataset #1/#2/#3: training and testing on whole datasets #1,

#2, and #3 in 4-fold cross-validation.

For clinical applications, such a multi-centric research is valuable for ana-

lyzing CNNs’ generalization ability among different MRI acquisition options,

e.g., different devices and functioning parameters. In our study, for instance,

both intra-/cross-scanner evaluations can be carried out, because dataset

#1’s scanner is different from those of datasets #2 and #3. Fig. 1 shows

an example image for each analyzed dataset; in the context of generaliza-

tion among different datasets, Yan et al. [57] evaluated the average vessel

segmentation performance on three retinal fundus image datasets under the

three-dataset training condition, while pair-wisely assessing the cross-dataset

performance on two datasets under the other one-dataset training condition.
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Yang et al. [58] proposed an alternative approach using adversarial appear-

ance rendering to relieve the burden of re-training for Ultrasound imaging

datasets. Differently, we thoroughly evaluate all possible training/testing

conditions (for a total of 21 configurations) on each dataset to confirm the

intra- and cross-dataset generalization ability by incrementally injecting sam-

ples from the other datasets at hand.

With regard to the 4-fold cross-validation, we partitioned the datasets #1,

#2, and #3 into 4 folds by using the following patient indices: {[1, . . . , 5],

[6, . . . , 10], [11, . . . , 15], [16, . . . , 21]}, {[1, . . . , 5], [6, . . . , 10], [11, . . . , 15],

[16, . . . , 19]}, and {[1, . . . , 10], [11, . . . , 20], [21, . . . , 30], [31, . . . , 40]}, respec-

tively. Finally, the results from the different cross-validation rounds were

averaged to obtain a final descriptive value. These patient indices represent

a permutation of the randomly arranged original patient ordering to por-

tray a randomized partition scheme. This allowed us to guarantee a fixed

partitioning among the different training/testing conditions with a general

notation valid for all datasets, regardless of the number of patients in each

dataset.

Cross-validation strategies aim at estimating the generalization ability of

a given model; the hold-out method fixedly partition the dataset into the

training/test sets to train the model on the first partition alone and test it

only on the unseen test set data. Unlike the leave-one-out cross-validation

with high variance and low bias, the k-fold cross-validation is a natural way

to improve the hold-out method: the dataset is divided into k mutually exclu-

sive folds of approximately equal size [59]. The statistical validity increases

with less variance and less dependency on the initial dataset partition, av-
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eraging the results for all the k cross-validation rounds. Consequently, the

k-fold cross-validation is the most common choice for reliable generalization

results, minimizing the bias associated with the random sampling of the

training/test sets [59]. However, this statistical practice is computationally

expensive due to the k times-repeated training from scratch [60]. Moreover,

the results could underestimate the actual performance allowing for conser-

vative analyses [61]; thus, we chose 4-fold cross-validation for reliable and fair

training/testing phases, according to the number of patients in each dataset,

calculating the evaluation metrics on a statistically significant test set (i.e.,

25% of each prostate MRI dataset).

3.2. Prostate Zonal Segmentation on Multi-institutional MRI Datasets

This work adopts a selective delineation approach to focus on internal

prostatic anatomy: the CG and PZ, denoted by RCG and RPZ , respectively.

Let the entire image and the WG region be IΩ and RWG, respectively, the

following relationships can be defined:

IΩ = RWG ∪Rbg and RWG ∩Rbg = ∅, (1)

where Rbg represents background pixels. Relying on [7, 25], RPZ was ob-

tained by subtracting RCG from RWG meeting the constraints:

RWG = RCG ∪RPZ and RCG ∩RPZ = ∅. (2)

3.2.1. USE-Net: Incorporating SE Blocks into U-Net

We propose to introduce SE blocks [21] following every Encoder (Enc

USE-Net) or Encoder-Decoder (Enc-Dec USE-Net) of U-Net [44], as shown
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Figure 2: Scheme of the proposed USE-Net architecture: Enc USE-Net has only 4 (red-

contoured) SE blocks after every encoder, whilst Enc-Dec USE-Net has 9 SE blocks inte-

grated after every encoder/decoder (represented with red/blue contours, respectively).

in Fig. 2. As pointed out before, U-Net allows for a multi-resolution decom-

position/composition technique [62], by combining encoders/decoders with

skip connections between them [63]; in our implementation, encoders and

decoders consist of four pooling operators that capture the context and up-

sampling operators that conduct precise localization, respectively.

