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Abstract

This paper presents a new Tensor Cross-view Quadratic Discriminant Analysis

(TXQDA) method based on the XQDA method for kinship verification in the

wild. Many researchers used metric learning methods and have achieved reason-

ably good performance in kinship verification, none of these methods looks at

the kinship verification as a cross-view matching problem. To tackle this issue,

we propose a tensor cross-view method to train multilinear data using local his-

tograms of local features descriptors. Therefore, we learn a hierarchical tensor

transformation to project each pair face images into the same implicit feature

space, in which the distance of each positive pair is minimized and that of each

negative pair is maximized. Moreover, TXQDA was proposed to separate the

multifactor structure of face images (i.e. kinship, age, gender, expression, illu-

mination and pose) from different dimensions of the tensor. Thus, our TXQDA

achieves better classification results through discovering a lowdimensional tensor

subspace that enlarges the margin of different kin relation classes. Experimental

evaluation on five challenging databases namely Cornell KinFace, UB KinFace,

TSKinFace, KinFaceW-II and FIW databases, show that the proposed TXQDA

significantly outperforms the current state of the art.
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1. Introduction

Kinship verification from face images which is increasingly attracting the

attention of the research community is an emerging research topic in computer

vision. Checking if two persons are from the same family or not can be au-

tomatically verified through facial images. Learning and extracting the face

similarity between family members is challenging. Many potential applications,

such as creation of family trees, family album organization, image annotation,

finding missing children and forensics, are targeted by kinship verification. Al-

though a DNA test is the most reliable way for kinship verification, it cannot be

used in many situations. Kinship verification via faces can typically be done in

video surveillance scenes. In addition to the difficulties generally encountered

in face verification in the wild (i.e. facial images captured under uncontrolled

environments without any restrictions in terms of pose, lighting, background,

expression, and partial occlusion), kinship verification adds another layer of dif-

ficulty which is far from being easy. Kinship verification deals with facial images

which belong inevitably to different persons with a significant age difference and

in some cases from a different gender. Further, the face attributes of persons

of the same family may show a large dissimilarity whereas pair faces of persons

with no kinship may look similar. All these challenges increase the difficulties

of the kinship verification problem.

Many researchers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] used metric learning methods

and have achieved reasonably good performance in kinship verification, but

none of these methods tackle the kinship verification as a cross-view matching

problem.

To our best knowledge, our work is the first effort that tackles the kinship

verification problem with a method used in the cross-view matching problem

that arise from many applications like heterogeneous face recognition [11] and

viewpoint invariant person re-identification [12]. The Cross-view Quadratic
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Discriminant Analysis (XQDA) [13] method shows the best performances in

person re-identification field. Motivated by this research, we propose Tensor

Cross-view Quadratic Discriminant Analysis (TXQDA) to analyze the multifac-

tor structure of face images which is related to kinship, age, gender, expression,

illumination and pose.

In our framework, the set of face images are represented as a third-order

tensor based on local histogram features of the local descriptors, Multi-Scale

Local Phase Quantization [14], and Multi-Scale local Binarised Statistical Image

Features [15]. The contributions of this work are summarized as follows:

1. We tackle for the first time the kinship verification problem as a cross-

view matching problem because every kin relation is typically viewpoint

changes from two face images belonging to two different persons.

2. We propose a robust automated facial verification framework suitable for

kinship verification, from face images captured in unconstrained environ-

ments. The face data is represented as a high order tensor based on the

combination of different local features in order to provide a more powerful

face model.

3. We propose a novel method for dimensionality reduction and classification,

called Tensor Cross-view Quadratic Discriminant Analysis (TXQDA), which

preserves the data structure, enlarges the margin between samples, helps

lighten the small sample size problem and reduced the computational cost.

4. We extensively evaluate our TXQDA method against the state-of-the-art

methods using five challenging kinship databases namely Cornell KinFace,

UB KinFace, TSKinFace, KinFaceW-II and FIW.

The paper is organized as follows: Section 2 presents some related works

on multilinear subspace methods and features extraction. Section 3 describes

the proposed Tensor Cross-view Quadratic Discriminant Analysis. Our tensor

kinship verification pipeline is presented in Section 4. The experiments and
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results are given in Section 5. Finally, concluding remarks are given in Section

6.

2. Related work

Over the past decade, many algorithms have been proposed to improve kin-

ship verification from faces. Metric learning methods which are considered as

one of the greatest applied dimensionality reduction methods are widely used

for face recognition. The objective of these methods is to learn and reduce

the high dimensional feature subspace into a lower and discriminated subspace

which leads to a better separation between the classes [16, 17]. Among the

most important approaches, are the linear dimensionality reduction methods

that includes the Principal Component Analysis (PCA) [18] and the Linear

Discriminant Analysis (LDA) [19]. PCA’s aim is to increase the transformed

features variance, which extracted in the projected subspace. However, LDA in-

creases the inter-class covariance while decreasing the intra-class covariance in

the projected subspace. These traditional algorithms deal with the transformed

input face image, from matrix of size x × y to get high-dimensional features

vector 1D by assembling the columns or rows of the images [20]. Inevitably,

by this transformation to 1D-vector some important discriminative structural

information can be lost. Later on, some researches [21, 22, 23] proved that

high order data representation in multilinear subspace methods based on tensor

analysis, lead to excellent performances in the face recognition. The linear di-

mensionality reduction methods have been extended into multilinear subspace

methods which are based on the high order tensor representation replaced by

their vectorized forms [20, 24, 25, 26, 27, 21, 22, 28]. In another hand, mul-

tilinear transformations methods have the number of indices (N) that defines

its order, process the multifactor structure of the face images. In this way, the

multiple factors (i.e. expression, illumination and pose) can be separated from

different dimensions of the tensor [29].

The multilinear principal component analysis (MPCA) [30] proposed as a

4

                  



multilinear extension of the PCA, defines a multilinear projection that projects

the original structural tensor into a lower dimensional tensor subspace while

conserving the disparity in the original samples and add more intrinsic struc-

tural information [22]. Moreover, LDA has been extended into many multi-

linear variants, such as Multilinear Discriminant Analysis (MDA) [23] which

has a multiple interrelated subspaces that can collaborate to discriminate dif-

ferent classes. Also, MDA is extended to different approaches such as General

Tensor Discriminant Analysis (GTDA) [31], Uncorrelated Multilinear Discrimi-

nant Analysis (UMDA) [22], Three-dimensional Modular Discriminant Analysis

(3DMDA) [27] and Sparse Tensor Discriminant Analysis (STDA) [20].

