
ar
X

iv
:1

90
2.

03
30

6v
2

 [
cs

.L
G

]
 1

2
Fe

b
20

19

A simple and efficient architecture for trainable activation functions

Andrea Apicella, Francesco Isgrò and Roberto Prevete

Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione
Università di Napoli Federico II

Abstract

Learning automatically the best activation function for the task is an active topic in neural network
research. At the moment, despite promising results, it is still difficult to determine a method for learning
an activation function that is at the same time theoretically simple and easy to implement. Moreover,
most of the methods proposed so far introduce new parameters or adopt different learning techniques.
In this work we propose a simple method to obtain trained activation function which adds to the neural
network local subnetworks with a small amount of neurons. Experiments show that this approach could
lead to better result with respect to using a pre-defined activation function, without introducing a large
amount of extra parameters that need to be learned.

keywords: neural networks, machine learning, activation functions, adaptive activation functions

1 Introduction

The success of deep learning approaches has led to an increase in interest in MultiLayer FeedForward (MLFF)
neural networks. MLFF networks are composed of N elementary computing units (neurons), which are
organized in L > 1 layers. The first layer of a MLFF network is composed of d input variables. Each neuron
i belonging to a layer l, with l > 1, receives possibly connections from all the neurons (or input variables
in case of l = 2) of the previous layer l− 1. Eeach connection is associated to a real value called weight. The
flow of computation proceeds from the first layer to the last layer (forward propagation). The last neuron
layer is called output layer, the remaining neuron layers are called hidden layers. The computation of a
neuron i belonging to the layer l corresponds to a two-step process: first is computed the neuron activation
ali and then the neuron output zli. The neuron activation ali is usually constructed as a linear combination
of the outputs of the previous layer: ali =

∑
j w

l
ijz

l−1

j + bli where wl
ij is the weight of the connection going to

the neuron j belonging to the layer l−1 to the neuron i, bli is a parameter said bias, l = 1, .., L and j runs on
the indexes of the neurons of the layer l−1 which send connections to the neuron i. If l = 2 the the variables
zl−1 correspond to the input variables. The neuron output zli is usually computed by a differentiable, non
linear activation function f(·): zli = f(ali). The nonlinear functions f(·) are generally chosen as simple fixed
functions such as the logistic sigmoid or the tanh function.

Given a MLFF network with d input variables and c neurons in the output layer, it achieves a functional
mapping from a d-dimensional space to a c-dimensional space. Thus, a MLFF network can be interpreted as
a non-linear parametric function y = Net(x; θ), where the parameters θ are all the weigths and biases of the
network and y is the response of the output layer. The approximation properties of MLFF networks have been
widely studied [DeVore et al., 1996]. In a nutshel, a function approximation problem can be summarized
as follows [Bishop, 2006, Ripley, 2007]: given an unknown function F : x ∈ Rd −→ y = F (x) ∈ Rc

and a data set {(xn, tn)}Nn=1 representing a sampling of the unknown function, where tn = F (xn) + ǫ,
usually called targets, are the values assumed by F in xn with added an unknown noise ǫ, the task is to
find the appropriate values of the parameters of a parametric function M so as to get as close as possible
to the unknown function F . In this context, there are two different problems, the first one concerns the
expressive power of the parameterized function M , that is, if there are parameter values for which it is
possible to approximate the unknown function F , the second one concerns the possibility of actually finding
such parameter values. Interestingly, regarding the first problem, a MLFF network with a single hidden

1

http://arxiv.org/abs/1902.03306v2

layer, which is usually called shallow network, can approximate arbitrarily well any functional continuous
mapping defined on a compact input domain, provided the number of hidden neurons is sufficiently large
and the activation functions of the hidden neurons satisfy suitable properties, for example, to be sigmoidal
or, more in general, not-polynomial functions [Sonoda and Murata, 2017, Bishop, 2006, Pinkus, 1999]. In
other words, given a certain desired degree of approximation, it exists a set of parameters θ̄ for which the
neural network Net(x; θ̄) approaches the unknown function within this degree of approximation, supposed
to have a sufficient number of hidden neurons and appropriate activation functions. In this sense, MLFF
networks are said to be universal approximators.

However, the key problem is how to find these suitable network parameters, i.e., weights and biases.
The process to determine the values of weights and biases on the basis of the data set is called learning
or training. Importantly, although the choice of the non linear activation functions f(·) does not affect
the MLFF network’s universal approximator property, provided certain constraints are satisfied, this choice
becomes a key aspect when network weights and biases are to be found during the training process. To
clarify this aspect, let us briefly summarize what is a training process. The training process generally
corresponds to the minimization of an error function with respect to the network parameters. The error
function typically assumes the following form (although many other forms are possible [Bishop, 2006]):

E(θ) =
1

2

∑N
n=1

∑c
k=1

[yk(xn; θ) − tnk]2 where yk(xn; θ) represents the output of the neuron k belonging

to the output layer as a function of both the input xn and the network parameters θ. The quantity tnk
represents the target value for output neuron k when the input is xn.The solution for the network parameter
values at the global minimum of the error function is usually found by iterating a gradient-based algorithm
with the gradient computed through backpropagation [Bishop, 2006]. Since for MLFF networks the error
function typically will be a highly non-linear function of the parameters (not-convex surface), there may
exist many local minima or saddlepoints. Notice that parameter regions where the error function is very
“flat” can mimick local minima insofar as the learning process is ”trapped” for very long periods of time.
In a learning process the main difficult is to avoid these stationary points or regions of the error function.
Thus, the choice of the activation functions has a relevant impact on the shape of the error function and,
consequently, on the performance of the learning process. Moreover, this choice can affect the number of
hidden neurons and layers necessary to reach the desired degree of approximation [Guliyev and Ismailov,
2016, Eldan and Shamir, 2016].

For these reasons, recently, there is a very large literature proposing activation functions that differ
from those standards such as sigmoid and tanh. In particular, the introduction of activation functions as
ReLU [Nair and Hinton, 2010] and similar functions, such as Leaky ReLU and parametric ReLU described
respectively in [Maas et al., 2013] and [He et al., 2015], has contributed to renew the interest of the scientific
community for MLFF networks. The use of these new activation functions has been shown to improve
significantly the networks in terms of performance and training speed, thanks to properties as no saturation,
e.g. [Glorot and Bengio, 2010]. Another great improvement was given in [Clevert et al., 2015], where the
learning is speeded up introducing the ELU activation function, and more recently in [Klambauer et al.,
2017] with the introduction of SELU units.

Thus, finding alternative functions that can potentially improve further the results is still an open field
of research. Consistent with this perspective, a number of recent papers compare neural architectures with
different activation functions, as in [Pedamonti, 2018], or propose to search appropriate activation functions
within a finite set of potentially interesting activation functions, as in [Ramachandran et al., 2018]. However,
a very recent field of research focuses on the possibility to learn appropriate activation functions from data,
in this way one has adaptable (or trainable) activation functions which are adjusted during the learning phase
towards specific functions, allowing the network to exploit the data better (see, for example, [Qian et al.,
2018]). Furthermore, any layer of the network could potentially have their own best activation function,
increasing the number of choices to make at the design stage. On the other side, it is not guaranteed that
fixing the same function for each layer is the best choice. Thus, a way to tackle the problem is to learn the
activation functions from data, together with the other parameters of the network; the idea is to find the
good activation functions that, together with the other network parameters, provides a good model for the
data.