We introduce SE blocks to enhance image segmentation, expecting an

increased representational power from modeling the channel-wise dependen-

cies of convolutional features [21]. These blocks were originally envisioned for

image classification using adaptive feature recalibration to boost informative

15



features and suppress the weak ones at minimal computational burden.

Enc USE-Net and Enc-Dec USE-Net are investigated to evaluate the effect

of strengthened feature recalibration. Since the template of the SE blocks is

generic, they can be exploited at any depth of any architecture. Considering

that SE blocks should be placed after output feature maps for feature recal-

ibration, we have three possible places to integrate them for U-Net, namely:

(i) after encoders; (ii) after decoders; (iii) after a classifier. SE blocks are

more powerful in the encoding path than in the decoding path and more pow-

erful in the decoding path than after a classifier, as they affect lower-level

features in the U-Net architecture and thus increase the overall performance

significantly; consequently, instead of placing only a single SE block after

the first encoder/decoder, we place SE blocks after each encoder/decoder for

both coarse-grained context detection in the earlier layers and fine-grained

localization in the deeper layers for the best segmentation performance.

The SE blocks can be formally described as follows:

Squeeze. Let U = [u1,u2, . . . ,uF ] be an input feature map, where uf ∈

RH×W is a single channel with size H × W . Through spatial dimensions

H ×W , a global average pooling layer generates channel-wise statistics z ∈

RF , whose f -th element is given by:

zf =
1

H ×W

H∑
h=1

W∑
w=1

[uf ]i,j. (3)

Excitation. To limit the model complexity and boost generalization, two

fully-connected layers and the Rectified Linear Unit (ReLU) [64] function

δ transform z with a sigmoid activation function σ(·):

s = σ(g(z,W)) = σ(W2δ(W1z)), (4)
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where W1 ∈ RF
r
×F , W2 ∈ RF×F

r , and r is the reduction ratio controling the

capacity and computational cost of the SE blocks. Hu et al. [21] showed that

the SE blocks can overfit to the channel inter-dependencies of the training

set despite a lower number of weights with respect to the original archi-

tecture; they found the best compromise of r = 8, which guarantees the

lowest overall error (in terms of top-1 and top-5 errors) with ResNet-50 [23]

for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2017

classification competition [65]. Therefore, we also selected r = 8 for the

USE-Net. In order to obtain an adaptive recalibration that ignores less im-

portant channels and emphasizes important ones (allowing for non-mutual

exclusivity among multiple channels, differently from one-hot encoding), U

is rescaled into X̃ = [x̃1, x̃2, . . . , x̃F ] by applying Eq. (5):

x̃f = Fscale(uf , sf ) = sf · uf , for f = 1, 2, . . . , F, (5)

where Fscale(uf , sf ) represents the channel-wise multiplication between the

feature map uf ∈ RH×W and the scalar sf ∈ [0, 1].

3.2.2. Pre-processing

To fit the image resolution of dataset #1, we either center-cropped or

zero-padded the images of datasets #2 and #3 to resize them to 288 × 288

pixels. Afterwards, all images in the three datasets were masked using the

corresponding prostate binary masks to omit the background and only focus

on extracting the CG and PZ from the WG. This operation can be performed

either by an automated method [17] or previously provided manual WG

segmentation [2]. As a simple form of data augmentation, we randomly

cropped the input images from 288×288 to 256×256 pixels and horizontally
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flipped them.

3.2.3. Post-processing

Two efficient morphological operations were applied on the obtained RCG

binary masks to smooth boundaries and deal with disconnected regions:

• a hole filling algorithm on the segmented RCG to remove possible holes

in a predicted map;

• a small area removal operation dealing with connected components

smaller than b|RWG|/8c pixels, where |RWG| denotes the number of

pixels contained in WG segmentation. This adaptive criterion takes

into account the different sizes of RWG (ranging from the apical to the

basal prostate slices).