Usually, geometrical face features like nose, chin structure, mouth and eyes

are affected by the human facial appearance variations (facial expressions, poses

variations, conditions of illumination). The research in face recognition topic

has more and more turned to use descriptor-based approaches due to their ro-

bustness to the aforementioned facial appearance variations [32]. Recently,

histograms-based face representations have been widely used to improve feature

extraction [33]. Arguably, LPQ (Local Phase Quantization) [14] and BSIF

(Binarized Statistical Image Features) [15] which have been used in this study,

are one of the most prominent ones among these new local descriptors. LPQ

descriptor is constructed to keep only the local information that is invariant to

blur. It is designed by Ojansivu et al. [14] in 2008. LPQ extracts local phase

by quantizing the Fourier transform phase in M by M neighborhood window at

each pixel of the input image. Evidently, the Fourier transform is calculated

for only four frequencies. Thereafter, a simple scalar quantizer is used to ex-

tract information from each phase coefficients by observing the signs of the real

and imaginary parts. The number of bits per point is eight coefficients, which

are represented as integer value between 0 and 255 using a simple binary cod-

ing. One year later, the authors in [34] proposed a Multi-Scale LPQ (MSLPQ)

features extraction to improve the discriminative power of LPQ. Different neigh-

borhood window size is applied to the input image and the LPQ labeled images

are combined by concatenation or fusion to represent the input image. Inspired
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by LPQ methodology, Kannala and Rahtu [15] proposed the Binarized Statis-

tical Image Features (BSIF) in 2012. BSIF is a learning based-descriptor that

assigns to each pixel in the input image a binary code using its response to a set

of linear filters that are automatically learned using the statistical properties

of 13 natural images [35]. Independent Component Analysis (ICA) is used for

learning the linear filters by maximizing the statistical independence between

the responses of each filter and given the image patches [15].

3. Tensor Cross-view Quadratic Discriminant Analysis

The variables and mathematical notations that we used in our work are as

follows : Lowercase and uppercase symbols (e.g., i, j, F, N and V) indicate

scalars; Bold lowercase symbols (e.g., x, y and z) indicate vectors; italic up-

percase symbols (e.g., U, X, Y and W ) indicate matrices; bold italic uppercase

symbols (e.g., X , Y , and Z ) indicate tensors. A tensor is explained as a mul-

tidimensional array [20, 23]. N is considered the order of the tensor and X is

called an Nth-order tensor. Ik, 1 ≤ k ≤ N, is the dimension of the kth mode.

3.1. Cross-view Quadratic Discriminant Analysis (XQDA)

XQDA [13] is the extended method of the Bayesian face [36] and KISSME

[37] approaches to cross-view metric learning, where considered to learn a sub-

space W = (w1,w2, . . . ,wr) ∈ <d×r with cross-view (i.e. Parent-Child) data,

and learn a distance function in the r dimensional subspace for the cross-view

similarity measure at the same time. We assume that we have a cross-view

training set {X,Z} of c classes, in which X = (x1,x2, . . . ,xn) ∈ <d×n in-

cludes n samples in a d-dimensional space from one view (i.e. Parents samples),

Z = (z1, z2, . . . , zm) ∈ <d×m includes m samples in the same d-dimensional

space but from the other view (i.e. Children samples). Note that Z is the same

with X in the single-view matching scenario. Considering a subspace W , the

distance function in the r dimensional subspace is computed as:

dW (x, z) = (x− z)TW (Σ
′−1
I − Σ

′−1
E )WT (x− z) (1)
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Where Σ
′
I = WT ΣIW and Σ

′
E = WT ΣEW . Then, we learn a kernel matrix

M(W ) = W (Σ
′−1
I − Σ

′−1
E )WT . In [13] the projection direction W is opti-

mized such that Σ
′
E/Σ

′
I is maximized. Consequently, Σ

′
E/Σ

′
I corresponds to

the Generalized Rayleigh Quotient:

J(W ) =
WT ΣEW

WT ΣIW
(2)

The two covariance matrices ΣE and ΣI are computed as follow:

nIΣI = X̃X̃T + Z̃Z̃T − SRT −RST (3)

Where X̃ = (
√

m1x1,
√

m1x2, . . . ,
√

m1xn1 , . . . ,
√

mcxn),

Z̃ = (
√

n1z1,
√

n1z2, . . . ,
√

n1zm1
, . . . ,

√
nczm),

S = (
∑

yi=1
xi,

∑
yi=2

xi, . . . ,
∑

yi=c
xi), R = (

∑
lj=1

zj,
∑
lj=2

zj, . . . ,
∑
lj=c

zj), yi and lj are

class labels, ni is the number of samples in class i of X, and mi is the number

of samples in class i of Z.

nEΣE = mXXT + nZZT − srT − rsT − nIΣI (4)

Where s =
n∑

i=1

xi and r =
m∑

j=1

zj

3.2. Tensor Cross-view Quadratic Discriminant Analysis (TXQDA)

Let a Tensor cross-view training set {X ,Z} of c classes, where: X ∈
<I1×I2×···×IN×n contains n samples of one view (Parents samples) and Z ∈
<I1×I2×···×IN×m contains m samples of other view (Children samples). The goal

of our TXQDA is the calculation of N projection matrices (W1 ∈ <I1×I
′
1 ,W2 ∈

<I2×I
′
2 , . . . ,WN ∈ <IN×I

′
N). Thus, we calculate one projection matrix for each

tensor mode. The objective function of XQDA 2 is transformed into:

J(Wk) =
WT

k Σk
EWk

WT
k Σk

IWk
(5)
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We calculate the two covariance matrices Σk
E and Σk

I for each k mode by:

nIΣI =

∏
o6=k Io∑

p=1

nIΣ
p
I ,nIΣ

p
I = X̃k,p(X̃k,p)T +Z̃k,p(Z̃k,p)T−Sk,p(Rk,p)T−Rk,p(Sk,p)T

(6)

Where X̃k,p = (
√

m1x
k,p
1 ,
√

m1x
k,p
2 , . . . ,

√
m1x

k,p
n1
, . . . ,

√
mcx

k,p
n ),

Z̃k,p = (
√

n1z
k,p
1 ,
√

n1z
k,p
2 , . . . ,

√
n1z

k,p
m1
, . . . ,

√
ncz

k,p
m ),

Sk,p = (
∑

yi=1
xk,p

i ,
∑

yi=2
xk,p

i , . . . ,
∑

yi=c
xk,p

i ), Rk,p = (
∑
lj=1

zk,p
j ,

∑
lj=2

zk,p
j , . . . ,

∑
lj=c

zk,p
j ),

Where, for all presentations, xk,p and zk,p are the pth column vectors of the

k-mode unfolded matrices Xk and Zk of sample tensors X and Z , respectively.

nEΣE =

∏
o6=k Io∑

p=1

nEΣp
E ,nEΣp

E = mXk,p(Xk,p)T +nZk,p(Zk,p)T−sk,p(rk,p)T−rk,p(sk,p)T−nIΣ
p
I

(7)

WhereXk,p = (xk,p
1 ,xk,p

2 , . . . ,xk,p
n1
, . . . ,xk,p

n ), Zk,p = (zk,p
1 , zk,p

2 , . . . , zk,p
m1
, . . . , zk,p

m ),

sk,p =
n∑

i=1

xk,p
i and rk,p =

m∑
j=1

zk,p
j

Now that the solution for one mode is known, the optimization problem in

equation 5 can be solved iteratively. The projection matrices W1,W2, . . . ,WN

are first initialized to identity. At each iterationW1,W2, . . . ,Wk−1,Wk+1, . . .WN

are hypothetical known and Wk is estimated. Set: U = X ×1 W1 . . . ×k−1

Wk−1×k+1Wk+1 . . .×NWN and Y = Z×1W1 . . .×k−1Wk−1×k+1Wk+1 . . .×NWN

are replaced in equation 5 by X and Z . The new equation can be solved by the

generalized eigenvalue decomposition problem:

Σk
EWk = ΛkΣk

IWk (8)

Where, Wk is the eigenvectors matrix and Λk the eigenvalues matrix.