In this paper we introduce a new method for learning activation functions in the context of full-connected
and convolutional MLFF neural networks. The impact of this method on the performance of the network

2

are experimentally assessed. The idea is built upon the possibility to obtain adaptable activation functions
in terms of sub-networks with just one hidden layer. In a nutshell, each neuron with a non-linear activation
function f can be substituted with a neuron with an Identity activation function which sends its output
to a one-hidden layer sub-network with just one output neuron. This substitution enables us to obtain
“any” activation function f , since an one-hidden layer neural network can approximate arbitrarily well any
functional continuous mapping from one finite-dimensional space to another, provided the number of hidden
neurons is sufficiently large and the activation functions of the hidden neurons satisfy suitable properties, for
example, to be sigmoidal or, more in general, not-polynomial functions [Sonoda and Murata, 2017, Bishop,
2006, Pinkus, 1999]. Thus, our neural network architecture with variable activation functions is again a
MLFF neural network. Importantly, this property means that any classical approach applicable to MLFF
networks can also be directly applied to our architecture with trainable activation functions. Notably, as we
will discuss in Section 2 and 3 our architecture represents a general framework in which several approaches
recently proposed in literature can be included.

The paper is structured as follows. In the next section we critically discuss our approach with respect to
the current literature. In Section 3 we introduce our architecture. Section 4 is dedicated to the experimental
assessment. Finally, Section 5 is left to the conclusions.

2 Related work

Over the last years, ReLU has become the standard activation function for deep neural models, surpass-
ing classic functions as sigmoid and tanh used in the past literature thanks to useful properties, such as
the ability to avoid saturation issues[Nair and Hinton, 2010, Glorot et al., 2011]. Different variations of the
ReLU have been proposed [Maas et al., 2013, Memisevic et al., 2014, Dugas et al., 2000]. All these functions
are somehow different from ReLU, but once chosen they remain fixed, with the choice of which one to use
taken during the design stage, typically in a heuristic way. A partial attempt to overcome this drawback
moves in the direction of searching the best activation function from a predefined set [Liu and Yao, 1996,
Yao, 1999, Ramachandran et al., 2018]. These techniques are limited by the fact that the functions are not
learned, but just selected from a collection of standard functions. Thus, approaches by trainable activation
functions propose more general frameworks. In this direction one can isolate three basic types of approaches:
parameterized standard activation function, linear combination of one-variable functions and ensemble of
standard activation functions. In Subsection 2.1, 2.2 and 2.3 we will discuss these three types of approaches.
In Subsection 2.4 we will present other types of solutions. Our discussion will be mainly based on three
dimensions: 1) how many new parameters are added to the network model, 2) the possibility or not to use
standard techniques, within neural network context, for learning the new parameters, such as backpropaga-
tion for computing the error function gradient or sparse methods, 3) the expressive power of the trainable
activation functions.

2.1 Parameterized standard activation functions

With the expression parameterized standard activation functions we refer to all the functions with a shape
that is very similar to a given standard activation function, but whose diversity from the latter comes from a
set of trainable parameters. The addition of these parameters therefore requires changes, even minimal ones,
in the learning algorithm, for example, in the case of using gradient-based methods with backpropagation,
the partial derivatives of the error function respect to these new parameters are needed. A first attempt to
have a parameterized activation function is given in [Hu, 1992] where the proposed activation function uses
two trainable parameters α, β to rule the function shape of a classic sigmoidal function. Similar works on
sigmoidal and hyperbolic tangent functions are discussed in [Yamada and Yabuta, 1992a,b, Chen and Chang,
1996, Singh and Chandra, 2003, Chandra and Singh, 2004]. More recently, the authors in [He et al., 2015]
introduce PReLU, a parametric version of ReLU, which modifies the function shape when the argument is
negative. However, the resulting function remains basically a modified version of the ReLU function that can
change its shape in a restricted domain. In [Clevert et al., 2015] ELU function is proposed, which outperforms
the results obtained by ReLU on CIFAR100 dataset, becoming one of the best activation function currently
known. However, it needs an external parameter α to be set. In [Trottier et al., 2017] PELU unit is proposed,
where the need to manually set the α parameter is eliminated using two additional trainable parameters.

3

In all the approaches previously described, although the number of added parameters for each node is
low, the expressive power of the trainable activation functions is limited.

2.2 Linear combination of one-variable functions

In this case, activation functions are modelled in terms of linear combinations of one-variable functions.
These one-variable functions can in turn have additional parameters. For example, in [Agostinelli et al.,
2014] each activation function is represented as a linear combination of S hinge-shaped functions. Each hinge-
shaped function has just one parameter which regulates the location of the hinge. The number of additional
parameters that must be learned when using this approach is 2SM , where M is the total number of hidden
units in the neural network. During the learning phase, the network can be trained using standard methods
based on backpropagation. Any continuous piecewise-linear function can be approximated arbitrarily well
provided the number S of hinge-shaped functions is sufficiently large.

A similar approach has been recently proposed by [Scardapane et al., 2018]. In this case, the activation
function is modelled as a linear combination of S fixed functions, where the S fixed functions are defined in
terms of parametric kernel functions. The parameters of the kernel functions are computed before the network
learning phase by some heuristic procedure applied on the data set. During the network learning phase the
number of additional parameters is SM , however for the kernel functions a number of KS parameters must
be computed in a prior stage (where k is the number of parameters of the kernel functions). In case of a
correct choice of the parameters of the kernel functions, any continuous one-to-one function defined on a
compact set can be approximated arbitrarily well, provided the number of kernel functions is sufficiently
large.

In [Ertuğrul, 2018], in the context of random weight artificial neural networks, a trainable activation
function is proposed in terms of a polynomial function of degree p. The coefficients of the polynomial
function are computed by linear regression. The number of added parameters corresponds to the number
p + 1 of coefficients for each neuron.

2.3 Ensemble of standard activation functions

In this type of approaches, activation functions are defined as an ensemble of a predetermined number
of standard activation functions. For example, the authors of [Jin et al., 2016] designed an activation S-
shape function composed by three linear functions taking inspiration by Webner-Fechner [Fechner, 1966] and
Stevens law [Stevens, 1957], or in [Qian et al., 2018] a mixture of eLU and ReLU is presented. Interestingly,
in [Sütfeld et al., 2018] the authors propose a trainable activation function in terms of a linear combination
of n different, predefined and fixed functions such as hyperbolic tangent (tanh), ReLU and ELU. The added
parameters are the n coefficients of the linear combination for each hidden neuron. A similar approach is
proposed in [Harmon and Klabjan, 2017] where the authors model the trainable activation function as a
linear combination of a predefined set of n normalized fixed activation functions. The added parameters
are the coefficients of the linear combination and a set of offset parameters, η and δ, which are used to
dynamically offset the normalization range for each predefined function. Moreover, in order to force the
network to choose amongst the predefined activation functions, during the learning process it is required
than all the coefficients of the linear combination add to one. This then gives rise to another optimization
process unrelated to the classic learning procedure for neural networks

2.4 Other approaches

Two interesting and successful approaches are Maxout[Goodfellow et al., 2013, Sun et al., 2018] and NIN[Lin et al.,
2013]. However, despite the good performances, both approaches move away from the concept of trainable
activation function as it has been previously discussed insofar as the adaptable function does not correspond
to the neuron activation function by which the neuron output is computed on the basis of a scalar value
(the neuron input) according to the standard two-stage process. In fact, in Maxout, instead of computing
the input ai of a neuron i and then assigning it as input to a trainable activation function, n input aij are
computed, with j = 1, . . . , n, by n trainable linear functions, and then the maximum is taken over the output
of these linear functions. NIN instead represents an approach used specifically in the case of convolutional

4

neural networks, wherein the nonlinear parts of the filters are replaced with a fully connected neural network
acting on all channels simultaneously.

Another interesting way to tackle the problem is to use interpolating functions as in [Scardapane et al.,
2017, Trentin, 2001]. For example, in [Scardapane et al., 2017] the authors propose an adaptable activation
function by using a cubic spline interpolation, whose q control points for each neuron are adapted in the
optimization phase. External methods to classic approaches in neural networks are needed to train the added
parameters q ∗m, where m is the number of hidden neurons.