3.2.4. Comparison against the State-of-the-Art Methods

We compare USE-Net against three supervised CNN-based architectures

(i.e., U-Net, pix2pix, and Mixed-Scale Dense Network) and the unsupervised

continuous max-flow model [25]. All the investigated CNN-based architec-

tures were trained using the LDSC loss function (i.e., a continuous version of

the DSC ) [34] through the N pixels to classify:

LDSC = − 2
∑N

i=1 si · ri∑N
i=1 si +

∑N
i=1 ri

, (6)

where si and ri refer to the continuous values in [0, 1] of the prediction map

and the Boolean ground truth annotated by experienced radiologists at the

i-th pixel, respectively. The LDSC loss function was designed by Milletari et

al. [34] to deal with the imbalance of the foreground labels in medical image

segmentation tasks.
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USE-Net and U-Net. Using four scaling operations, U-Net and USE-Net were

implemented on Keras with TensorFlow backend. We used the Stochastic

Gradient Descent (SGD) method [66] with a learning rate of 0.01, momentum

of 0.9, weight decay of 5× 10−4, and batch size of 4. Training was executed

for 50 epochs, multiplying the learning rate by 0.2 at the 20-th and 40-th

epochs.

pix2pix. This image-to-image translation method with conditional adversar-

ial networks was used to translate the original image into the segmented

one [52]. The generator and discriminator (both U-Nets in our implemen-

tation) include eight and five scaling operations, respectively. We developed

pix2pix on PyTorch. Adam [67] was used as an optimizer with a learning rate

of 0.01 for the generator—which was multiplied by 0.1 every 20 epochs—and

2 × 10−4 for the discriminator. Training was executed for 50 epochs with a

batch size of 12.

MS-D Net. This dilated convolution-based method, characterized by densely

connected feature maps, is designed to capture features at various image

scales [24]. It was implemented on PyTorch with a depth of 100 and width

of 1. We used Adam [67] with a learning rate of 1× 10−3 and trained it for

100 epochs with a batch size of 12.

Continuous Max-flow Model. This model [25] exploits duality-based convex

relaxed optimization [39] to achieve better numerical stability (i.e., conver-

gence) than classic graph cut-based methods [68]. This semi-automatic ap-

proach simultaneously segments both RWG and RCG under the constraints

given in Eq. (2), relying on user intervention. The initialization procedure
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consists in two closed surfaces defined by a thin-plate spline interpolating

10-12 control points interactively selected by the user (considering both the

axial and sagittal views). These 3D partitions estimate the intensity proba-

bility density functions associated with three sub-regions of background, CG,

and PZ. This allows for defining the region appearance models for global

optimization-based multi-region segmentation [39].

Since the supervised CNN-based architectures rely on the gold standard

RWG for zonal segmentation, we apply the continuous max-flow method on

CG for single-region segmentation for a fair comparison. Moreover, in our

tests, a very accurate slice-by-slice RCG initialization is provided by eroding

the gold standard CG with a circular structuring element (radius = 6 pixels).

The continuous max-flow model [25] was implemented in MatLab R©

R2017a 64-bit (The Mathworks, Natick, MA, USA).

3.3. Evaluation Metrics

We evaluate the segmentation methods by comparing the segmented MR

images (S) to the corresponding gold standard manual segmentation (G)

using spatial overlap- and distance-based metrics [69, 70, 71]. Those metrics

are calculated using a slice-wise comparison and then averaged per patient;

thus, each single result regarding a patient represents an aggregate value.

Overlap-based metrics. These metrics quantify the spatially-overlapping seg-

mented Region of Interest (ROI). Let true positives be TP = S ∩ G, false

negatives be FN = G−S, false positives be FP = S −G, and true negatives

be TN = IΩ−G−S. In what follows, we denote the cardinality of the pixels

belonging to a region A as |A|.
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• Dice similarity coefficient [72] is the most used measure in medical

image segmentation to compare the overlap of two regions:

DSC =
2 · |TP |
|S|+ |G|

· 100. (7)

• Sensitivity measures the correct detection ratio of true positives:

SEN =
|TP |

|TP |+ |FN |
· 100. (8)

• Specificity measures the correct detection ratio of true negatives:

TNR =
|TN |

|TN |+ |FP |
· 100. (9)

However, this formulation is ineffective when data are unbalanced (i.e.,

the ROI is much smaller than the whole image). Consequently, we use

the following definition:

SPC =

(
1− |FP |

|S|

)
· 100. (10)

Distance-based metrics. As precise boundary tracing plays an important role

in clinical practice, overlap-based metrics have limitations in evaluating seg-

mented images. In order to measure the distance between the two ROI

boundaries, distance-based metrics can be considered. Let the manual con-

tourG consist in a set of vertices {ga : a = 1, 2, . . . , A} and the automatically-

generated contour S consist in a set of vertices {sb : b = 1, 2, . . . , B}. We

calculate the absolute distance between an arbitrary element sb ∈ S and all

the vertices in G as follows:

d(sb, G) = min
a∈{1,2,...,A}

‖sb − ga‖. (11)
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• Average absolute distance measures the average difference between the

ROI boundaries of S and G:

AvgD =
1

B

B∑
b=1

d(sb, G). (12)

• Maximum absolute distance represents the maximum difference be-

tween the ROI boundaries of S and G:

MaxD = max
b∈{1,2,...,B}

d(sb, G). (13)

4. Experimental Results

This section shows how the CNN-based architectures and the continu-

ous max-flow model segmented the prostate zones, through the evaluation

of their cross-dataset generalization ability. Aiming at showing the perfor-

mance boost achieved by integrating the SE blocks into U-Net, we performed

a fair comparison against the state-of-the-art architectures under the same

training/testing conditions. In particular, due to the lack of annotated MR

images for prostate zonal segmentation, we used three different datasets by

composing a multi-institutional dataset. This allowed us to show the SE

blocks’ cross-dataset adaptive feature recalibration effect, better capturing

each dataset’s peculiar characteristics. Therefore, we exploited all possible

training/testing conditions involving the three analyzed datasets (for a to-

tal of 21 configurations) on each dataset to overcome the limitation from

the small sample size, confirming the intra- and cross-dataset generalization

ability of the CNN-based architectures.

Table 1 shows the 4-fold cross-validation results, as assessed by the DSC

metrics, obtained under different training/testing conditions (the values of
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the other metrics are given in Supplementary Material, Tables S1-S4). For

visual and comprehensive comparison, the Kiviat diagrams (also known as

radar or cobweb charts) [73, 59] for each CNN-based architecture are also

displayed in Fig. 3. Here, we can observe the impact of leaving dataset #3

out of the training set and, at the same time, using it as test set: the corre-

sponding spokes III, VI, and XII generally show lower performance, proba-

bly due to the peculiar image characteristics of dataset #3 (comprising the

highest number of patients) that are not learned during the training phase

on datasets #1/#2. In general, Enc USE-Net performs similarly to U-Net,

which stably yields satisfactory results. More interestingly, Enc USE-Net ob-

tains considerably better results when trained/tested on multiple datasets.

Enc-Dec USE-Net (characterized by a higher number of SE blocks with re-

spect to Enc USE-Net) consistently and remarkably outperforms the other

methods on both CG and PZ segmentation when trained on all the inves-

tigated datasets, also performing well when trained and tested on the same

datasets.

We executed the Friedman’s test to quantitatively investigate any statis-

tical performance differences among the tested approaches. Regarding the

three-dataset condition: p = 0.0009 and p = 1.3 · 10−6 for the CG and

PZ, respectively. Considering all training/testing combinations: p = 0.01

and p = 1.7 · 10−10 for the CG and PZ, respectively. Since the p-values al-

lowed us to reject the null hypothesis, we performed the Bonferroni-Dunn’s

post hoc test for both the three-dataset condition and all training/testing

combinations [74]. In order to visualize the achieved results, example im-

ages segmented by each method are compared in Fig. 4 under the three-
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Table 1: Prostate zonal segmentation results of the CNN-based architectures and the unsu-

pervised continuous max-flow model (proposed by Qiu et al. [25]) in 4-fold cross-validation

assessed by DSC (presented as the mean value ± standard deviation). The supervised

experimental results are calculated under the different seven conditions described in Sec-

tion 3.1. Numbers in bold indicate the best DSC values (the higher the better) for each

prostate region (i.e., RCG and RPZ) among all architectures.