The iterative process of TXQDA breaks up on the recognition of one of the

following situations: i) The number of iterations reaches a predefined maximum;

or ii) the difference of the estimated projection between two consecutive iter-

ations is less than a threshold,
∥∥W iter

k −W iter−1
k

∥∥ < IkIkε, where Ik is the k
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mode dimension of W iter
k . The number of iterations, for our TXQDA algorithm,

is empirically tuned and the better value is Iterationmax = 2.

We summarize the advantages of our algorithm, Tensor cross-view quadratic

discriminant analysis (TXQDA), as follows:

1. TXQDA preserves the data structure, where these data stacked in a ten-

sor mode providing the maximum extraction of information. Unlike in

the case of XQDA method, the feature vectors are purely concatenated

neglecting the natural structure of data

2. TXQDA also helps lightening the small sample size problem. This is an

intrinsic limitation of the XQDA when applying the histograms concate-

nation of local descriptors for all face blocks (the features length is larger

than the number of training samples)

3. TXQDA is a cross-view dimensionality reduction method. It can obviate

the curse of dimensionality dilemma by using higher order tensors and

k-mode optimization approach, where the latter is performed in a much

lower-dimension feature space than the traditional vector-based methods,

such as XQDA, do.

4. Many more feature dimensions are available in TXQDA than in XQDA

because the available feature dimension of XQDA is theoretically limited

by the number of classes in the data, whereas the TXQDA is not.

5. TXQDA reduces the computational cost to a large extent, as the k-mode

optimization in each step is performed on a feature space of smaller size.

Consequently, the classification with the proposed TXQDA is better than

XQDA. The entire procedure for the proposed Tensor Cross-view Quadratic

Discriminant Analysis (TXQDA) is provided in Algorithm 1. The input of this

algorithm is defined as follow:

• The tensor X ∈ <I1×I2×···×IN×n contains n samples of one view (Parents

samples).

9

                  



• The tensor Z ∈ <I1×I2×···×IN×m contains m samples of other view (Chil-

dren samples).

• Iterationmax is the maximal number of iterations.

• The final lower dimensions: Í1 × Í2 × · · · × ÍN.

Whereas the output can defined as follow:

• The projection matrices Wk = W iter
k ∈ <Ik×Ík , k = 1, · · · ,N

4. Proposed Tensor Kinship verification pipeline

In this section, we explain the details of employing the proposed TXQDA

for kinship verification from pairs of face images. As depicted in Fig. 1, the

block diagram of the proposed approach consists of three essential components:

feature extraction, tensor subspace transformation and comparison. We focus in

this work on subspace transformation and the feature extraction based multiple

scales local descriptor.
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Algorithm 1 Tensor Cross-view Quadratic Discriminant Analysis (TXQDA)

Input:

• X ∈ <I1×I2×···×IN×n

• Z ∈ <I1×I2×···×IN×m

• Iterationmax

• Í1 × Í2 × · · · × ÍN

Output:

• Wk = W iter
k ∈ <Ik×Ík , k = 1, · · · ,N

Algorithm:

1. Initialization: W 0
1 = II1 ,W

0
2 = II2 , · · · ,W 0

N = IIN

2. For iter : 1 to Iterationmax

(a) For k=1 to N

• U = X ×1W
iter−1
1 . . .×k−1W

iter−1
k−1 ×k+1W

iter−1
k+1 . . .×NW

iter−1
N

• Uk ⇐k U

• Y = Z ×1 W
iter−1
1 . . .×k−1 W

iter−1
k−1 ×k+1 W

iter−1
k+1 . . .×N W

iter−1
N

• Y k ⇐k Y

• nIΣI =

∏
o6=k Io∑
p=1

nIΣ
p
I ,nIΣ

p
I = Ũk,p(Ũk,p)T + Ỹ k,p(Ỹ k,p)T −

Sk,p(Rk,p)T −Rk,p(Sk,p)T

• nEΣE =

∏
o6=k Io∑
p=1

nEΣp
E ,nEΣp

E = mUk,p(Uk,p)T + nY k,p(Y k,p)T −

sk,p(rk,p)T − rk,p(sk,p)T − nIΣ
p
I

• Compute Σk
EW

iter
k = ΛkΣk

IW
iter
k , obtain W iter

k .

(b) If iter > 2 and
∥∥W iter

k −W iter−1
k

∥∥ < IkIkε, k = 1, · · · ,N, break;

3. Sort the ÍN eigenvectors W iter
k ∈ <Ik×Ík according to Λk in decreasing

order, k = 1, · · · ,N.
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Figure 1: Block diagram of the proposed face pair matching system.

4.1. Feature extraction

To describe face images, we extract two popular local texture descriptors: the

Binarized Statistical Image Feature (BSIF) [15] and the Local Phase Quantiza-

tion (LPQ) [14]. To increase the verification rate, we extract the two descriptors

at multiple scales by varying the values of their parameters, i.e., W the filter

size of BSIF; M the window size of LPQ.

4.2. Tensor Design

In the offline (training) stage, the optimal multilinear projection matrices are

estimated, and in online (test) stage, new samples are projected by these tensors

and matched. The training 3rd order tensors X ,Z ∈ <I1×I2×I3 is constructed

using the histograms of different local descriptors extracted from the training
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face images. The three modes of the tensors X and Z are defined as follows: I1

corresponds to the local descriptors extracted at different scales, I2 represents

the histograms, and I3 face samples in the database .

The input tensors X and Z are reduced according to I1 and I2 modes and

projected into another subspace based on the proposed TXQDA method. Then,

we obtain a reduced tensor with Í1 × Í2 � I1 × I2.

The training data of TXQDA method includes the match pairs (positive

pairs) only. The two tensors (X and Z ) are used to compute the covariance

matrix of the intrapersonal variations ΣI and the covariance matrix of the in-

trapersonal variations ΣE of the TXQDA method.

In the test phase, each face pair passes the same steps of feature extraction as

in the training phase, then projected in the tensor dimensionality reduction and

classification (TXQDA). Finally, the cosine similarity is used to check whether

the pair of reduced features matches (belonging to the same family) or not.

4.3. Matching

To compare between two faces pair, we used the reduced features projected

through the TXQDA space which are concatenated to form one feature vector.

