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Abstract

The Convolutional Neural Networks (CNNs), in domains like computer vision,

mostly reduced the need for handcrafted features due to its ability to learn

the problem-specific features from the raw input data. However, the selec-

tion of dataset-specific CNN architecture, which mostly performed by either

experience or expertise is a time-consuming and error-prone process. To au-

tomate the process of learning a CNN architecture, this paper attempts at

finding the relationship between Fully Connected (FC) layers with some of the

characteristics of the datasets. The CNN architectures, and recently datasets

also, are categorized as deep, shallow, wide, etc. This paper tries to formal-

ize these terms along with answering the following questions. (i) What is the

impact of deeper/shallow architectures on the performance of the CNN w.r.t.

FC layers?, (ii) How the deeper/wider datasets influence the performance of

CNN w.r.t. FC layers?, and (iii) Which kind of architecture (deeper/shallower)

is better suitable for which kind of (deeper/wider) datasets. To address these

findings, we have performed experiments with three CNN architectures having

different depths. The experiments are conducted by varying the number of FC

layers. We used four widely used datasets including CIFAR-10, CIFAR-100,

Tiny ImageNet, and CRCHistoPhenotypes to justify our findings in the context

of image classification problem. The source code of this work is available at

https://github.com/shabbeersh/Impact-of-FC-layers.

Keywords: Convolutional Neural Networks, Fully Connected Layers, Image

Preprint submitted to Neurocomputing November 20, 2019

ar
X

iv
:1

90
2.

02
77

1v
3 

 [
cs

.C
V

] 
 1

9 
N

ov
 2

01
9

https://github.com/shabbeersh/Impact-of-FC-layers


Classification, Shallow vs Deep CNNs, Wider vs Deeper Datasets.

1. Introduction and Related Works

The popularity of Convolutional Neural Networks (CNN) is growing signifi-

cantly for various application domains related to computer vision, which include

object detection [1], segmentation [2], localization [3], and many more in recent

years. Despite the success of deep learning models, our theoretical understand-

ing about neural networks remains limited. Careful selection of network width

(number of neurons in FC layers, number of filters in convolution layers) and

network depth (number of trainable layers) plays a vital role in designing deep

neural networks in order to obtain better performance. In this paper, we made

an attempt to find some of the factors which affect the performance of the

CNN w.r.t. Fully Connected (FC) layers in the context of image classification.

We have also studied the possible interrelationship between the presence of FC

layers in CNN, the depth of the CNN, and the depth of the dataset.

Deep neural networks usually provide better results in the field of machine

learning and computer vision compared to the handcrafted feature descriptors

[1]. From the available literature, it is apparent that every CNN architecture

have one or more FC layers depending on the architecture’s depth. To mention

a few, AlexNet [4] consists of 5 convolutional (Conv) layers and 3 FC layers.

The FC layers are placed after all the Conv layers. Zeiler and Fergus [5] made

minimal changes to AlexNet with better hyper-parameter settings in order to

generalize it over other datasets. This model is called ZFNet which also has 3

FC layers along with 5 convolution layers. In 2014, Simonyan et al. [6] further

extended the AlexNet model to VGG-16 with 16 learnable layers including 3

FC layers towards the end of the architecture. Later on, many CNN models

have been introduced with an increasing number of learnable layers. Szegedy

et al. [7] proposed a 22-layer architecture called GoogLeNet, which has a single

FC (output) layer. In 2015, He et al. [8] introduced ResNet with 152 trainable

layers where the last layer is fully connected. However, all the above CNN
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Figure 1: The illustration of the effect of deeper/wider datasets and depth of CNN (i.e., the

number of the Convolutional layers, n) over the number of FC layers (i.e., k). A typical

plain CNN architecture has Convolutional (learnable), Max-pooling (non-learnable) and FC

(learnable) layers.

architectures are proposed for large-scale ImageNet dataset [9]. Recently, Basha

et al. [10] proposed a CNN based classifier called RCCNet, which is responsible

for classifying the routine colon cancer cells of dimension 32×32×3. This CNN

model has 7 learnable layers including 3 FC layers.