Method
Testing on dataset #1 Testing on dataset #2 Testing on dataset #3

CG PZ CG PZ CG PZ

T
r
a
in

in
g

o
n

d
a
t
a
s
e
t

#
1

MS-D Net 84.3 ± 1.6 86.7 ± 1.6 77.3 ± 4.1 65.6 ± 11.2 66.2 ± 3.7 50.9 ± 1.2

pix2pix 81.9 ± 2.2 85.9 ± 5.0 77.2 ± 2.9 73.7 ± 4.3 52.5 ± 3.2 47.1 ± 1.3

U-Net 78.6 ± 4.1 78.3 ± 7.6 77.4 ± 5.4 75.3 ± 1.4 73.6 ± 6.2 50.9 ± 1.5

Enc USE-Net 79.3 ± 3.5 77.7 ± 2.7 81.3 ± 1.5 74.7 ± 1.8 75.0 ± 4.2 50.3 ± 1.2

Enc-Dec USE-Net 78.8 ± 2.9 79.4 ± 7.9 76.9 ± 5.5 72.7 ± 1.7 63.7 ± 14.6 46.3 ± 1.8

T
r
a
in

in
g

o
n

d
a
t
a
s
e
t

#
2

MS-D Net 78.7 ± 1.1 70.0 ± 4.4 86.8 ± 3.7 81.1 ± 0.5 83.2 ± 1.0 54.6 ± 0.8

pix2pix 78.3 ± 0.9 67.3 ± 3.2 87.1 ± 2.9 81.8 ± 1.0 80.0 ± 2.5 51.1 ± 1.5

U-Net 78.6 ± 1.0 70.9 ± 3.2 87.7 ± 2.0 82.4 ± 2.4 83.8 ± 1.8 54.9 ± 1.8

Enc USE-Net 78.8 ± 1.4 72.3 ± 5.6 87.4 ± 2.5 82.6 ± 2.1 82.9 ± 2.5 54.5 ± 2.0

Enc-Dec USE-Net 77.5 ± 2.1 70.6 ± 5.5 87.8 ± 2.7 82.8 ± 1.9 82.7 ± 1.5 53.6 ± 1.0

T
r
a
in

in
g

o
n

d
a
t
a
s
e
t

#
3

MS-D Net 81.2 ± 1.3 73.3 ± 3.7 82.5 ± 1.9 74.7 ± 2.0 91.6 ± 1.1 71.4 ± 5.6

pix2pix 79.1 ± 5.6 64.6 ± 22.1 81.2 ± 4.2 66.6 ± 19.1 89.4 ± 4.8 62.8 ± 10.0

U-Net 75.9 ± 3.4 63.3 ± 5.0 82.1 ± 2.9 66.6 ± 8.4 91.7 ± 2.4 76.1 ± 4.1

Enc USE-Net 77.3 ± 3.6 64.7 ± 6.4 82.7 ± 4.3 66.7 ± 15.9 91.5 ± 3.2 74.0 ± 7.8

Enc-Dec USE-Net 76.1 ± 4.2 58.9 ± 13.7 81.8 ± 4.8 67.6 ± 13.2 90.7 ± 3.1 76.6 ± 7.8

T
r
a
in

in
g

o
n

d
a
t
a
s
e
t
s

#
1
/
#
2

MS-D Net 84.4 ± 3.1 86.5 ± 2.7 86.4 ± 2.8 81.2 ± 1.3 81.7 ± 2.3 54.9 ± 2.5

pix2pix 83.8 ± 2.6 84.8 ± 3.1 87.1 ± 2.7 81.0 ± 0.4 82.1 ± 2.5 54.0 ± 1.8

U-Net 82.6 ± 3.3 90.0 ± 2.7 86.4 ± 2.0 82.2 ± 2.7 81.8 ± 2.1 55.3 ± 2.5

Enc USE-Net 81.7 ± 5.4 90.0 ± 2.1 87.0 ± 2.1 82.2 ± 1.8 80.8 ± 2.7 55.8 ± 1.7

Enc-Dec USE-Net 82.9 ± 3.4 90.6 ± 1.8 85.9 ± 2.1 82.9 ± 1.4 81.1 ± 2.7 55.1 ± 2.1
T
r
a
in