2.5 Summarizing

In all the known approaches, to the best of the our knowledge, either the expressive power of the trainable ac-
tivation functions is limited or they add new learning mechanisms, constraints and categories of parameters,
by contrast in our approach we achieve a feed-forward neural network with trainable activation functions
by a feed-forward neural network with fixed activation functions, thus leaving unaltered the classic learning
mechanisms and categories of parameters. Thus, in our approach a number of attractive properties are si-
multaneously satisfied: p1) the trainable activation function can approximate arbitrarily well any continuous
one-to-one mapping defined on a compact input domain, p2) any standard learning mechanism for neural
network can be directly and easily applied, p3) no learning process in addition to those classically used for
neural networks is added, p4) the added parameters are network weights or biases , therefore any classical
regularization method can be used, including the possibility of imposing sparsity by using norms such as l1.

None of the known approaches possess all these properties simultaneously. For example, property p1 is
non satisfied for all the approaches discussed in Section 2.1 and 2.3, the approaches discusses in Section 2.2
either do no satisfy property p1 as in [Agostinelli et al., 2014] or property p3 as in [Scardapane et al., 2018].

Interestingly, as we will discuss in Section 3 our architecture represents a general framework in which all
the approaches described in Section 2.2 and some of the approaches in Section 2.3 can be included, insofar
as any linear combination of m one-variable functions can be represented by a sub-network with m hidden
neurons.

3 System architecture

3.1 Proposed model: Variable Activation Function Subnetwork

In general, as already introduced in Section 1, in a MLFF network the output of a neuron i belonging to the
l-th layer is obtained by a two-step computation (see [Bishop, 2006], Chapter 4). The first step computes
the input ali =

∑
j

wl
ijz

l−1

j + bli, where j runs over neuron’s indexes (or network input values) of the previous

layer l − 1, which send connections to i, zl−1

j are the output of the neurons belonging to the previous layer

(or network input values), wl
ij are the connection weights going from the neurons j of the previous layer l−1

to the neuron i, and bli is the bias associated to the neuron i . The output of the neuron i is then computed
in a second step transforming the input ali using a fixed activation function f , obtaining zli = f(ali).

The key idea of our approach is to implement the second step of the computation by a “small” one-hidden
layer sub-network, with k hidden neurons and just one input and one output neuron. Let us call it Variable
Activation Function (henceforth, VAF) sub-network. So, a VAF for a neuron i can be described as a network
composed by:

• an hidden layer, composed by k > 1 neurons directly connected to the neuron i by a set of weights αh

, with h = 1, 2, · · · , k;

• a fixed activation function g for the k hidden neurons;

• an output layer composed by a single neuron connected to all the neurons of the hidden layer by a set
of weights βh, with h = 1, 2, · · · k.

The computation of a VAF sub-network associated to a neuron i can be described as follows: VAF sub-
network is fed with the input ai of the neuron i, then the k neurons of the hidden layer compute k outputs as

5

Σ Ix I

·

R
e
L
U

β
1

·

R
e
L
U

β
2

·

R
e
L
U

β3

·

R
e
L
U

β4

α1

α2

α3

α
4 ...

Figure 1: A general VAF scheme; with I we indicate the identity function

yh = g(αhai + α0h) with h = 1, 2, · · · , k, while the output neuron computes z =
∑

h βhyh + β0. αh and α0h

are weights and biases of the hidden layer of the VAF sub-network, respectively, and βh and β0 are weights
and bias of the output layer of VAF sub-network, respectively. In this way the output zi of the neuron i can
be expressed as:

zi = V AF (ai) =

k∑

j=1

βjg(αjai + α0j) + β0 (1)

αj , α0j , βj and β0 are the parameters to be learned from data during the training process.
A general schema of a VAF unit is shown in figure 1. This schema enables one to approximate arbitrarily

well any activation function provided that:

• the number k of hidden neurons in the VAF is sufficiently large;

• the activation function g of the hidden layer is a not-polynomial function.

As already discussed in Section 1, the first condition is given in [Hornik et al., 1989, Hornik, 1991], where
it was shown that a shallow networks can approximate any continuous function provided that a sufficient
number of hidden neurons are available and that the activation function is continuous, bounded and non-
constant. This result was generalized in [Leshno et al., 1993], where it is proved that a shallow network
can approximate any continuous function to any degree of accuracy if and only if the network’s activation
function is not polynomial. Therefore a VAF activation function can substitute any other network activation
function without loss in generality, and having as overhead only an increase in the number of networks
parameters, that is equal to N · (3k+1) with N total number of the hidden neurons of the network. Anyway,
the number of required parameters can drop to L · (3k + 1), with L number of hidden layers, if we adopt
the shared weights principle, so that the functions on the same layer share the same VAF weights. With
this design choice, we reduce the number of parameters by making the reasonable assumption that if one
function is good for a single neuron, then it should also be good for the other neurons of the same layer.
This assumption can also be motivated, instead of under the profile of the sub-networks weights, in terms of
activation function of a classic neural networks used in the neural network literature, where neurons on to
same layer exhibit the same activation function. Summing up, under the shared weights principle for every
network layer the only added hyper-parameters to set are:

• the number k of hidden neurons of the VAF subnetwork;

• the activation function g(·) of the VAF hidden neurons.

It is worth to emphasize the fact that, in our approach, we have a neural network architecture which is
still a MLFF network with fixed activation functions, without adding any external structure or parameters.
Let us clarify this aspect (see also Figure 2). Given a neuron i belonging to l-th layer of a MLFF network
Net, its output is computed as zli = f(ali), in our approach we substitute the activation function f with the

6

x1

x2

...

xd

h1

h2

...

hs

m′

1

...

m′

n

m′

1

...

m′

n

m′

1

...

m′

n

y′1

y′2

...

y′d

h1

h2

...

hl

m′′

1

...

m′′

n

m′′

1

...

m′′

n

m′′

1

...

m′′

n

y′′1

y′′2

...

y′′d

· · ·

· · ·

· · ·

in
p

u
t

la
y
er

VAF layer VAF layer

...

...

...

...Prev. layer Conv. layer Feature maps

VAF

Figure 2: an example of VAF in a 2 full connected network (on the left) and in a convolutional layer (on the
right)

Identity function, thus obtaining zli = ali. Then, we add a VAF sub-network which receives as input variable
the output zli of the neuron i and computes its output as defined in eq. 1. Finally, this output is sent as
input of the next layer l + 1 of Net. This procedure is uniformly performed for all the neurons of the MLFF
network Net, but the output layer. Thus, one obtains a new neural network V afNet which is still a MLFF
network with fixed activation functions, however it behaviours as Net equipped with trainable activation
functions expressed in terms of eq. 1. Consequently, any standard training procedure can be left unaltered
(e.g., Stochastic Gradient Descent).

Figure 2 shows how a VAF network can be integrated into a common multilayer full-connected neural
network (on the left) and in a convolutional neural network (on the right).

Notably, given that a VAF subnetwok performs a linear combination of one-variable functions, any
approach discussed in Section 2.2 can be included in this schema, provided to choose suitably the activation
function g and the parameters α and β.

3.2 VAF network learning

As discussed above, our neural architecture including VAF is a MLFF network, consequently it can be
trained using any learning algorithm dedicated to MLFF network. However, in case of the same VAF acting
uniformly for all neurons of a layer, then there is the constrain that the weights of VAF networks should
be considered shared weights. From an implementation point of view this corresponds to consider a VAF
network as a function convolving with the ali values [Lin et al., 2013]. The weight values of the VAF, being
few and connected to each unit, influence the behaviour of the entire network, therefore their behaviour
must be taken into consideration during the training phase, and, in particular, the initial value of the VAF
weights can be decisive. The training of a neural network usually starts initializing the weights and biases
in a random way [Bishop, 2006], or using any initialization rule as for example [Glorot and Bengio, 2010].
Although these approaches can also be followed in our case, it is possible to choose different solutions for the
VAF weights initialization. In particular, a possible alternative is to select the initial weights of the VAF so
that at the beginning of the learning process the VAF networks approximate a fixed function. For example,
we can select a classic activation function as ReLU or sigmoid, or the f activation function associated to the
other hidden layers of the network. In this way hypothetically the function would start from a notoriously
already valid form in which the training process should only modify it just enough to improve the performance
of the network based on the training data. However, it should be kept in mind that this choice can affect
negatively the solution generated by the learning process, given that the resulting VAF can be too similar

7

to the initial function.