Then, we applied cosine similarity [38] for each pair test of the two face images,

so a match score is done. After discriminant analysis methods, the use of cosine

similarity distance has an advantage which comes from its connection to the

Bayes decision rule [39]. Cosine similarity between two vectors bt1 and bt2 is

defined as the following:

cos(bt1 ,bt2) =
bT

t1 .bt2

‖bt1‖.‖bt2‖
(9)

Where ‖.‖ is the Euclidean norm. A high value of the produced score means a

high probability that bt1 and bt2 belong to the same family.

5. Experiments

In this section, we perform a number of experiments to evaluate the pro-

posed kinship verification system and investigate the strengths of the Tensor
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representation. Firstly, we present the benchmark databases used in our exper-

iments. Then, we discuss the parameter settings used for kinship verification.

Finally, we provide and discuss the results and compare them with those of the

state of the art.

5.1. Benchmark databases

To evaluate the performance of the proposed kinship verification approach,

we considered five kinship databases: Cornell KinFace database, UB KinFace

database, TSKinFace database, KinFaceW-II database and FIW database. These

databases consist of four kinds of parent-child relationships. The face images

are with various ages and ethnicities, and captured under uncontrolled environ-

ments and no restriction in terms of pose.

Cornell KinFace database [40] consists of 143 pairs of parents and chil-

dren images gathered from the web. There are 286 cropped frontal face images

of size 100×100 pixels. Most of the images were taken from Google Images. To

ensure that the facial extracted characteristics are in high quality, only frontal

face images with a neutral facial expression are chosen. We note that, 7 families

are taken out of the original database which consists of 150 families for privacy

issues.

UB KinFace database [41] includes 600 images of 400 people which are

divided into 200 pairs of child-young parent (set 1) and 200 pairs of child-old

parent (set 2). These two sets of pairs are used to enhance, test, and evaluate

kinship verification algorithms. Most of images in the database are real-world

combinations of public figures (celebrities and politicians) from Internet. It is

the first database that comprises all children, young parents and old parents for

the purpose of kinship verification.

TSKinFace database [1] consits of two types of tri-subject kinship re-

lations which are: Father-Mother-Daughter (FM-D) and Father-Mother-Son

(FM-S). The FM-D contains 502 relations and FM-S has 513 relations (4060

face images). These images are from public figures gathered from the Internet.

The face images are cropped using the position of eyes into 64 × 64 pixels res-
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olution. For fair comparison, we restructured the database by separating the

group of Father-Mother-Daughter into two groups Father-Daughter and Mother-

Daughter kinship relations, and the group of FatherMother-Son into two groups

Father-Son and Mother-Son kinship relations.

Kinship Face in the Wild database (KinFaceW-II) [2] gathered

through Internet research, including some public figures with their parents

and/or children. In the KinFaceW-II database, each kinship relation type con-

tains 250 pairs. In total 2000 face images for KinFaceW-II.

FIW database [42] we considered the largest FIW kinship database using:

four relations, Grandfather-Granddaughter (GF-GD), Grandfather-Grandson

(GF-GS), Grandmother-Granddaughter (GM-GD) and Grandmother-Grandson

(GM-GS) face subsets. In GF-GD subset, there are 7,078 pairs of images for

positive and negative relations. In GF-GS subset, there are 4,830 pairs of images

for positive and negative relations. In GM-GD subset, there are 6,512 pairs of

images for positive and negative relations. In GM-GS subset, there are 4,614

pairs of images for positive and negative relations.

5.2. Parameter Settings

Our approach’s performance is evaluated based on the same experimental

protocol found in the literature [2, 3, 43], in which five-fold cross-validation for

kin verification is performed by keeping the same number of pairs images for

each fold. This protocol is considered to make sure that our results are directly

comparable to the state of the art. The negative pairs for kinship are generated

randomly such that each image appears only once in the test set. The number

of positive pairs and negative pairs is the same in the test stage.

To mitigate the effect of face normalization and to be consistent with several

previous works, including [1, 2, 3, 4, 44, 5, 6, 7, 9, 10], all feature descriptions

are extracted from face images that are aligned and cropped using the position

of the eyes to 64× 64 pixels.

Regarding feature extraction, we use eight filters with different sizes W = {3,

5, 7, 9, 11, 13, 15, 17} in the Multi-Scale Binarized Statistical Image Features
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(MSBSIF). In the Multi-Scale Local Phase Quantization (MSLPQ), the window

size is M = {3, 5, 7, 9, 11, 13, 15, 17} . Every face image is subdivided into 16

blocks, each of size 16× 16 pixels. We use histograms of 256 bins to aggregate

the local features extracted from each block.

5.3. Results and discussion

In this subsection, we introduce and discuss the results of the proposed

approach based on third order tensor representation. Moreover, all the exper-

iments were done for the original linear approach XQDA, which works as a

baseline for evaluating the proposed TXQDA method. Furthermore, the perfor-

mances of the local descriptors MSLPQ and MSBSIF are separately examined

as well as their fusion. In the linear case, feature level fusion is made by concate-

nating vectors from different scales for each face descriptors. For the proposed

multilinear case, fusion is performed based on tensor, where vectors of different

scales of two descriptors, LPQ and BSIF, are stacked in the second mode of the

tensor.

Tables 1, 2, 3, 4 and 5 show kinship verification accuracy from different de-

scriptors and their fusion using the proposed TXQDA method compared with

linear XQDA method on Cornell KinFace, UB KinFace, TSKinFace, KinFaceW-

II and FIW databases, respectively. We remarked that the performance is im-

proved with variation between 5% and 9%. Moreover, the proposed TXQDA

method stacked the features in the second tensor mode to provide the maxi-

mum extraction of information. Consequently, many more feature dimensions

are available in TXQDA than in XQDA. Furthermore, XQDA is theoretically

limited by the number of classes in the data, whereas the TXQDA is not. It

is also noticeable that the best results are obtained by (MSLPQ(3+5+7+9+11) +

MSBSIF(3+5+7+9+11) ) description.

In Table 3, the tri-subject kinship verification is performed by Logistic Re-

gression (LR) [45] score fusion method as used in [46]. The scores of Father-Son

and Mother-Son are fused to generate FM-S scores for tri-subject matching. The

scores of Father-Daughter and Mother-Daughter are fused to generate FM-D
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scores for tri-subject matching.

As shown in Table 2 our TXQDA method processes the age difference factor

and benefits from the child-young parent set (Set 1) in which this set is gathered

to lighten the age difference shown in the child-old parent set (Set 2). XQDA

method does not benefit from the child-young parent set and this demonstrates

that the XQDA method neglected to process the age difference factor. More-

over, the multifactor structure (kinship, gender, age, expression, illumination

and pose) was analyzed and separated from different tensor dimensions of the

proposed TXQDA method.