in
g

o
n

d
a
t
a
s
e
t
s

#
1
/
#
3

MS-D Net 85.4 ± 1.8 87.7 ± 2.5 80.9 ± 2.7 72.6 ± 3.7 91.0 ± 2.9 72.2 ± 1.9

pix2pix 85.2 ± 1.6 86.8 ± 2.4 82.7 ± 1.9 75.7 ± 3.6 91.5 ± 1.9 71.0 ± 3.6

U-Net 84.8 ± 0.4 90.4 ± 2.8 82.1 ± 2.9 72.5 ± 4.5 92.6 ± 1.5 78.9 ± 4.0

Enc USE-Net 83.8 ± 1.4 91.1 ± 1.4 81.6 ± 3.7 71.9 ± 8.1 92.5 ± 1.9 79.6 ± 2.1

Enc-Dec USE-Net 83.3 ± 3.2 90.4 ± 2.1 81.5 ± 4.6 71.8 ± 6.7 92.2 ± 2.4 80.8 ± 1.8

T
r
a
in

in
g

o
n

d
a
t
a
s
e
t
s

#
2
/
#
3

MS-D Net 81.0 ± 1.3 72.5 ± 5.6 86.2 ± 2.5 77.4 ± 4.7 91.7 ± 0.9 69.8 ± 3.6

pix2pix 81.1 ± 1.1 73.4 ± 3.3 87.4 ± 2.2 79.6 ± 5.7 92.0 ± 1.3 71.3 ± 3.4

U-Net 79.2 ± 2.0 65.7 ± 6.3 88.1 ± 2.9 81.4 ± 2.6 92.9 ± 1.1 77.6 ± 3.0

Enc USE-Net 79.8 ± 1.8 70.3 ± 7.6 88.5 ± 2.4 82.0 ± 3.2 92.8 ± 1.0 76.3 ± 2.7

Enc-Dec USE-Net 79.4 ± 2.5 67.4 ± 8.9 88.2 ± 2.9 82.0 ± 4.1 93.7 ± 0.6 76.1 ± 3.4

T
r
a
in

in
g

o
n

d
a
t
a
s
e
t
s

#
1
/
#
2
/
#
3

MS-D Net 84.8 ± 4.5 83.6 ± 6.9 86.8 ± 2.6 78.6 ± 5.1 91.1 ± 1.0 69.4 ± 4.5

pix2pix 85.5 ± 2.6 87.6 ± 3.5 87.5 ± 2.0 80.9 ± 5.3 91.8 ± 1.3 69.7 ± 4.8

U-Net 84.6 ± 1.9 90.5 ± 3.0 86.6 ± 2.0 80.9 ± 3.3 92.9 ± 1.1 77.2 ± 2.0

Enc USE-Net 84.8 ± 2.3 91.1 ± 2.5 87.4 ± 1.8 81.4 ± 4.4 93.2 ± 0.7 79.1 ± 3.5

Enc-Dec USE-Net 87.1 ± 3.6 91.9 ± 2.1 88.6 ± 1.5 83.1 ± 2.9 93.7 ± 1.0 80.1 ± 5.5

None Qiu et al. [25] 78.0 ± 4.9 75.3 ± 6.4 71.0 ± 7.0 77.3 ± 2.6 82.1 ± 1.5 61.9 ± 4.6
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Figure 3: Kiviat diagrams showing the DSC values achieved by each method under differ-

ent conditions. RCG and RPZ results are denoted by blue and cyan colors, respectively.

Each variable represents a “training-set → test-set” condition as follows:

(a) one-dataset training: I) #1 → #1; II) #1 → #2; III) #1 → #3; IV) #2 → #1; V)

#2→ #2; VI) #2→ #3; VII) #3→ #1; VIII) #3→ #2; IX) #3→ #3.

(b) two-dataset training: X) #1/#2→ #1; XI) #1/#2→ #2; XII) #1/#2→ #3; XIII)

#1/#3 → #1; XIV) #1/#3 → #2; XV) #1/#3 → #3; XVI) #2/#3 → #1; XVII)

#2/#3→ #2; XVIII) #2/#3→ #3.