Necessity of Fully Connected Layers in CNN: In a shallow CNN

model, the features generated by the final convolutional layer correspond to

a portion of the input image as its receptive field does not cover the entire

spatial dimension of the image. Thus, few FC layers are mandatory in such

a scenario. Despite their pervasiveness, the hyperparameters like the number

of FC layers and number of neurons required in FC layers for a given CNN

architecture to obtain better performance are not explored.

In a typical deep neural network, the FC layers comprise most of the param-

eters of the network. AlexNet has 60 million parameters, out of which 58 million

parameters correspond to the FC layers [4]. Similarly, VGGNet has a total of

138 million parameters, out of which 123 million parameters belong to FC layers

[6]. This huge number of trainable parameters in FC layers are required to fit

complex nonlinear discriminant functions in the feature space into which the in-

put data elements are mapped. However, this large number of parameters may
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result in over-fitting the classifier (CNN). To reduce the amount of over-fitting,

Xu et al. [11] proposed a CNN architecture called SparseConnect where the

connections between FC layers are sparsed.

The effect of deep or shallow networks on different kind of datasets is well ex-

plored in the literature to study the behavioral interrelationship between depth

of dataset and the CNN [12, 13]. Mhaskar et al. [12] extended a framework

for their previous work [13] to investigate when deep networks are better than

shallow networks using a Directed Acyclic Graph (DAG). Montufar et al. [14]

performed a study to find the complexity of the functions computable by deep

neural networks with linear activations.

To the best of our knowledge, no effort has been made in the literature to

analyze the role of FC layers in CNN for image classification. In this paper,

we investigate the impact of FC layers on the performance of the CNN model

with a rigorous analysis from various aspects. In brief, the contributions of this

paper are summarized as follows.

• We perform a systematic study to observe the effect of deeper/shallower

architectures on the performance of CNNs with varying number of FC

layers.

• We observe the effect of deeper/wider datasets on the performance of CNN

w.r.t. FC layers.

• We generalize one important finding of Bansal et al. [15] to choose deeper

or shallow architecture based on the depth of the dataset. In [15], they

have reported the same in the context of face recognition, Whereas, we

made a rigorous study to generalize this observation over different kinds

of datasets.

• To make the empirical justification of our findings, we have conducted the

experiments on different modalities (i.e., natural and bio-medical images)

of image datasets like CIFAR-10, CIFAR-100 [16], Tiny ImageNet [17],

and CRCHistoPhenotypes [18].
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Next, we illustrate the developed deep and shallow CNN architectures to

conduct the experiments in Section 2. Experimental setup including training

details, evaluation criteria, and datasets are discussed in Section 3. Section

4 presents a detailed study of the observations found in this paper. At last,

Section 5 concludes the paper.

2. Developed CNN Architectures

The main objective of this paper is to analyze the impact of different hyper-

parameters realted to FC layers (the number of FC layers and the number of

neurons) over the performance. Inter-dependency between the characteristics

of both the datasets and the networks are explored w.r.t. FC layers as shown in

Fig. 1. In order to conduct a rigorous experimental study, we have implemented

four CNN models among which three CNN models are plain architectures. An-

other model involves skip connections as in ResNet [8]. These models are termed

as CNN-1, CNN-2, and CNN-3.

Deep and Shallow CNNs: As per the published literature [19, 14], a

neural network is referred to as shallow if it has single fully connected (hidden)

layer. Whereas, a deep CNN consists of convolution layers, pooling layers, and

FC layers. However, in this paper, we assume a CNN model N1 as deep/shallow

compared to another CNN model N2, if the number of trainable layers in N1 is

more/less than N2, respectively.