Algorithm 1: Standard learning schema

Input: TS, V S, net, MaxEpochs: TS and V S are training and validation datasets, respectively; net
is the network to be trained; MaxEpochs is the maximum number of epochs

Output: trainNet: Trained net
1 net← weightAndBiasInitialization(net) ;
2 bestNet← net ;
3 n← 0, minErr ←MAX ;
4 repeat

5 n← n + 1 ;
6 net← learningAlgorithm(net, TS) ;
7 errorT (n)← Sim(net, TS);
8 errorV (n)← Sim(net, V S);
9 if errorV (n) < minErr then

10 minErr ← errorV (n);
11 bestNet← net;

12 end

13 until n > MaxEpochs OR earlyStoppingCriteria(errorT,errorV);
14 trainNet← bestNet;

4 Experimental results

In this section we provide an experimental evaluation of the proposed trainable activation function archi-
tecture. In order to achieve a first clue on the validity of our approach, and some heuristic indications
for the initialization strategies of VAF networks, in Section 4.1 we report some preliminary experiments on
Sensorless, a relatively small classification dataset used as standard benchmark for supervised techniques.

On the basis of the results of these experiments, we performed two different series of experiments to
test our approach on MLFF networks. In the former, we consider standard MLFF networks (Section 4.2) ,
and in the latter convolutional MLFF networks (Section 4.3). In Section 4.2 we consider both classification
and regression problems using 20 different datasets. In Section 4.3 we consider more large-scale dataset as
MNIST, Fashion MNIST and CIFAR10.

4.1 VAF subnetworks: Activation functions, number of hidden neurons and

weight initialization

For a preliminary analysis of the validity of our approach, and for defining some heuristic choices about
VAF subnets such as the number and the activation functions of the hidden neurons, we perform a series
of experiments on Sensorless dataset (see table 1 for details), partitioning it in a random sample of 60%
for training, 20% for validation and another 20% for testing. According to what was also reported in
[Scardapane et al., 2018], if one uses a standard shallow network, i.e., 1-hidden layer network, we found that
tanh is the best fixed activation function for this dataset. In particular, using a shallow network with 50
hidden neurons we obtained an accuracy on the test set very close to 100%. Thus, to better investigate the
impact of our approach we chose a more “difficult situation” for a shallow network using network models
with a small number of hidden neurons. More in detail, we selected three small shallow nets with 5, 10 and
20 hidden neurons.

For each model, We perform a set of experiments using different activation functions.
Firstly, we train these small networks using as fixed activation functions either tanh or ReLU , then we

repeat the same experiments substituting the fixed activation functions with VAF subnets as described in
Section 3. We considered several scenarios: 1) different number k of VAF hidden neurons, in particular
k ∈ {3, 5, 7, 9, 11, 15}; 2) tanh and ReLU as activation functions for VAF hidden neurons; 3) two different
strategies for weight initialization of VAF subnets, both a classic random initialization and a weight ini-
tialization by which VAF subnets have a behaviour very similar to activation functions of the VAF hidden
neurons, we will call the latter specific weight initialization; 4) as discussed in Section 3, we examine both

8

the case in which VAF subnets on the same layer share the weights (shared weights principle) and the case
in which VAF subnets on the same layer can have different weights.

We trained all the networks using ADAM algorithm [Kingma and Ba, 2014] for 500 epochs. Furthermore,
we repeat our experiments for 10 times.

Results

In Figure 3a, 3b and 3c are reported the results with respect to the shallow networks with 5, 10 and 20
hidden neurons, respectively, in the case in which VAF subnets on the same layer do not share the weights.
In Figure 4a, 4b and 4c are reported the results in the case in which VAF subnets on the same layer share
the weights.

Notably, one can observe that all the models equipped with VAF subnets outperform the corresponding
shallow networks. Interestingly, these results support the possibility of using a shared VAF approach with
a fairly low number of VAF hidden neurons, thus having a lower number of parameters to be learned. In
fact, the two approaches, non-shared (Figure 3) and shared (Figure 4) VAF subnets, exhibit a very similar
behaviour, and although in all cases accuracy tends to increase as the number of neurons of the VAF subnets
increases, this increase is not always very relevant. The two types of VAF weight initialization seem to give
similar results, with slightly better performances for random initialization. The use of tanh or ReLU as
activation function of VAF hidden neurons, on the other hand, seems to significantly change the network
performance. In fact, the accuracy obtained by networks with ReLU activation function for the VAF hidden
neurons is uniformly lower than those obtained with the tanh activation function. We suppose that this
result is due to the fact that we are always using shallow nets.

In Figure 5a and 5b are reported the output values of trained VAF subnetworks when a random or a
specific weight initialization is chosen, respectively. One can note that the resulting activation functions are
often strongly different from the classic tanh and ReLU, and that they exhibit similarly a high degree of
non-linearity.

4.2 Full-connected MLFF networks: classification and regression

In this experimental scenario we focus on evaluating the impact of both VAF subnetworks and VAF weight
initialization using full-connected MLFF networks with 1 or 2 hidden layers trained on 20 public datasets
(see Table 1). 10 of these datasets are suitable for classification problems, and 10 for regression problems.
The number of hidden neurons varies in the set {10, 25, 50, 100}, but for neural networks with 2 hidden
layers we only selected neural networks with a number of hidden neurons belonging to the first layer larger
than the number of hidden neurons of the second layer. ReLU was selected as activation function g of the
hidden neurons of VAF sub-networks. Thus, for each dataset we obtained 4 network models with 1-hidden
layer, and 6 with 2-hidden layers. Let us call netm1

and netm1,m2
the 1-hidden and 2-hidden layer networks,

respectively, with m1,m2 ∈ {10, 25, 50, 100}. On the basis of what was discussed in Section 3, to each
network netm1

(netm1,m2
) it is possible to associate a neural network vnetkm1

(vnetkm1,m2
) equipped with

VAF subnetworks, where k is the number of hidden neurons of VAF subnetworks.
On the basis of the results discussed in Section 4.1, we considered VAF subnets shared on each layer,

and k = 3. In Table 2 we report the neural network architectures used in this series of experiments. Neural
network architectures were sorted in ascending order according to their complexity. Networks were trained
according to an usual learning approach, described in Algorithm 1. In particular, we used a batch approach,
RProp [Riedmiller and Braun, 1992], with “small” datasets, i.e, when the number of examples was less than
5·103, otherwise we used a mini-batch approach, RMSProp [Tieleman and Hinton, 2012]. Moreover, networks
with VAF subnetworks were trained using both a random initialization and an specific weight initialization
such that they approximate a ReLU function. All the network models, i.e., netm1

,netm1,m2
,vnetkm1

and
vnetkm1,m2

were compared in a K-fold cross validation schema (see Algorithm 2), with K = 10.
Note that Learning Rate (LR) in RMSProp spans in the range [0.0001, 0.1], considering 10 equispaced

values, while in RProp η+ was selected equal to 1.01, and η− equal to 0.5. In Table 3 are summarized the

9

noV noV 3 5 7 9 11 13 15

vaf hidden neurons

0.85

0.9

0.95

1

A
cc

ur
ac

y

noVaf, af:tanh
noVaf, af:relu
vaf: rand init, af:tanh
vaf: rand init, af:relu
vaf:tanh init, af:tanh
vaf:relu init, af:relu

(a) Shallow Network with 5 hidden neurons

noV noV 3 5 7 9 11 13 15

vaf hidden neurons

0.85

0.9

0.95

1

A
cc

ur
ac

y

noVaf, af:tanh
noVaf, af:relu
vaf: rand init, af:tanh
vaf: rand init, af:relu
vaf:tanh init, af:tanh
vaf:relu init, af:relu