(c) three-dataset training: XIX) #1/#2/#3 → #1; XX) #1/#2/#3 → #2; XXI)

#1/#2/#3→ #3.
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Cont. max-flow MS-D Net pix2pix U-Net Enc USE-Net Enc-Dec USE-Net

(a)
Cont. max-flow MS-D Net pix2pix U-Net Enc USE-Net Enc-Dec USE-Net

(b)
Cont. max-flow MS-D Net pix2pix U-Net Enc USE-Net Enc-Dec USE-Net

(c)

Figure 4: Segmentation results obtained by the six investigated methods (under the three-

dataset training condition) on two different images for each dataset: (a) #1; (b) #2; (c)

#3. Automatic RCG segmentations (solid lines) are compared against the corresponding

gold standards (dashed red line). RPZ segmentations can be obtained from RCG and

RWG (dashed green line) according to the constraints in Eq. (2).
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dataset training condition. The critical difference diagram (Fig. 5) using the

Bonferroni-Dunn’s post hoc test also confirms this trend, considering DSC

values for every round of the 4-fold cross-validation.

However, as shown in Fig. 6, Enc-Dec USE-Net shows less powerful

cross-dataset generalization when trained and tested on different datasets,

achieving slightly lower average performance than Enc USE-Net (consid-

ering all training/testing combinations). This implies that the SE blocks’

adaptive feature recalibration—boosting informative features and suppress-

ing weak ones—provides excellent intra-dataset generalization in the case

of testing performed on multiple datasets used during training (i.e., when

training samples from every testing dataset are fed to the model).

On the contrary, pix2pix achieves good generalization when trained and

tested on different datasets, especially under mixed-dataset training condi-

tions, thanks to its internal generative model. MS-D Net generally works bet-

ter in single dataset scenarios, using a limited amount of training samples,

according to [24]. The unsupervised continuous max-flow model achieves

comparable results to the supervised ones only when trained and tested on

different datasets. However, this semi-automatic approach is outperformed

by the supervised methods when trained and tested on the same datasets, as

it underestimates RCG.

The results also reveal that training on multi-institutional datasets gener-

ally outperforms training on each dataset during testing on any dataset/zone,

realizing both intra-/cross-dataset generalization. For instance, training on

datasets #1 and #2 generally outperforms training on dataset #1 during

testing on all datasets #1, #2, and #3, without losing accuracy.
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Figure 5: Critical Difference (CD) diagram comparing the DSC values achieved by all the

investigated CNN-based architectures using the Bonferroni-Dunn’s post hoc test [74] with

95% confidence level for the three-dataset training conditions. Bold lines indicate groups

of methods whose performance difference was not statistically significant.

Therefore, training schemes with mixed MRI datasets can achieve reliable

and excellent performance, potentially useful for other clinical applications.

Comparing the CG and PZ segmentation, the results on the CG are generally

more accurate, except when trained and tested on dataset #1; this could be

due to intra- and cross-scanner generalization, since dataset #1’s scanner is

different from those of datasets #2 and #3.

The trend characterizing the best DSC accuracy performance, especially

in the case of three-dataset training/testing conditions, is reflected by both

the SEN and SPC values (Tables S1 and S2). As shown in Tables S3 and S4,

the achieved spatial distance-based indices are consistent with overlap-based

metrics. Hence, Enc-Dec USE-Net obtained high performance also in terms
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Figure 6: Critical Difference (CD) diagram comparing the DSC values achieved by all the

investigated CNN-based architectures using the Bonferroni-Dunn’s post hoc test [74] with

95% confidence level considering all training/testing combinations. Bold lines indicate

groups of methods whose performance difference was not statistically significant.

of difference between the automated and the manual boundaries.