2.1. CNN-1 Architecture

AlexNet [4] is well-known CNN architecture, which won the first ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) in 2012 [20] with a huge

performance gain as compared to the best results of that time using handcrafted

features. The AlexNet architecture was proposed for the images of dimension

227 × 227 × 3, we made minimal changes to the model to fit for low-resolution

images. We name this model as CNN-1. Initially, the input image dimension is

up-sampled from 32× 32× 3 to 35× 35× 3 in the case of CRCHistoPhenotypes
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Table 1: The CNN-1 architecture having 5 Conv layers. The S, P , and BN denote stride,

padding, and batch normalization, respectively. The output (FC) layer has 10, 100, 200, and

4 neurons in the case of CIFAR-10, CIFAR-100, Tiny ImageNet, and CRCHistoPhenotypes

datasets, respectively.

Input: Image dimension (35 × 35 × 3)

[layer 1] Conv. (5, 5, 96), S=1, P=0; ReLU; BN;

[layer 2] Conv. (5, 5, 256), S=1, P=0; ReLU; BN;

[layer 3] Pool., S=2, P=0;

[layer 4] Conv. (3, 3, 384), S=1, P=1; ReLU;

[layer 5] Conv. (3, 3, 384), S=1, P=1; ReLU;

[layer 6] Conv. (3, 3, 256), S=1, P=1; ReLU;

[layer 7] Flatten; 43264;

Output: (FC layer) Predicted Class Scores

[18], CIFAR-10, CIFAR-100 [16] datasets. Whereas, the images of Tiny Ima-

geNet dataset [17] are down-sampled from 64 × 64 × 3 to 35 × 35 × 3. The

1st convolutional layer Conv1 produces 31× 31× 96 dimensional feature vector

by applying 96 filters of dimension 5 × 5 × 3. The Conv1 layer is followed by

another Convolution layer (Conv2), which produces 27 × 27 × 256 dimensional

feature map by convolving 256 filters of size 5 × 5 × 96. The remaining layers

of the CNN-1 model are similar to the AlexNet architecture proposed in [4].

The CNN-1 model with a single FC layer (i.e., the output FC layer) consists

of following number of trainable parameters, 4, 152, 906 for CIFAR-10 dataset,

8, 046, 756 for CIFAR-100 dataset, 12, 373, 256 for Tiny ImageNet dataset, and

3, 893, 316 for CRCHistoPhenotypes dataset. Note that, the number of train-

able parameters are different for each dataset due to the different number of

classes present in the datasets which leads to the varying number of trainable

parameters in the output FC layer. The detailed specifications of the CNN-1

model are given in Table 1.
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Table 2: The CNN-2 model having 10-Conv layers. The S, P , BN , and DPf denote the

stride, padding, batch normalization, and dropout with a factor of f . The output layer has

10, 100, 200, and 4 neurons in the case of CIFAR-10 , CIFAR-100 , Tiny ImageNet, and

CRCHistoPhenotypes datasets, respectively.

Input: Image dimension (32 × 32 × 3)

[layer 1] Conv. (3, 3, 64), S=1, P=1; ReLU; BN, DP0.3

[layer 2] Conv. (3, 3, 64), S=1, P=1; ReLU; BN;

[layer 3] Pool., S=2, P=0;

[layer 4] Conv. (3, 3, 128), S=1, P=1; ReLU; BN, DP0.4

[layer 5] Conv. (3, 3, 128), S=1, P=1; ReLU; BN;

[layer 6] Pool., S=2, P=0;

[layer 7] Conv. (3, 3, 256), S=1, P=1; ReLU; BN, DP0.4

[layer 8] Conv. (3, 3, 256), S=1, P=1; ReLU; BN;

[layer 9] Pool., S=2, P=0;

[layer 10] Conv. (3, 3, 512), S=1, P=1; ReLU; BN, DP0.4

[layer 11] Conv. (3, 3, 512), S=1, P=1; ReLU; BN;

[layer 12] Pool., S=2, P=0;

[layer 13] Conv. (3, 3, 512), S=1, P=1; ReLU; BN, DP0.4

[layer 14] Conv. (3, 3, 512), S=1, P=1; ReLU; BN;

[layer 15] Pool., S=2, P=0;

[layer 16] Flatten; 512;

Output: (FC layer) Predicted Class Scores

2.2. CNN-2 Architecture

Another CNN model is designed based on the CIFAR-VGG [21] model by

removing some Conv layers from the model. We name this model as CNN-2.