Table 6 shows kinship verification accuracy of the proposed TXQDA method

compared with linear XQDA method and three other methods (i.e. Neigh-

borhood Repulsed Metric Learning [2] (NRML) method, Side-Information

based Linear Discriminant analysis [47] (SILD) method and Multilinear Side-

Information based Discriminant Analysis [48] (MSIDA) method) using (MSLPQ+MSBSIF)

features description on Cornell KinFace, UB KinFace, TSKinFace, KinFaceW-II

and FIW databases.

Moreover, the NRML and SILD methods, which are the most used methods

for kinship verification, give lower performance than the XQDA and TXQDA

methods in all cases. The performance becomes clear, significant and better by

using the viewpoint changes methods compared with NRML and SILD methods.

Furthermore, Cornell KinFace and UB KinFace databases are gathered with

mixture of four kin relations, which make hard learning of kin relations from

different persons with different gender and with high significant age difference.

Our proposed Tensor cross-view based method shows the superiority with a large

margin in results compared with NRML and SILD methods on Cornell KinFace

and UB KinFace. On Cornell KinFace database, TXQDA method performs with

9% of performance better than XQDA method, 9.42% of performance better

than MSIDA, 18% of performance better than SILD and 17.5 % of performance

better than NRML. On UB KinFace database, TXQDA method works with a

performance of 9% better than XQDA method, a performance of 9.48% better

than MSIDA, a performance of 24% better than SILD and a performance of 21
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% better than NRML.

This demonstrates that the proposed Tensor XQDA works well on the dif-

ficult cases, where the viewpoint changes exist under the mixture of four kin

relations (i.e. Father-Daughter and Mother-Son are a face images pairs that

include two different person with different gender, and Father-Son and Mother-

Daughter are a face images pairs that include two different person with same

gender). Furthermore, TXQDA method works with a performance of 4.4% bet-

ter than XQDA method, a performance of 4.83% better than MSIDA, a perfor-

mance of 6.8% better than SILD and a performance of 7.3 % better than NRML

on the TSKinFace database. Our TXQDA method works with a performance of

5.50% better than XQDA method, a performance of 5.00% better than MSIDA,

a performance of 10.65% better than SILD and a performance of 14.20% better

than NRML on the KinFaceW-II database. Moreover, our TXQDA method

works with a performance of 7.93% better than XQDA method, a performance

of 9.98% better than MSIDA, a performance of 11.05% better than SILD and a

performance of 9.61% better than NRML on the FIW database.

Besides, our results show that the multifactor structure belonging to kinship,

gender, age, expression, illumination and pose is taken into consideration in our

TXQDA method to a large extent than the XQDA method. It is remarkable that

SILD method used the positive and negative pairs in the training stage unlike

the proposed TXQDA which obtained better performances than SILD by using

only the positive pairs. Our TXQDA presented the face image as a matrix,

where the face feature descriptions are stacked in a tensor mode providing the

maximum extraction of information. Unlike in the case of XQDA method, the

feature vectors are purely concatenated neglecting the natural structure of data.

As shown in our results, the tensor is an elegant way of presenting and fusing

data.
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Table 1: The mean accuracy (%) of kinship verification for TXQDA and XQDA using different

MSLPQ and MSBSIF scales and their fusion on the Cornell KinFace database.

Descriptor
XQDA TXQDA

Mean Mean

MSLPQ(3+5+7) 83.93 91.71

MSLPQ(5+7+9) 81.07 92.71

MSLPQ(9+11+13) 77.17 90.59

MSLPQ(13+15+17) 76.51 89.89

MSLPQ(3+5+7+9) 83.12 92.38

MSLPQ(3+5+7+9+11) 83.83 92.74

MSBSIF(3+5+7) 81.61 92.66

MSBSIF(5+7+9) 79.60 92.32

MSBSIF(9+11+13) 77.15 92.28

MSBSIF(13+15+17) 79.65 89.85

MSBSIF(3+5+7+9) 80.97 92.00

MSBSIF(3+5+7+9+11) 80.98 92.33

MSLPQ(3+5+7+9+11) +
84.10 93.04

MSBSIF(3+5+7+9+11)
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Table 2: The mean accuracy (%) of kinship verification for TXQDA and XQDA using different

MSLPQ and MSBSIF scales and their fusion on the UB KinFace database.

Descriptor
XQDA TXQDA

Set 1 Set 2 Mean Set 1 Set 2 Mean

MSLPQ(3+5+7) 76.74 80.21 78.48 91.28 90.53 90.91

MSLPQ(5+7+9) 78.50 80.96 79.73 91.03 89.27 90.15

MSLPQ(9+11+13) 74.71 76.19 75.45 90.25 88.29 89.27

MSLPQ(13+15+17) 75.47 75.66 75.57 87.00 88.04 87.52

MSLPQ(3+5+7+9) 79.22 80.19 79.71 91.28 90.02 90.65

MSLPQ(3+5+7+9+11) 78.46 80.93 79.70 91.76 90.26 91.01

MSBSIF(3+5+7) 77.00 76.73 76.87 91.02 90.77 90.90

MSBSIF(5+7+9) 79.69 78.90 79.30 91.26 91.28 91.27

MSBSIF(9+11+13) 79.23 80.47 79.85 91.28 90.76 91.02

MSBSIF(13+15+17) 77.39 73.43 75.41 89.78 89.02 89.40

MSBSIF(3+5+7+9) 82.25 79.70 80.98 91.25 91.03 91.14

MSBSIF(3+5+7+9+11) 79.45 80.41 79.93 91.51 90.77 91.14

MSLPQ(3+5+7+9+11) +
82.24 82.92 82.58 92.03 91.02 91.53

MSBSIF(3+5+7+9+11)

Table 3: The mean accuracy (%) of kinship verification for TXQDA and XQDA using different

MSLPQ and MSBSIF scales and their fusion on the TSKinFace database.