(b) Shallow Network with 10 hidden neurons

noV noV 3 5 7 9 11 13 15

vaf hidden neurons

0.85

0.9

0.95

1

A
cc

ur
ac

y

noVaf, af:tanh
noVaf, af:relu
vaf: rand init, af:tanh
vaf: rand init, af:relu
vaf:tanh init, af:tanh
vaf:relu init, af:relu

(c) Shallow Network with 20 hidden neurons

Figure 3: Test accuracy of networks with different VAF subnets on each layer. Using Sensorless dataset,
we trained three small shallow networks composed of 5, 10 and 20 hidden neurons with fixed activation
functions corresponding to either tanh or ReLU . In figure such networks are referred as noVaf. Then we
repeated the same experiments substituting the fixed activation functions with VAF subnets. The number
VAF hidden neurons ranges in k ∈ 3, 5, 7, 9, 11, 15, the possible activation functions for VAF hidden neurons
are tanh and ReLU . Weight initialization of VAF subnets is either a classic random initialization or a weight
initialization by which VAF subnets have a behaviour very similar to activation functions of the VAF hidden
neurons. VAF subnets on the same layer can have different weights.

10

noV noV 3 5 7 9 11 13 15

vaf hidden neurons

0.85

0.9

0.95

1

A
cc

ur
ac

y

noVaf, af:tanh
noVaf, af:relu
vaf: rand init, af:tanh
vaf: rand init, af:relu
vaf:tanh init, af:tanh
vaf:relu init, af:relu

(a) Shallow Network with 5 hidden neurons

noV noV 3 5 7 9 11 13 15

vaf hidden neurons

0.85

0.9

0.95

1

A
cc

ur
ac

y

noVaf, af:tanh
noVaf, af:relu
vaf: rand init, af:tanh
vaf: rand init, af:relu
vaf:tanh init, af:tanh
vaf:relu init, af:relu

(b) Shallow Network with 10 hidden neurons

noV noV 3 5 7 9 11 13 15

vaf hidden neurons

0.85

0.9

0.95

1

A
cc

ur
ac

y

noVaf, af:tanh
noVaf, af:relu
vaf: rand init, af:tanh
vaf: rand init, af:relu
vaf:tanh init, af:tanh
vaf:relu init, af:relu

(c) Shallow Network with 20 hidden neurons

Figure 4: Test accuracy of networks with shared VAF subnets on each layer. Using Sensorless dataset, we
trained three small shallow networks composed of 5, 10 and 20 hidden neurons with fixed activation functions
corresponding to either tanh or ReLU . In figure such networks are referred as noVaf. Then we repeated the
same experiments substituting the fixed activation functions with VAF subnets. The number VAF hidden
neurons ranges in k ∈ 3, 5, 7, 9, 11, 15, the possible activation functions for VAF hidden neurons are tanh and
ReLU. Weight initialization of VAF subnets is either a classic random initialization or a weight initialization
by which VAF subnets have a behaviour very similar to activation functions of the VAF hidden neurons.
VAF subnets on the same layer share the weights.

11

-10 0 10
-4

-2

0

2

4

6

V
A

F
 h

id
de

n
ne

ur
on

s:
 T

an
h

-10 0 10
-10

-5

0

5

10

-10 0 10
-20

-10

0

10

20

-10 0 10
-10

-5

0

5

10

-10 0 10
-15

-10

-5

0

5

10

15

-10 0 10
-8

-6

-4

-2

0

2

-10 0 10
0

50

100

150

200

V
A

F
 h

id
de

n
ne

ur
on

s:
 R

el
u

-10 0 10
-300

-200

-100

0

100

-10 0 10
-250

-200

-150

-100

-50

0

50

-10 0 10
-10

0

10

20

30

40

-10 0 10
-150

-100

-50

0

50

-10 0 10
-50

0

50

100

(a) Random Initialization

-10 0 10
-2

0

2

4

6

V
A

F
 h

id
de

n
ne

ur
on

s:
 T

an
h

-10 0 10
-15

-10

-5

0

5

10

-10 0 10
-15

-10

-5

0

5

10

15

-10 0 10
-5

0

5

10

15

-10 0 10
-20

-10

0

10

20

-10 0 10
-10

-5

0

5

10

-10 0 10
-20

0

20

40

60

V
af

 h
id

de
n

ne
ur

on
s:

 R
el

u

-10 0 10
-150

-100

-50

0

50

-10 0 10
-20

0

20

40

60

80

100

-10 0 10
-50

0

50

100

150

200

250

-10 0 10
-60

-40

-20

0

20

-10 0 10
-100

-50

0

50

(b) Specific Initialization

Figure 5: Examples of trained VAF subnetworks. On the y-axis we plot the output value of the VAF. In 5a
are plotted trained VAF subnetworks when a random weight initialization is chosen. In 5b when a specific
weight initialization is chosen

12

Name Istances Input Dim. N. classes Task Neural Network Arch. Ref.
CPU-Small 8192 12 - Regress. MLFF Dheeru and Karra Taniskidou [2017]
DeltaElevator 9517 6 - Regress. MLFF https://www.dcc.fc.up.pt [2009]
Elevators 16599 18 - Regress. MLFF https://www.dcc.fc.up.pt [2009]
Kinematics 8192 8 - Regress. MLFF https://www.dcc.fc.up.pt [2009]
Puma-8NH 8192 8 - Regress. MLFF https://www.dcc.fc.up.pt [2009]
Puma-32NH 8192 32 - Regress. MLFF https://www.dcc.fc.up.pt [2009]
Servo 197 4 - Regress. MLFF Dheeru and Karra Taniskidou [2017]
Energy Cooling 768 8 - Regress. MLFF https://www.dcc.fc.up.pt [2009]
Energy Heating 768 8 - Regress. MLFF https://www.dcc.fc.up.pt [2009]
Yatch 308 7 - Regress. MLFF Dheeru and Karra Taniskidou [2017]
Sensorless 58509 49 11 Classif MLFF Dheeru and Karra Taniskidou [2017]
Liver 345 7 2 Classif. MLFF Dheeru and Karra Taniskidou [2017]
Wine 178 13 3 Classif. MLFF Dheeru and Karra Taniskidou [2017]
Statlog Image Segmentation 2310 19 7 Classif. MLFF Dheeru and Karra Taniskidou [2017]
Statlog Landsat Satellite 6435 36 7 Classif. MLFF Dheeru and Karra Taniskidou [2017]
Cardiotocography 2126 22 3 Classif. MLFF Dheeru and Karra Taniskidou [2017]
Seismic bumps 2584 18 2 Classif. MLFF Sikora and Wróbel [2010]
Dermatology 336 35 3 Classif. MLFF Dheeru and Karra Taniskidou [2017]
Diabetic retinopathy debrecen 1151 19 2 Classif. MLFF Antal and Hajdu [2014]
QSAR biodegradation 1055 41 2 Classif. MLFF Mansouri et al. [2013]
Climate model simulation 540 18 2 Classif. MLFF Lucas et al. [2013]
MNIST 70000 28× 28 10 Classif. CNN LeCun and Cortes [2010]
Fashion MNIST 70000 28× 28 10 Classif. CNN Xiao et al. [2017]
Cifar10 60000 32× 32× 3 10 Classif. CNN Krizhevsky and Hinton [2009]

Table 1: Properties of the datasets used for the experiments, and architectures of the neural network applied
to the data.

parameters of this series of empirical evaluations.