The CNN-2 has 6 blocks, where first 5 blocks have two consecutive Conv layers

followed by a Pool layer. Finally, the sixth block has a FC (output) layer which

generates the class scores. The input to this model is an image of dimension

Please cite this article as: S.H.S. Basha, S.R. Dubey and V.
Pulabaigari et al., Impact of fully connected layers on performance
of convolutional neural networks for image classification,
Neurocomputing, https://doi.org/10.1016/j.neucom.2019.10.008



(a) (b) (c)

Figure 2: (a) A few sample images from CIFAR-10/100 dataset [16]. (b) A random sample

images from Tiny ImageNet dataset [17]. (c) Example images from CRCHistoPhenotypes

dataset [18] with each row represents the images from one category.

32 × 32 × 3. To meet this requirement, images of the Tiny ImageNet dataset

are down-sampled from 64 × 64 × 3 to 32 × 32 × 3. The CNN-2 architecture

corresponds to 9416010, 9462180, 9513480, and 9412932 trainable parameters in

the case of CIFAR-10, CIFAR-100, Tiny ImageNet, and CRCHistoPhenoTypes

datasets, respectively. The CNN-2 model specifications are given in Table 2.

2.3. CNN-3 Architecture

Most of the popular CNN models like AlexNet [4], VGG-16 [6], GoogLeNet

[7], and many more were proposed for high dimensional image dataset called

ImageNet [9]. On the other hand, the low dimensional image datasets such

as CIFAR-10/100 have rarely got benefited from the CNNs. Liu et al. [21]

introduced CIFAR-VGG architecture, which is basically a 16 layer deep CNN

architecture proposed for CIFAR-10. We have utilized CIFAR-VGG model as

the third deep neural network to observe the impact of FC layers in CNN and

named as CNN-3 in this paper. The input to this model is an image of dimension

32×32×3. To meet this requirement, images of the Tiny ImageNet dataset are

down-sampled from 64 × 64 × 3 to 32 × 32 × 3. The CNN-3 architecture with

a single FC (output) layer corresponds to 14728266, 14774436, 14825736, and

14725188 trainable parameters in the case of CIFAR-10 [16], CIFAR-100 [16],

Tiny ImageNet [17], and CRCHistoPhenotypes [18] datasets, respectively.
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3. Experimental Setup

This section describes the experimental setup including the training details,

datasets used for the experiments, and the evaluation criteria to judge the per-

formance of the CNN models.

3.1. Training details

The classification experiments are conducted on different modalities of image

datasets to provide the empirical justifications of our findings in this paper. The

initial value of the learning rate is 0.1 and it is decreased by a factor of 2 for

every 20 epochs. The Rectified Linear Unit (ReLU) based non-linearity [4]

is used as the activation function after every Conv and FC layer (except the

output FC layer) in all the CNN models discussed in section 2. The Batch

Normalization (i.e., BN) [22] is employed after ReLU of each Conv and FC

layer, except final FC layer in CNN-2 and CNN-3 architectures. Whereas, in

the case of CNN-1, the Batch Normalization is used only with the first two

Conv layers as mentioned in Table 1. To reduce the amount of over-fitting,

we have used a popular regularization method called Dropout (i.e., DP ) [23]

after some Batch-Normalization layers as summarized in Table 2 for CNN-2.