Descriptor
XQDA TXQDA

F-S F-D M-S M-D Mean FM-S FM-D F-S F-D M-S M-D Mean FM-S FM-D

MSLPQ(3+5+7) 86.84 83.47 83.33 85.06 84.68 87.41 85.46 87.18 88.42 88.54 88.69 88.21 92.82 94.45

MSLPQ(5+7+9) 83.63 81.78 83.33 84.66 83.35 86.64 85.36 84.27 85.05 85.73 86.11 85.29 91.26 91.77

MSLPQ(9+11+13) 81.48 79.18 79.53 81.37 80.39 85.20 84.86 82.23 81.78 84.08 83.13 82.81 90.58 90.18

MSLPQ(13+15+17) 80.90 78.69 78.95 78.28 79.21 85.38 83.67 81.55 80.89 83.69 82.63 82.19 90.19 87.89

MSLPQ(3+5+7+9) 85.77 84.66 84.99 86.35 85.44 87.31 86.15 87.09 87.72 88.16 89.09 88.02 92.91 94.45

MSLPQ(3+5+7+9+11) 86.84 84.06 83.72 84.76 84.85 87.22 85.95 88.35 88.61 88.25 89.28 88.62 93.01 94.44

MSBSIF(3+5+7) 83.14 82.76 81.77 85.15 83.21 85.78 85.25 88.06 88.32 88.54 89.68 88.65 93.98 94.34

MSBSIF(5+7+9) 84.32 82.57 81.97 84.56 83.36 86.74 86.85 86.41 88.12 88.54 88.10 87.79 93.69 94.74

MSBSIF(9+11+13) 82.95 79.99 80.51 82.67 81.53 84.79 84.36 85.15 85.45 86.80 86.01 85.85 92.52 91.96

MSBSIF(13+15+17) 82.27 75.90 79.14 79.29 79.15 84.99 85.45 84.17 83.37 86.70 85.11 84.84 91.75 91.46

MSBSIF(3+5+7+9) 84.90 84.26 82.26 86.15 84.39 87.52 87.35 89.03 88.32 89.13 89.48 88.99 94.08 94.44

MSBSIF(3+5+7+9+11) 85.29 83.06 84.02 86.35 84.68 87.32 87.35 89.03 88.12 89.13 89.38 88.92 94.08 94.34

MSLPQ(3+5+7+9+11) +
87.04 85.26 84.40 86.85 85.89 88.02 88.35 89.32 90.69 90.29 90.97 90.32 94.85 95.63

MSBSIF(3+5+7+9+11)
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Table 4: The mean accuracy (%) of kinship verification for TXQDA and XQDA using different

MSLPQ and MSBSIF scales and their fusion on the KinFaceW-II database.

Descriptor
XQDA TXQDA

F-S F-D M-S M-D Mean F-S F-D M-S M-D Mean

MSLPQ(3+5+7) 83.80 77.40 79.00 80.20 80.10 88.00 83.20 83.60 83.60 84.60

MSLPQ(5+7+9) 83.80 78.20 79.60 77.80 79.85 89.20 83.40 84.00 84.20 85.20

MSLPQ(9+11+13) 81.80 79.00 77.80 78.40 79.25 87.00 81.40 83.80 85.20 84.35

MSLPQ(13+15+17) 80.80 77.60 75.40 78.20 78.00 89.00 80.80 81.80 83.60 83.80

MSLPQ(3+5+7+9) 84.20 77.60 80.20 80.00 80.50 89.20 83.80 83.00 84.80 85.20

MSLPQ(3+5+7+9+11) 84.00 78.80 80.40 80.00 80.80 89.40 83.40 83.60 85.00 85.35

MSBSIF(3+5+7) 83.60 78.60 79.20 79.60 80.25 86.60 85.20 82.20 83.20 84.30

MSBSIF(5+7+9) 84.40 79.40 78.80 77.80 80.10 88.00 84.20 83.40 82.00 84.10

MSBSIF(9+11+13) 83.40 78.60 77.40 77.20 79.15 86.60 82.20 81.20 82.00 83.00

MSBSIF(13+15+17) 82.00 76.00 77.20 76.60 77.95 86.40 81.20 82.80 81.60 83.00

MSBSIF(3+5+7+9) 84.40 80.20 79.20 79.60 80.85 87.60 85.20 81.60 83.80 84.55

MSBSIF(3+5+7+9+11) 84.60 79.20 78.80 79.60 80.55 88.00 85.80 82.20 85.00 85.25

MSLPQ(3+5+7+9+11) +
85.00 80.60 80.60 80.40 81.65 90.20 86.40 85.60 86.40 87.15

MSBSIF(3+5+7+9+11)

Table 5: The mean accuracy (%) of kinship verification for TXQDA and XQDA using different

MSLPQ and MSBSIF scales and their fusion on the four grandparent-grandchild subsets of FIW

database.

Descriptor
XQDA TXQDA

GF-GD GF-GS GM-GD GM-GS Mean GF-GD GF-GS GM-GD GM-GS Mean

MSLPQ(3+5+7) 55.91 57.92 58.08 57.59 57.38 65.57 63.92 63.85 65.08 64.61

MSLPQ(5+7+9) 55.73 58.07 57.78 57.87 57.36 65.54 64.81 63.96 64.62 64.73

MSLPQ(9+11+13) 55.98 58.30 57.85 57.16 57.32 66.11 64.23 63.00 64.54 64.47

MSLPQ(13+15+17) 56.07 58.06 57.22 56.70 57.01 65.49 65.18 62.65 64.14 64.37

MSLPQ(3+5+7+9) 56.15 58.29 57.98 58.54 57.74 65.89 64.43 63.82 64.71 64.71

MSLPQ(3+5+7+9+11) 56.36 58.90 58.27 58.15 57.92 65.32 63.79 63.49 64.15 64.19

MSBSIF(3+5+7) 55.85 59.06 58.46 57.26 57.66 65.35 64.50 64.32 64.61 64.70

MSBSIF(5+7+9) 55.58 58.03 59.27 57.06 57.49 65.25 64.21 63.52 64.45 64.36

MSBSIF(9+11+13) 56.30 56.80 58.44 56.73 57.07 66.00 65.04 64.74 64.95 65.18

MSBSIF(13+15+17) 56.32 58.01 57.81 56.53 57.17 65.46 64.18 63.24 64.75 64.41

MSBSIF(3+5+7+9) 56.04 58.61 59.00 57.60 57.81 65.20 64.59 63.15 64.43 64.34

MSBSIF(3+5+7+9+11) 55.93 58.43 59.35 57.70 57.85 65.26 64.22 63.78 65.33 64.65

MSLPQ(3+5+7+9+11) +
56.04 59.23 59.00 58.12 58.10 66.43 66.79 65.24 65.67 66.03

MSBSIF(3+5+7+9+11)

To analyze the performance of different kinship relations, we plot in Fig-

ures 2, 3, 4 and 5 the ROC curves of different methods (NRML, SILD, XQDA,
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Table 6: Comparison verification accuracy (%) of the proposed TXQDA with XQDA, NRML, SILD

and MSIDA methods using MSLPQ+MSBSIF features description on the Cornell KinFace, UB

KinFace, TSKinFace, KinFaceW-II and FIW databases.

Method
Cornell KinFace UB KinFace TSKinFace KinFaceW-II FIW

Mean Mean Mean FM-S FM-D Mean Mean

NRML 75.52 70.55 80.83 84.26 85.53 72.95 56.42

SILD 71.38 67.36 83.46 86.44 87.82 76.50 54.98

XQDA 84.10 82.58 85.89 88.02 88.35 81.65 58.10

MSIDA 83.62 82.05 85.49 91.26 91.27 82.15 56.05

TXQDA 93.04 91.53 90.32 94.85 95.63 87.15 66.03

MSIDA and TXQDA) using the best performing features (MSLPQ+MSBSIF)

on UB KinFace set 1, UB KinFace set 2, Cornell KinFace, TSKinFace, KinFaceW-

II and FIW databases, respectively.