Algorithm 2: K-fold cross validation procedure

Input: Dataset D, network model mnet, number of folds k, hyper-parameters values {p1, p2, . . . , pn}
with pi = { possible values for i-th parameter } with 1 ≤ i ≤ n

1 FoldResults = [];

2 split D in a k−partition P k(D) ;
3 forall 1 ≤ i ≤ k do

4 TestSet← P k
i (D);

5 R← P k(D) \ {TestSet};
6 split R in a 2−partition P 2(R) ;
7 TrainSet← P 2

1 (R);
8 V alSet← P 2

2 (R);
9 bestParams← ∅;

10 bestResults← ∅;
11 forall h ∈ p1 × p2 × · · · × pn do

12 model ← Train(mnet, T rainSet, V alSet, h);
13 results← Sim(model, T estSet);
14 if results better than bestResults then

15 bestResults← results;
16 bestParams← h;
17 bestModel← model;

18 end

19 end

20 FoldResults[i]← bestResults;

21 end

22 return Average(FoldResults)

Results

In Table 4 and 5 are showed mean and standard deviations of RMSE and accuracy for regression and clas-
sification datasets, respectively, by using a K-fold cross-validation approach. The best results are displayed

13

Table 2: Neural network architectures used in the first experimental scenario. See text for further details.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Stand net10 net25 net50 net100 net25,10 net50,10 net100,10 net50,25 net100,25 net100,50

VAF vnet
3

10 vnet
3

25 vnet
3

50 vnet
3

100 vnet
3

25,10 vnet
3

50,10 vnet
3

100,10 vnet
3

50,25 vnet
3

100,25 vnet
3

100,50

Table 3: Parameters of the first experimental scenario. See text for further details.

m1, m2 k VAF initialization Learning approaches # maximum epochs K

{10, 25, 50, 100} {3} {Random, ReLU} {RMSProp, RProp} 300 10

in bold.
In case of the regression datasets, VAF approach uniformly overcomes standard approach. Only in one

case we obtain the best result with a standard approach. For four datasets (DeltaElevator, Elevators, Puma-
32H and Yatch) RMSE ’s mean obtained by VAF networks results much smaller than RMSE obtained by
neural network without VAF subnetwork. For example in DeltaElevator dataset RMSE’s mean was reduced
by two (VAF init random) and one (VAF Init ReLU) order of magnitude. Moreover standard deviations
remain comparable or lower than those without VAF subnetworks. This suggests that the training process
of network with VAF subnetworks is sufficiently stable.

Similar results were obtained with classification datasets (see Table 5). Neural networks with VAF outper-
forms neural networks without VAF. Only in two datasets (20%) neural networks without VAF outperforms
neural networks with VAF. Also in this case, standard deviations remain comparable or lower than those
without VAF.

In Figure 5 and 6 are reported some VAF subnetwork behaviours at the end of the learning process.

standard Relu VAF Init random VAF Init ReLU
RMSE: mean + St.Dev RMSE: mean + St.Dev RMSE: mean + St.Dev

CPUsmall 0.0616± 0.0016 (net50,10) 0.0593± 0.0017 (vnet3100) 0.0606± 0.0032 (vnet3100,10)
DeltaElevator 0.1355± 0.0055 (net25) 0.0030± 0.0006 (vnet3100,50) 0.0414± 0.0393 (vnet310)

Elevators 1.2746± 0.3741 (net50,10) 0.0068± 0.0003 (vnet350,25) 0.1915± 0.1658 (vnet310)
Kinematics 0.1090± 0.0040 (net100) 0.1315± 0.0185 (vnet325) 0.0935± 0.0048 (vnet350,25)
Puma-8NH 0.1336± 0.0023 (net25,10) 0.1316± 0.0018 (vnet3100,10) 0.1331± 0.0025 (vnet325,10)
Puma-32H 0.2372± 0.1473 (net25,10) 0.0273± 0.0005 (vnet3100,10) 0.0317± 0.0039 (vnet325,10)

Servo 0.0946± 0.0158 (net100) 0.0896± 0.0276 (vnet310) 0.0961± 0.0271 (vnet325)
Energy Cooling 0.0417± 0.0014 (net100,10) 0.0461± 0.0024 (vnet3100,25) 0.0400± 0.0026 (vnet350,25)
Energy Heating 0.0206± 0.0026 (net100,10) 0.0304± 0.0237 (vnet325,10) 0.0213± 0.0027 (vnet3100,10)

Yatch 0.2442± 0.1146 (net25) 0.3435± 0.2186 (vnet3100) 0.1481± 0.0553 (vnet325)

Table 4: RMSE for the experiments on the regression datasets. We used a K-Fold Cross-validation evaluation.
In bold the best results. The best neural architecture for each case is between parentheses.

4.3 Convolutional MLFF networks

In order to evaluate experimentally the impact of VAF on Convolutional Neural Networks (CNN), we consider
standard CNN networks with 2 and 3 convolutional layers, and run experiments on three different dataset:
MNIST, Fashion MNIST and CIFAR10 (see Table 1 for further details). As discussed in Section 3.2 and
Section 4.2, a key aspect is the initialization of the VAF networks. Thus, also in this case, we chose to
initialize the weights of the VAF subnetworks either randomly or to approximate a ReLU function. To this
aim, we build two CNN architectures (similar to the basic network used in [Lin et al., 2013]), the first one
composed of 2-layer CNN networks used for MNIST and Fashion-MNIST and the second one composed
of 3-layers trained and tested with the more complex CIFAR10 dataset. Let us call cnetA2

and cnetA3

respectively the 2-layer CNN and the 3-layer CNN; as stated in Section 3, it is possible to associate to each

14

standard Relu VAF Init random VAF Init ReLU
Accuracy: mean + St.Dev Accuracy: mean + St.Dev Accuracy: mean + St.Dev

Liver 0.6203± 0.0474 (net25,10) 0.6290± 0.0378 (vnet3100,10) 0.6348± 0.0375(vnet325)
Wine 0.8879± 0.0516 (net10) 0.9552± 0.0371 (vnet350) 0.9162± 0.0434 (vnet310)

Image segmentation 0.9463± 0.0128 (net25) 0.9351± 0.0179 (vnet350) 0.9381± 0.0079 (vnet350)
Satellite image 0.8821± 0.0101 (net100,50) 0.8856± 0.0028 (vnet3100) 0.8875± 0.0080 (vnet3100,25)

CTG 0.8979± 0.0263 (net100) 0.9040± 0.0073 (vnet3100) 0.8984± 0.0261 (vnet350,25)
Seismic bumps 0.9346± 0.0009 (net10) 0.9234± 0.0074 (vnet310) 0.9342± 0.0001 (vnet310)
Dermatology 0.9749± 0.0116 (net50,25) 0.9692± 0.0182 (vnet310) 0.9750± 0.0248 (vnet3100)

Diabetic 0.7254± 0.0290 (net100) 0.7315± 0.0238 (vnet310) 0.7333± 0.0231 (vnet350)
Biodegradation 0.8635± 0.0336 (net10) 0.8673± 0.0225 (vnet3100,10) 0.8569± 0.0108 (vnet350)

Climate simulation 0.9500± 0.0140 (net50,25) 0.9519± 0.0211 (vnet310) 0.9556± 0.0240 (vnet3100)

Table 5: Accuracies for the experiments on the classification datasets. We used a K-Fold Cross-validation
evaluation. In bold the best results. The best neural architecture for each case is between parentheses.

-50 0 50
-0.3

-0.2

-0.1

0

-50 0 50
-0.1

0

0.1

0.2

0.3

-50 0 50
0

10

20

30

-50 0 50
-5

0

5

10

(a) Regression

-50 0 50
-10

-5

0

5

-50 0 50
-1

0

1

2

3

-50 0 50
-3

-2

-1

0

-50 0 50
-60

-40

-20

0

20

(b) Classification

Figure 6: Plots of some VAF behaviours at the end of the learning process. In 6a for regression datasets, in
6b for classification datasets.

cnet a neural network vcnetk equipped with VAF sub-networks having k hidden units. The experiments were
preformed using a 10-fold cross validation schema as described in 2. Networks were trained using Stochastic
Gradient Descent (SGD) method with mini-batching.