For CNN-3, the DP layers are used as per the CIFAR-VGG model [21]. In

order to find the impact of fully connected (FC) layers on the performance of

CNN, any added FC layer has the ReLU , BN and DP by default. Along with

dropout, various data augmentations techniques like rotation, horizontal flip,

and vertical flip are also applied to reduce the amount of over-fitting. The

implemented CNN architectures are trained for 250 epochs using Stochastic

Gradient Descent (SGD) optimizer with a momentum of 0.9.

3.2. Evaluation criteria

To evaluate the performance of the developed CNN models (i.e., CNN-1,

CNN-2, and CNN-3), we have considered the classification accuracy as the per-

formance evaluation metric.
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3.3. Datasets

To find out the empirical observations addressed in this paper, we have

conducted the experiments on different modalities of datasets such as CIFAR-

10 [16], CIFAR-100 [16], Tiny ImageNet [17] (i.e., the natural image datasets),

and CRCHistoPhenotypes [18] (i.e., the medical image dataset).

3.3.1. CIFAR-10

The CIFAR-10 [16] is the most popular tiny image dataset consists of 10

different categories of images, where each class has 6000 images. The dimension

of each image is 32 × 32 × 3. To train the deep neural networks, we have used

the training set (i.e., 50000 images) of the CIFAR-10 dataset, and remaining

data (i.e., 10000 images) is utilized to validate the performance of the models.

A few samples of images from the CIFAR-10 dataset are shown in Fig. 2(a).

3.3.2. CIFAR-100

The CIFAR-100 [16] dataset is similar to CIFAR-10, except that CIFAR-

100 has 100 classes. In our experimental setting, the 50, 000 images are used to

train the CNN models and the remaining 10, 000 images are used to validate the

performance of the models. Similar to CIFAR-10, the dimension of each image

is 32 × 32 × 3. The sample images are shown in Fig. 2(a).

3.3.3. Tiny ImageNet

The Tiny ImageNet dataset [17] consists a subset of ImageNet [9] images.

This dataset has a total of 200 classes and each class has 500 training and 50

validation images. In other words, we have used 100000 images for training and

10000 images for validating the performance of the models. The dimension of

each image is 64 × 64 × 3. The example images of the Tiny ImageNet dataset

are portrayed in Fig. 2(b).

3.3.4. CRCHistoPhenotypes

In order to generalize the observations reported in this paper, we have used

a medical image dataset (consists of routine colon cancer nuclei cells) called
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“CRCHistoPhenotypes” [18], which is publicly available1. This colon cancer

dataset consists a total of 22444 nuclei patches that belong to the four different

classes, namely, ‘Epithelial’, ‘Inflammatory’, ‘Fibroblast’, and ‘Miscellaneous’.

In total, 7722 images belong to the ‘Epithelial’ class, 5712 images belong to

the ‘Fibroblast’ class, 6971 images belong to the ‘Inflammatory’ class, and the

‘Miscellaneous’ class has remaining 2039. The dimension of each nuclei patch is

32×32×3. For training the CNN models, 80% of entire data (i.e., 17955 images)

is utilized and remaining 20% data (i.e., 4489 images) is used to validate the

performance of the models. The sample images are displayed in Fig. 2(c).

Deeper vs Wider datasets [15]: For any two datasets with roughly same

number of images, one dataset is said to be deeper [15] than another dataset, if

it has more number of images per class in the training set. The other dataset

which has a lower number of images per class (i.e., more number of classes

compared to another one) in the training set is called the wider dataset. For

example, CIFAR-10 and CIFAR-100 [16], both the datasets have 50000 images

in the training set. The CIFAR-10 is a deeper dataset since it has 5000 images

per class in the training set. On the other hand, the CIFAR-100 is wider dataset

because it has only 500 images per class.