Considering more permutations in the random partitioning and running

multiple 4-fold cross-validation instances may increase the robustness of the

results, by evaluating the combination of the multiple executions. How-

ever, with particular reference to the three-dataset training/testing condi-

tion, where the feature recalibration can effectively capture the dataset char-

acteristics with the most available samples, the Bonferroni-Dunns post hoc

test showed significant differences in the multiple comparisons among the

competing architectures (Fig. 5). On the contrary, no significant statisti-

cal difference was detected when considering all training/testing conditions

(Fig. 6). The achieved results suggest that cross-validation with a single

random permutation is methodologically sound. In addition, we can state
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that the patterns arising from the 4-fold cross-validation experiments are

not just by chance or biased by the increased training samples, so USE-Net

significantly outperforms the other techniques.

To conclude, the comparison of U-Net and USE-Nets shows the individ-

ual contribution of SE blocks under each of the 21 dataset combinations.

Interestingly, USE-Net is not always superior on one- or two-dataset cases,

but consistently outperforms U-Net on three-dataset training/testing. This

arises from USE-Net’s higher number of parameters than U-Net, generally

requiring more samples for proper tuning.

5. Discussion and Conclusions

The novel CNN architecture introduced in this work, Enc-Dec USE-Net,

achieved accurate prostate zonal segmentation results when trained on the

union of the available datasets in the case of multi-institutional studies—

significantly outperforming the competitor CNN-based architectures, thanks

to the integration of SE blocks [21] into U-Net [44]. This also derives from

the presented cross-dataset generalization approach among three prostate

MRI datasets, collected by three different institutions, aiming at segmenting

RCG and RPZ ; Enc-Dec USE-Net’s segmentation performance considerably

improved when trained on multiple datasets with respect to individual train-

ing conditions. Since the training on multi-institutional datasets analyzed in

this work achieved good intra-/cross-dataset generalization, CNNs could be

trained on multiple datasets with different devices/protocols to obtain bet-

ter outcomes in clinically feasible applications. Moreover, our research also

implies that state-of-the-art CNN architectures properly combined with inno-
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vative concepts, such as feature recalibration provided by the SE blocks [21],

allow for excellent intra-dataset generalization when tested on samples com-

ing from the datasets used for the training phase. Therefore, we may argue

that multi-dataset training and SE blocks represent not just individual op-

tions but mutually indispensable strategies to draw out each other’s full po-

tential. In conclusion, such adaptive mechanisms may be a valuable solution

in medical imaging applications involving multi-institutional settings.

As future developments, we will refine the output images considering the

3D spatial information among the prostate MR slices. Finally, for better

cross-dataset generalization, we plan to use domain adaptation via transfer

learning by maximizing the distribution similarity [20]. In this context, Gen-

erative Adversarial Networks (GANs) [75, 76] and Variational Auto-Encoders

(VAEs) [77] represent useful solutions.
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[74] J. Demšar, Statistical comparisons of classifiers over multiple data sets,

J. Mach. Learn. Res. 7 (Jan) (2006) 1–30.

[75] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-

Farley, S. Ozair, et al., Generative adversarial nets, in: Proc. Advances

in Neural Information Processing Systems (NIPS), 2014, pp. 2672–2680,

http://papers.nips.cc/paper/5423-generative-adversarial-nets.

[76] C. Han, H. Hayashi, L. Rundo, R. Araki, W. Shimoda, S. Muramatsu,

et al., GAN-based synthetic brain MR image generation, in: Proc. IEEE

International Symposium on Biomedical Imaging (ISBI), 2018, pp. 734–

738. doi:10.1109/ISBI.2018.8363678.

[77] D. Kingma, M. Welling, Auto-encoding variational Bayes, in: Proc.

International Conference on Learning Representations (ICLR), 2014,

arXiv preprint arXiv:1312.6114.

44

http://dx.doi.org/10.1145/1041613.1041614
http://dx.doi.org/10.1145/1041613.1041614
http://dx.doi.org/10.1109/ISBI.2018.8363678

	1 Introduction
	2 Related Work
	3 Materials and Methods
	3.1 Multi-institutional MRI Datasets
	3.2 Prostate Zonal Segmentation on Multi-institutional MRI Datasets
	3.2.1 USE-Net: Incorporating SE Blocks into U-Net
	3.2.2 Pre-processing
	3.2.3 Post-processing
	3.2.4 Comparison against the State-of-the-Art Methods

	3.3 Evaluation Metrics

	4 Experimental Results
	5 Discussion and Conclusions