Furthermore, we compare our architecture with two other neural architectures also equipped with train-
able activation functions. The first one is KAFnet, a very recent and promising approach proposed in
[Scardapane et al., 2018] and already discussed in Section 2.2. The second one is Network in Network (NIN),
a successful approach proposed in [Lin et al., 2013] and already discussed in Section 2.4. To this aim, we used
the same experimental settings described in [Scardapane et al., 2018], i.e., a convolutional MLFF network
composed by two convolutional layers, each of these followed by a 3×3 maxpooling layer and a dropout layer
of 0.25 (see Table 6). To distinguish it from the others models, we will call this network cnetB. Starting from
cnetB, we obtained three different types of neural networks with trainable activation functions according to
three different procedures proposed for KAFnet, NIN and VAF. We use the classic CIFAR10 data config-
uration (50000 training samples + 10000 test samples) to train the three types of obtained networks. The
network cnetB with fixed activation function corresponding to ReLU is also considered as baseline. Finally,
we repeat the same setup using MNIST and Fashion-MNIST dataset.

Properties of the used CNN architectures and learning process are summarised in table 6.

Results

In Table 7 are shown mean and standard deviations of accuracies for the three datasets Cifar10, MNIST and
Fashion MNIST, using a 10-fold cross-validation approach for the neural architecture summarized in the first

15

Table 6: Parameters of the second experimental scenario. See text for further details.

Name Layers VAF initialization Learning approaches # maximum epochs

cnetA2
2× (Conv. 192 + Maxout + Dropout) {Random, ReLU} SGD 300

cnetA3
3× (Conv. 192 + Maxout + Dropout) {Random, ReLU} SGD 300

cnetB 2× (Conv. 150 + Maxout + Dropout) Random Adam 300

two rows of Table 6. The best results are reported in bold style. One can note that VAF approach uniformly
outperforms the standard approach, especially when using a random initialization scheme. Also in this exper-
imental scenario the standard deviations obtained by networks with VAF remain comparable or lower than
those without VAF subnetworks. Especially for the CIFAR10 dataset, we obtain a considerable improvement.

In Figures 7 and 8 are shown some examples of trained activation functions respectively in vcnnA2
and

vcnnA3
; it should be noted the influence of VAF initialization on the trained activation function: it seems

that, in case of initialization as ReLU, the initial shape remains mostly unchanged, giving a resulting function
that looks like a PReLU/Leaky ReLU. A more interesting behaviour is given by random initialization, where
every VAF unit seems to exhibit greater changes respect to the initial function. This greater variability given
by random initialization respect to ReLU initialization seems to give an improvement in accuracy results as
shown in Table 7.

In Table 8 we show the performances of KAFnet, NIN and VAF network on the two datasets Fashion-
MNIST and CIFAR10 6 in terms of accuracy. VAF network outperforms KAF and NIN on both the dataset
CIFAR10 and Fashion MNIST. We do not report the MNIST results because are all very similar between
them (over the 99% of accuracy). Notably, therefore, also with respect to two other two approaches with
trainable activation functions known in literature, our approach results in better performance.

standard ReLU VAF Init random VAF Init ReLU
Acc. + St.Dev Acc. + St.Dev Acc. + St.Dev

Cifar10 0.857± 0.002 (cnet53) 0.875± 0.003 (vcnet5A3
) 0.860± 0.002 (vcnet5A3

)
MNIST 0.991± 0.001 (cnet5A2

) 0.994± 0.001 (vcnet5A2
) 0.993± 0.002 (vcnet5A2

)
Fashion MNIST 0.923± 0.001 (cnet5A2

) 0.935± 0.002 (vcnet5A2
) 0.934± 0.001 (vcnet5A2

)

Table 7: Results of the convolutional networks with a 10-fold cross Validation with cnetA.

standard ReLU VAF(M=5) KAF(D=20) NIN
Accuracy Accuracy Accuracy Accuracy

Cifar10 0.707 0.812 0.802 0.763
MNIST 0.995 0.995 0.995 0.996

Fashion MNIST 0.920 0.935 0.929 0.925

Table 8: Comparison between different activation functions on different dataset using the standard division
on cnetB.

5 Conclusion

In this work, we proposed a simple and direct way to obtain adaptable activation functions in feed-forward
neural networks. In particular, we proposed to modify a feed-forward neural network by adding Variable
Activation Functions (VAF) in terms of one-hidden layer subnetworks (see Section 3). The resulting network
is still a feed-forward neural network. The proposed architecture doesn’t need many more parameters
than networks using not adaptable activation functions as ReLU, and the learning process follows standard
approaches (see Section 3.2). Importantly, VAF subnetworks can approximate arbitrarily well any activation
functions, provided that the number of hidden neurons is sufficiently large (see Section 3).

16

It is worth to remark that our approach distinguishes from other approaches proposed in literature insofar
as it satisfies simultaneously the properties p1 – p4 as described in Section 2.5. These properties include
a high expressive power of the trainable activation functions, no external parameter or learning process in
addition to the classical ones for neural networks, and the possibility to use classical regularization methods.

Interestingly, as we discussed in Section 3 our architecture represents a general framework in which all
the approaches described in Section 2.2 and some of the approaches in Section 2.3 can be included.

We experimentally evaluated our architecture on three different sets of experiments. In the former (see
Section 4.1, we tested our approach using small shallow networks for defining some heuristic choices about
VAF subnets. Notably, all the models equipped with VAF subnets outperform the corresponding shallow
networks, and the results support the possibility of using a shared VAF approach with a fairly low number
of VAF hidden neurons. In the second series of experiments (see Section 4.2), we considered full-connected
Multi-Layered Neural Network (MLFF) networks. More specifically, we selected 10 networks with 1 or 2
hidden layers. A correspondent network with VAF subnetworks was built for each of these 10 networks
(see Section 3 and 4.2). We obtained a total of 20 different neural network architectures. These neural
architectures were evaluated and compared using a K-Fold Cross-Validation procedure (see Algorithm 2) on
20 different datasets (see Table 1), either for classification tasks or regression tasks. The results show that
the networks with VAF subnetworks are uniformly more performing than the ones without VAF networks.
In particular, our approach outperforms that without VAF networks on the 85% of the datasets. Only on
three datasets our approach had worse results.

In the last set of experiments, we considered Convolutional Neural Networks with 2 and 3 layers and
correspondent networks with VAF units and we evaluate them using 3 image datasets (MNIST, Fashion
MNIST and CIFAR10)for classification. Also in this case the VAF subnetworks outperform networks with
static units and selected state-of-the-art neural architectures (KAFNet and NIN) equipped with trainable
activation functions.

In conclusion, VAF units have been tested using traditional MLNN networks and CNN networks with
various datasets and give better results compared with networks with similar design both with traditional
ReLU functions and trainable activation functions. We showed that is possible to obtain encouraging results
without the need to use complex designs, particular initialization schemes or learning process in addition to
those classically used for neural networks.

Acknowledgements

The work has been partially supported by the national project Perception, Performativity and Cognitive
Sciences - PRIN2015 Cod. 2015TM24JS 009.

References

Ronald A DeVore, Konstantin I Oskolkov, and Pencho P Petrushev. Approximation by feed-forward neural
networks. Annals of Numerical Mathematics, 4:261–288, 1996.

C.M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

Brian D Ripley. Pattern recognition and neural networks. Cambridge university press, 2007.

Sho Sonoda and Noboru Murata. Neural network with unbounded activation functions is universal approx-
imator. Applied and Computational Harmonic Analysis, 43(2):233–268, 2017.

Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta Numerica, 8(January):
143–195, 1999.

Namig J Guliyev and Vugar E Ismailov. A single hidden layer feedforward network with only one neuron in
the hidden layer can approximate any univariate function. Neural computation, 28(7):1289–1304, 2016.

Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In Conference on
Learning Theory, pages 907–940, 2016.

17

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML,
pages 807–814, 2010.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural network
acoustic models. In Proc. icml, 2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEE international conference on
computer vision, pages 1026–1034, 2015.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In AISTATS, volume 9, pages 249–256, 2010.