4. Results and Analysis

We have conducted extensive experiments to observe the useful practices in

deep learning for the usage of Convolutional Neural Networks (CNNs). The four

CNN models discussed in section 2 are implemented to perform the experiments

on publicly available CIFAR-10/100, Tiny ImageNet, and CRCHistoPhenotypes

datasets. The results in terms of the classification accuracy are reported in this

paper.

1https://warwick.ac.uk/fac/sci/dcs/research/tia/data/crchistolabelednucleihe
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4.1. Impact of FC layers on the performance of the CNN w.r.t. to the depth of

the CNN

To observe the effect of deeper/shallow architectures on FC layers, initially,

the CNN models are trained with a single FC (output) layer. Then another FC

layer is added manually before the output (FC) layer to observe the gain/loss

in the performance due to the addition of the new FC layer. The number

of neurons is chosen (for newly added FC layer) starting from the number of

classes to all multiples of 2 (i.e, powers of 2 such as 16, 32, etc.), which is

greater than the number of classes and up to 4096. For instance, in the case of

CIFAR-10 dataset [16], the experiments are conducted by varying the number

of neurons in the newly added FC layer with 10, 16, 32, 64, ..., 4096 number of

neurons. In the next step, one more FC layer is added before the recently

added FC layer. The number of neurons for newly added FC layer is chosen,

ranging from the value for which best performance is obtained in the previous

setting to 4096. Suppose we obtained the best performance over CIFAR-10

using CNN-1 having two FC layers with 512, 10 neurons CIFAR-10. Then,

we observed the performance of the model by adding another FC layer with

512, 1024, 2048, and 4096 number of neurons. The details like the number of

FC layers, number of neurons in each FC layer, best classification accuracies

obtained for CIFAR-10 dataset using the four CNN models are shown in Table

3. It is evident from Table 3 that the deeper architectures (i.e., CNN-3, CNN-2

with more convolution layers (require relatively less number of FC layers and

also less number of neurons in FC layers compared to the shallow architecture

(i.e., CNN-1 with 5 Conv layers) for CIFAR-10 dataset.

To generalize the above-mentioned observation, we have computed the re-

sults by varying the number of FC layers over other datasets and reported the

best performance in Table 4. From Table 4, similar findings are noticed that

the deeper architectures do not require more FC layers. On the other hand,

the shallow architectures (such as CNN-1) require more FC layers in order to

obtain better performance for any dataset. The reasoning for such a behavior

is related to the type of features being learned by the Conv layers. In general,
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CNN architecture learns the hierarchical features from raw images. Zeiler and

Fergus [5] shown that the early layers learn the low-level features, whereas the

deeper layers learn the high-level (problem specific) features. It means that

the final Conv layer of shallow architecture produces less abstract features as

compared to the deeper architecture. Thus, the number of FC layers needed for

shallow architecture is more as compared to the deeper architectures. To pro-

vide powerful evidence to the findings reported in this paper, we have conducted

experiments by considering the half of the images (images belong to 100 classes)

of Tiny ImageNet dataset. We name this configuration as setting-1 (refer Table

4). We have also considered SVM (hinge) loss to compare the results that we

obtained using the popular cross-entropy loss function. The CNN architectures

through which the best validation is obtained (using FC layer structure reported

in Table 4) are trained using hinge loss. The same results are specified in the

last row of Table 4.

4.2. Effect of FC layers on the performance of the CNN model w.r.t. to different

types of datasets

We have used two kinds of datasets (deeper and wider) to analyze the effect

of FC layers on the performance of CNN. Table 5 presents the characteristics

like average number of images per class in the training set (N), number of

classes (C), number of training images (Tr), and validation images (V a) of four

datasets discussed in section 3.3.