22

                  



0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e 
P

os
iti

ve
 R

at
e

NRML
SILD
XQDA
MSIDA
TXQDA

(a)

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e 
P

os
iti

ve
 R

at
e

NRML
SILD
XQDA
MSIDA
TXQDA

(b)

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e 
P

os
iti

ve
 R

at
e

NRML
SILD
XQDA
MSIDA
TXQDA

(c)

Figure 2: ROC curves of different methods (NRML, SILD, XQDA, MSIDA and TXQDA) using the

best performing features (MSLPQ+MSBSIF) obtained on (a) UB KinFace set 1, (b) UB KinFace

set 2, (c) Cornell KinFace databases, respectively.
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Figure 3: ROC curves of different methods (NRML, SILD, XQDA, MSIDA and TXQDA) using the

best performing features (MSLPQ+MSBSIF) on TSKinFace database obtained on (a) F-S set, (b)

F-D set, (c) M-S set and (d) M-D set, respectively.
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Figure 4: ROC curves of different methods (NRML, SILD, XQDA, MSIDA and TXQDA) using the

best performing features (MSLPQ+MSBSIF) on KinFaceW-II database obtained on (a) F-S set, (b)

F-D set, (c) M-S set and (d) M-D set, respectively.
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Figure 5: ROC curves of different methods (NRML, SILD, XQDA, MSIDA and TXQDA) using the

best performing features (MSLPQ+MSBSIF) on FIW database obtained on (a) GF-GD set, (b)

GF-GS set, (c) GM-GD set and (d) GM-GS set, respectively.

5.4. The robustness’s evaluation of the proposed TXQDA method

In this subsection, we tested the robustness of the proposed tensor method

on TSKinFace database through additive noise and degradation of test set. For

the clarification, we express the interference of face recognition η = ηf + ηq

[49], where ηf indicates facial variations such as kinship, expression, illumina-

tion, misalignment and age, and ηq indicates the image variation due to sensor

or coding-related issues, such as Gaussian noise, blur, compression, and low

resolution. Most of the studies on the TSKinFace database focused only on the

effect of ηf , whereas our extended experiments study both the pure effect of ηq

and the superposed interference of ηf + ηq. For an inclusive study, we generate

four types of noise or degradations that are most common in real-world systems
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but that have not appeared in the standard database. Specifically, we generate

the following versions of test sets: 1) three levels of Gaussian noise. The images

are normalized in the range of (0; 1), and then we apply additive Gaussian

noise with zero mean and standard derivations of σ = 0.01; 0.02; 0.03; 2) three

different Gaussian blur test sets using a Gaussian kernel of size 10 × 10 with

σ = {1; 3/2; 2}; 3) three different compressed images using MATLABs JPEG

codec of quality 60, 45 and 30; and 4) three different low-resolution sets of test

images by first downsampling the images by ratios of 2, 3, and 4 and then in-

terpolating them to the original resolution by the nearest method in MATLAB.

Example test images are shown in Fig. 6, and as shown in this figure, these

degraded faces are recognizable by humans and are very common in real-world

surveillance scenarios. Therefore, it is important to study how the accuracy of

the metric learning methods change under these degradations. Table 7 shows

that TXQDA and XQDA show much better robustness than the other methods

under image blur, noise, compression, and reduced resolution. However, our

Tensor XQDA preserves the data structure and extracts more discriminative

information from degraded face images compared with XQDA method.

Figure 6: Examples of original and degraded images used in our extended TSKinFace evaluation.

The last four columns correspond to the most severe degrees of Gaussian noise, Gaussian blur,

JPEG compression, and reduced resolution applied on the test images.
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Table 7: Comparative verification rates (%) of extended TSKinFace evaluation on the robustness

to the four types of common degradations. Accuracy loss of each degradation degree on each test

set is reported in detail.

Method
Relation

Type

Basic Ac-

curacy 1

Gaussian Blur Gaussian Noise JPEG Compression Reduced Resolution Summarized

Accuracy 21 3/2 2 0.01 0.02 0.03 60 45 30 1/2 1/3 1/4

NRML

FS 81.00 -7.02 -7.81 -12.68 -6.93 -8.49 -14.33 -5.95 -6.63 -7.22 -6.73 -7.12 -12.97 72.34 (-8.66)

FD 79.88 -6.27 -8.47 -13.65 -7.67 -9.66 -13.45 -7.07 -9.16 -12.85 -6.57 -8.67 -13.94 70.09 (-9.79)

MS 81.48 -8.67 -10.92 -14.13 -9.25 -11.11 -13.15 -9.06 -10.62 -13.64 -8.48 -10.43 -13.94 70.36 (-11.12)

MD 80.97 -5.38 -9.37 -13.85 -5.38 -8.47 -13.35 -5.38 -8.67 -13.15 -5.38 -8.67 -13.95 71.72 (-9.25)

Mean 80.83 -6.83 -9.14 -13.57 -7.3 -9.43 -13.57 -6.86 -8.77 -11.71 -6.79 -8.72 -13.7 71.13 (-9.7)

SILD

FS 84,60 -9.25 -10.81 -12.76 -9.35 -10.23 -13.35 -6.43 -8.57 -9.06 -9.06 -9.45 -11.20 74.64 (-9.96)

FD 81.76 -9.05 -11.64 -12.94 -11.64 -11.84 -12.44 -8.65 -8.85 -9.25 -8.65 -9.35 -10.94 71.32 (-10.44)

MS 83.72 -10.52 -12.86 -16.46 -10.71 -12.57 -15.68 -10.32 -11.01 -11.20 -11.30 -11.98 -13.44 71.38 (-12.34)

MD 83.76 -9.17 -11.16 -15.04 -8.88 -10.66 -14.55 -9.97 -11.06 -14.15 -10.67 -10.87 -11.56 72.28 (-11.48)

Mean 83.46 -9.50 -11.62 -14.30 -10.15 -11.32 -14.01 -8.84 -9.87 -10.91 -9.92 -10.41 -11.79 72.41 (-11.05)

XQDA

FS 87.04 -6.73 -8.87 -10.72 -5.85 -7.12 -8.87 -3.90 -7.12 -7.99 -6.14 -8.87 -10.73 79.30 (-7.74)

FD 85.26 -5.08 -7.77 -10.25 -4.08 -4.98 -7.07 -3.59 -4.78 -4.98 -3.98 -6.68 -10.16 79.14 (-6.12)

MS 84.40 -4.09 -6.05 -8.68 -3.61 -4.48 -5.75 -3.12 -4.87 -5.27 -3.61 -5.65 -8.87 79.06 (-5.34)

MD 86.85 -5.88 -7.27 -8.87 -5.68 -7.87 -7.97 -5.68 -7.27 -7.27 -6.28 -6.87 -9.16 79.68 (-7.17)

Mean 85.89 -5.45 -7.49 -9.63 -4.81 -6.11 -7.42 -4.08 -6.01 -6.38 -5.00 -7.02 -9.73 79.30 (-6.59)

TXQDA

FS 89.32 -1.46 -4.56 -7.18 -0.87 -4.37 -6.80 -2.14 -3.01 -3.59 -2.62 -4.37 -7.09 85.32 (-4.00)

FD 90.69 -2.27 -5.15 -9.70 -1.38 -4.95 -8.41 -3.07 -4.16 -4.55 -3.26 -5.74 -10.49 85.43 (-5.26)

MS 90.29 -1.94 -5.63 -8.64 -0.78 -4.46 -7.57 -1.26 -3.69 -4.17 -2.62 -4.66 -7.86 85.85 (-4.44)

MD 90.97 -1.68 -5.46 -8.53 -1.29 -5.65 -6.95 -1.59 -4.17 -5.46 -2.48 -4.96 -8.13 86.27 (-4.70)

Mean 90.32 -1.84 -5.20 -8.51 -1.08 -4.86 -7.43 -2.02 -3.76 -4.62 -2.75 -4.93 -8.39 85.72 (-4.60)

To provide a comprehensive result, the verification accuracy across the three types of probe sets is reported.