Djork-Arn Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning by
exponential linear units (elus). CoRR, abs/1511.07289, 2015.

Gnter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing neural net-
works. CoRR, abs/1706.02515, 2017.

Dabal Pedamonti. Comparison of non-linear activation functions for deep neural networks on mnist classifi-
cation task. CoRR, abs/1804.02763, 2018.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions. In 6th International
Conference on Learning Representations (ICMR), 2018, 2018.

Sheng Qian, Hua Liu, Cheng Liu, Si Wu, and Hau-San Wong. Adaptive activation functions in convolutional
neural networks. Neurocomputing, 272:204–212, 2018.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In Proceedings
of the fourteenth international conference on artificial intelligence and statistics, pages 315–323, 2011.

Roland Memisevic, Kishore Reddy Konda, and David Krueger. Zero-bias autoencoders and the benefits of
co-adapting features. CoRR, abs/1402.3337, 2014.

Charles Dugas, Yoshua Bengio, Franois Blisle, Claude Nadeau, and Ren Garcia. Incorporating second-order
functional knowledge for better option pricing. In NIPS, pages 472–478, 2000.

Yong Liu and Xin Yao. Evolutionary design of artificial neural networks with different nodes. In International
Conference on Evolutionary Computation, pages 670–675, 1996.

X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87:1423–1447, 1999.

Shao H. Hu, Z. The study of neural network adaptive control systems. Control and Decision, 7(2):361–366,
1992.

T. Yamada and T. Yabuta. Neural network controller using autotuning method for nonlinear functions.
IEEE Transactions on Neural Networks, 3(4):595–601, 1992a.

T. Yamada and T. Yabuta. Remarks on a neural network controller which uses an auto-tuning method for
nonlinear functions. In [Proceedings 1992] IJCNN International Joint Conference on Neural Networks,
volume 2, pages 775–780 vol.2, 1992b.

Chyi-Tsong Chen and Wei-Der Chang. A feedforward neural network with function shape autotuning. Neural
networks, 9(4):627–641, 1996.

Yogesh Singh and Pravin Chandra. A class+ 1 sigmoidal activation functions for ffanns. Journal of Economic
Dynamics and Control, 28(1):183–187, 2003.

Pravin Chandra and Yogesh Singh. An activation function adapting training algorithm for sigmoidal feed-
forward networks. Neurocomputing, 61:429–437, 2004.

18

Ludovic Trottier, Philippe Gigu, Brahim Chaib-draa, et al. Parametric exponential linear unit for deep
convolutional neural networks. In Machine Learning and Applications (ICMLA), 2017 16th IEEE Inter-
national Conference on, pages 207–214. IEEE, 2017.

Forest Agostinelli, Matthew Hoffman, Peter J. Sadowski, and Pierre Baldi. Learning activation functions to
improve deep neural networks. CoRR, abs/1412.6830, 2014.

Simone Scardapane, Steven Van Vaerenbergh, Simone Totaro, and Aurelio Uncini. Kafnets: Kernel-based
non-parametric activation functions for neural networks. Neural Networks, 2018.

Ömer Faruk Ertuğrul. A novel type of activation function in artificial neural networks: Trained activation
function. Neural Networks, 99:148–157, 2018.

Xiaojie Jin, Chunyan Xu, Jiashi Feng, Yunchao Wei, Junjun Xiong, and Shuicheng Yan. Deep learning with
s-shaped rectified linear activation units. In Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, pages 1737–1743. AAAI Press, 2016.

Gustav Fechner. Elements of psychophysics. New York, Holt, Rinehart and Winston, 1966.

Stanley S Stevens. On the psychophysical law. Psychological review, 64(3):153, 1957.

Leon René Sütfeld, Flemming Brieger, Holger Finger, Sonja Füllhase, and Gordon Pipa. Adaptive blending
units: Trainable activation functions for deep neural networks. arXiv preprint arXiv:1806.10064, 2018.

Mark Harmon and Diego Klabjan. Activation ensembles for deep neural networks. CoRR, abs/1702.07790,
2017.

Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Maxout net-
works. In Proceedings of the 30th International Conference on International Conference on Machine
Learning - Volume 28, ICML’13, pages III–1319–III–1327, 2013.

Weichen Sun, Fei Su, and Leiquan Wang. Improving deep neural networks with multi-layer maxout networks
and a novel initialization method. Neurocomputing, 278:34 – 40, 2018.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. CoRR, abs/1312.4400, 2013.

Simone Scardapane, Michele Scarpiniti, Danilo Comminiello, and Aurelio Uncini. Learning activation func-
tions from data using cubic spline interpolation. In Italian Workshop on Neural Nets, pages 73–83.
Springer, 2017.

Edmondo Trentin. Networks with trainable amplitude of activation functions. Neural Networks, 14(4-5):
471–493, 2001.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-
ward networks are universal approximators. Neural Networks, 2(5):359 – 366,
1989. ISSN 0893-6080. doi: https://doi.org/10.1016/0893-6080(89)90020-8. URL
http://www.sciencedirect.com/science/article/pii/0893608089900208.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251–257,
1991.

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward networks with
a nonpolynomial activation function can approximate any function. Neural networks, 6(6):861–867, 1993.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 12 2014.

Martin Riedmiller and Heinrich Braun. Rprop - a fast adaptive learning algorithm. Technical report, Proc.
of ISCIS VII), Universitat, 1992.

19

http://www.sciencedirect.com/science/article/pii/0893608089900208

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31, 2012.

Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017.

https://www.dcc.fc.up.pt. https://www.dcc.fc.up.pt, June 2009.

Marek Sikora and Lukasz Wróbel. Application of rule induction algorithms for analysis of data collected by
seismic hazard monitoring systems in coal mines. Archives of Mining Sciences, 55(1):91–114, 2010.

Bálint Antal and András Hajdu. An ensemble-based system for automatic screening of diabetic retinopathy.
Knowledge-based systems, 60:20–27, 2014.

Kamel Mansouri, Tine Ringsted, Davide Ballabio, Roberto Todeschini, and Viviana Consonni. Quantita-
tive structure-activity relationship models for ready biodegradability of chemicals. Journal of Chemical
Information and Modeling, 53(4):867–878, 2013.

D. D. Lucas, R. Klein, J. Tannahill, D. Ivanova, S. Brandon, D. Domyancic, and Y. Zhang. Failure analysis
of parameter-induced simulation crashes in climate models. Geoscientific Model Development, 6(4):1157–
1171, 2013.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. http://yann.lecun.com/exdb/mnist/,
2010. URL http://yann.lecun.com/exdb/mnist/.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. CoRR, abs/1708.07747, 2017.

A Krizhevsky and G Hinton. Learning multiple layers of features from tiny images. In Computer Science
Department, University of Toronto, Tech. Rep, volume 1, 01 2009.

20

http://yann.lecun.com/exdb/mnist/

Random init.

ReLU init.

Figure 7: Examples of changes in a VAF in a 2 layer conv. network using random (top) and ReLU initial-
ization (bottom). The blue line is the start function, the orange line is the learned function.

21

Random init.

ReLU init.

Figure 8: Examples of a resulting VAF in a 3 layer conv. using random (top) and ReLU initialization
(bottom). The blue line is the start function, the orange line is the learned function.

22

	1 Introduction
	2 Related work
	2.1 Parameterized standard activation functions
	2.2 Linear combination of one-variable functions
	2.3 Ensemble of standard activation functions
	2.4 Other approaches
	2.5 Summarizing

	3 System architecture
	3.1 Proposed model: Variable Activation Function Subnetwork
	3.2 VAF network learning

	4 Experimental results
	4.1 VAF subnetworks: Activation functions, number of hidden neurons and weight initialization
	4.2 Full-connected MLFF networks: classification and regression
	4.3 Convolutional MLFF networks

	5 Conclusion