From Fig. 3, we can observe that shallow architecture CNN-1 (less deeper

than CNN-2, and CNN-3) requires more neurons in FC layers for wider datasets

compared to deeper datasets. On the other hand, deeper architecture CNN-3

(deeper than CNN-1) requires fewer neurons in FC layers for wider datasets

compared to deeper datasets. Deeper CNN models such as CNN-3, CNN-2

have more number of trainable parameters in Conv layers. Thus, a deeper

dataset is required to learn large parameters of the network. In contrast, a

shallow architecture like CNN-1 with 5 Conv layers has fewer parameters for

which a wider dataset is better suited to train the model.
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Table 3: The effect of depth of the CNN models (i.e., CNN-1, CNN-2, and CNN-3) on FC

layers for the CIFAR-10 dataset is shown in this table. The best and 2nd best accuracies

are highlighted in bold and italic, respectively. For example, the CNN-2 model produces the

best accuracy of 92.29% for three FC layers with 4096, 256, and 10 neurons and the 2nd best

accuracy of 92.02% for two FC layers with 256 and 10 neurons.

CNN-1 CNN-2 CNN-3

Output FC layer (44.29) Output FC layer (91.46) Output FC layer (92.05) )

10 × 10 (88.67) 10 × 10 (91.14) 10 × 10 (91.03)

16 × 10 (88.72) 16 × 10 (91.58) 16 × 10 (91.77)

32 × 10 (88.93) 32 × 10 (91.99) 32 × 10 (92.02)

64 × 10 (89.72) 64 × 10 (91.82) 64 × 10 (91.8)

128 × 10 (89.2) 128 × 10 (91.86) 128 × 10 (89.2)

256 × 10 (89.23) 256 × 10 (92.02) 256 × 10 (89.23)

512 × 10 (88.95) 512 × 10 (90.98) 512 × 10 (91.78)

1024 × 10 (89.56) 1024 × 10 (91.54) 1024 × 10 (92.22)

2048 × 10 (87.4) 2048 × 10 (91.27) 2048 × 10 (91.59)

4096 × 10 (86.27) 4096 × 10 (87.51) 4096 × 10 (90.68)

64 × 64 × 10 (89.35) 256 × 256 × 10 (91.97) 1024 × 1024 × 10 (91.27)

128 × 64 × 10 (89.71) 512 × 256 × 10 (91.92) 2048 × 1024 × 10 (91.43)

256 × 64 × 10 (89.79) 1024 × 256 × 10 (91.53) 4096 × 1024 × 10 (91.94)

512 × 64 × 10 (89.88) 2048 × 256 × 10 (91.95) -

1024 × 64 × 10 (90) 4096 × 256 × 10 (92.29) -

2048 × 64 × 10 (90.28) 4096 × 4096 × 256 × 10 (91.64) -

4096 × 64 × 10 (90.59) - -

4096 × 4096 × 64 × 10 (90.77) - -

4096 × 4096 × 4096 × 64 × 10 (90.74) - -

4.3. Deeper vs. Shallower Architectures, Which are better and when?

Bansal et al. [15] have reported that the deeper architectures are preferred

over shallow architectures while training the CNN models with deeper datasets.

Whereas, for the wider datasets, the shallow architectures perform better com-

pared to the deeper architectures. However, this observation is specific to face

recognition problem as reported in [15]. In this paper, we made a rigorous

study to generalize this finding by conducting extensive experiments on differ-

ent modalities of datasets. For example, CIFAR-10, CIFAR-100, and Tiny Im-
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Table 4: The best validation accuracies obtained over CIFAR-10, CIFAR-100, Tiny ImageNet

and CRCHistoPhenotypes datasets using four CNN models (i.e., CNN-1, CNN-2, and CNN-3)

are depicted in this table. The results are presented in terms of the FC layer structures and

validation accuracy.

S.No. Architecture Dataset

CIFAR-10 CIFAR-100 Tiny ImageNet CRCHistoPhenoTypes

1 CNN-1 4096 × 4096 × 64 × 10 (90.77) 4096 × 4096 × 2048 × 100 (69.21) 4096 × 4096 × 1024 × 200 (50.1) 2048 × 256 × 4 (82.53)

2 CNN-2 4096 × 256 × 10 (92.29) 4096 × 100 (62.28) 512 × 200, 1024 × 200 (41.84) 512 × 4 (84.89)

3 CNN-3 1024 × 10 (92.22) Single FC (output) layer (66.98) Single FC (output) layer (40.27) 128x4 (84.94)

Figure 3: The effect of deeper/wider datasets on FC layers of CNN. For wider datasets,

deeper architecture (CNN-3) requires relatively less number of neurons in FC layers than

deeper datasets. On the other hand, for wider datasets, shallow architecture (CNN-1) requires

relatively large number of neurons in FC layers compared to deeper datasets.

ageNet datasets have the natural images and the CRCHistoPhenotypes dataset

has the medical images. The results obtained through these experiments clearly

indicate that the deeper architectures are always preferred over shallow archi-

tectures to train the CNN model using deeper datasets. In contrast, for the
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Table 5: The characteristics of CIFAR-10, CIFAR-100, Tiny ImageNet, and CRCHistoPheno-

types datasets are presented in this table. Here, N represents the average number of images

per class in the training set, C represents the number of classes corresponding to a dataset,

Tr and V a are the number of images in the Training and Validation sets, respectively.

Dataset N C Tr Va

CIFAR-10 5000 10 50,000 10,000

CIFAR-100 500 100 50,000 10,000

Tiny ImageNet 500 200 80,000 20,000

CRCHistoPhenotypes 4489 4 17955 4489

wider datasets, the shallow architectures perform better than the deeper CNN

models.

From Table 4, we can observe that training deeper architectures CNN-2 and

CNN-3 with deeper dataset produce 92.29% and 92.22% validation accuracies

for the CIFAR-10 dataset and 84.89% and 84.94% for the CRCHistoPheno-

types dataset. In contrast, we obtained 90.77% and 82.53% validation accu-

racies, when the shallow architecture CNN-1 is trained with CIFAR-10 and

CRCHistoPhenotypes datasets, respectively. On the other hand, for the wider

datasets such as CIFAR-100 and Tiny ImageNet, better performance is obtained

using the shallow architecture (CNN-1). From Table 4, we can observe that the

CNN-1 gives a validation accuracy of 69.21% for CIFAR-100 and 50.1% for

Tiny ImageNet dataset. Whereas, the CNN-1 model performs relatively poor

for deeper datasets.

This observation is very much useful while choosing a CNN architecture to

train the model for a given dataset. The generalization of this finding intuitively

makes sense because the deeper/shallow architectures have a more/less number

of trainable parameters, in a typical CNN model which require more/less number

of images per subject (class) for the training.

Please cite this article as: S.H.S. Basha, S.R. Dubey and V.
Pulabaigari et al., Impact of fully connected layers on performance
of convolutional neural networks for image classification,
Neurocomputing, https://doi.org/10.1016/j.neucom.2019.10.008



5. Conclusion

In this paper, we have analyzed the effect of certain decisions in terms of

the FC layers of CNN for image classification. Careful selection of these deci-

sions not only improves the performance of the CNN models but also reduces

the time required to choose among different architectures such as deeper and

shallow. This paper is concluding the following guidelines that can be adopted

while designing the deep/shallow convolutional neural networks to obtain better

performance.

• In order to obtain better performance, the shallow CNNs require more

nodes in FC layers. On the other hand, deeper CNNs need less number of

neurons in FC layers irrespective of type of the dataset.

• The shallow CNNs require a large number of neurons in FC layers as well

as more number of FC layers for wider datasets compared to deeper

datasets and vice-versa.

• Deeper CNNs perform better than shallow models over deeper datasets.

In contrast, shallow architectures perform better than deeper architectures

for wider datasets. These observations can help the deep learning com-

munity while making a decision about the choice of deep/shallow CNN

architectures.
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