1 The verification accuracy on the original TSKinFace database.

2 The verification accuracy across all types and all degrees of the tested noise and degradations.

5.5. Computational cost

We computed the computational time needed for the kinship verification

of one pair face samples (Parent-Child) using different methods. The experi-

ments were implemented using MATLAB 2014a on a PC with an Intel Core

i7 2.00 GHz CPU and 8 GB of RAM. The feature extraction for the case of

MSLPQ+MSBSIF description takes 0.104 s. In training stage (offline), the es-

timation of the projection matrices is performed only once. In the online phase,

we evaluate the time cost needed by each method to project and match the

test pair which is provided in Table 8 in ms. This table shows that the best

performing variant, TXQDA, runs faster compared with all the other methods.

Furthermore, we see that the time cost of projection and matching is negligible

compared to the feature extraction time. The total time cost for our framework

using MSLPQ+MSBSIF features and TXQDA method is about 0.109 s for both

Cornell KinFace and UB KinFace databases, and 0.110 s from TSKinFace and
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KinFaceW-II databases, and 0.115 s for FIW database.

Table 8: Time Cost (TC), in ms, taken by different methods for the projection of one pair of

face images.

Database Feature extraction
Projection and matching All steps

NRML SILD XQDA MSIDA TXQDA NRML SILD XQDA MSIDA TXQDA

Cornell KinFace 14.22 22.93 10.61 5.22 4.54 119.14 127.85 115.53 110.14 109.46

UB KinFace 15.17 11.91 7.06 5.73 4.94 120.09 116.83 111.98 110.65 109.86

TSKinFace 104.92 43.04 12.15 10.92 5.90 5.88 147.96 117.07 115.84 110.82 110.80

KinFaceW-II 21.17 11.99 11.03 6.32 6.05 126.09 116.91 115.95 111.24 110.97

FIW 97.27 90.11 78.96 21.16 10.41 102.19 195.03 183.88 126.08 115.33

5.6. Comparison with the results of the state of the art

The best kinship verification performances of our approach are achieved

using two descriptors (MSLPQ(3+5+7+9+11) + MSBSIF(3+5+7+9+11) ) on Cor-

nell KinFace, UB KinFace, TSKinFace, KinFaceW-II and FIW databases. For

the XQDA (linear), verification rates of 84.10%, 82.58%, 85.89%, 81.65% and

58.10% are reported on Cornell KinFace, UB KinFace, TSKinFace, KinFaceW-II

and FIW databases, respectively. For TXQDA (multilinear), verification rates

of 93.04%, 91.53%, 90.32%, 87.15% and 66.03% are reported on Cornell Kin-

Face, UB KinFace, TSKinFace, KinFaceW-II and FIW databases, respectively.

These results are compared with the state of the art in Tables 9, 10, 11, 12 and

13. The comparison reveals that the proposed Tensor cross-view analysis based

method outperforms the recent state of the art on the five databases, Cornell

KinFace, UB KinFace, TSKinFace, KinFaceW-II and FIW. This demonstrates

the effectiveness of using the cross-view methods in kinship verification topic.

TXQDA vs. KVRL-fcDBN [50]: In this comparison, we focus on two

databases Cornell KinFace and UB KinFace. The work of Kohli et al. [50] was

based on a deep learning approach (KVRL-fcDBN), where fcDBN algorithm

was used to learn more than 600,000 outside face images and obtained 89.50

% on Cornell KinFace and 91.80 % on UB KinFace databases. However, in

our work, we used Tensor cross-view metric learning method (i.e. TXQDA) to

learn the provided data only (i.e. no outside data was used) and we achieved

good performances, 93.04 % and 91.53 % on Cornell KinFace and UB KinFace
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databases, respectively. Our TXQDA outperforms the KVRL-fcDBN approach

on Cornell KinFace database and got a competitive performance on UB KinFace

database.

TXQDA vs. DDML [7], DDMML [7] and MvDML [51]: In this

comparison, we focus on TSKinFace and KinFaceW-II databases for monocular

and multiple feature description. From mono-view feature description, the Dis-

criminative Deep Metric Learning (DDML) [7] method used LPQ descriptor

with face images with input size of 64×64. First they divide each face image into

4×4 non-overlapping blocks, where the size of each block is 16×16. Then, they

extract a 256-bin LPQ histogram with window size of 3, 5 and 7 for each block re-

spectively, and finally concatenate them to form a 12,288-D feature vector, which

is the same used face features description in our work (i.e. MSLPQ(3+5+7)). For

bi-subject kinship verification, from the MSLPQ(3+5+7) features description, our

TXQDA method outperforms the DDML method with about 8.28 % and 2.40 %

on TSKinFace and KinFaceW-II databases, respectively. For tri-subject kinship

verification, from the MSLPQ(3+5+7) features description, our TXQDA method

outperforms the DDML method with about 9.12 % and 11.25 % on TSKinFace

database for FM-S and FM-D relations, respectively. From multi-view feature

description, we can see that our approach which using the MSLPQ+MSBSIF

feature description, improves the performance with about 2.85 % and 6.95 %

compared with DDMML and MvDML on KinFaceW-II database, respectively.

Furthermore, our TXQDA method improves the performances with about 6

% compared with DDMML for bi-subject kinship verification on TSKinFace

database and improves the performances with about 6.35 % and 8.53 % com-

pared with DDMML for FM-S and FM-D tri-subject relations on TSKinFace

database.

TXQDA vs. MSIDA [48]: From the five kinship databases, our TXQDA

outperforms the MSIDA [48] method with about 9.42%, 9.48%, 4.83%, 5.00%

and 9.98% on Cornell KinFace, UB KinFace, TSKinFace, KinFaceW-II and FIW

databases, respectively. Furthermore, our TXQDA used only the positive pairs

in the training step, unlike MSIDA do. The framework of Bessaoudi et al. [48]
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needs the MPCA method step for the features dimension reduction before using

the MSIDA method. Our TXQDA method deals with the face images directly,

without the need of using the features dimension reduction step. Furthermore,

our TXQDA method work well compared with MSIDA method when the data

classes contain face images from different persons with very large age difference

(i.e. the four grandparent-grandchild relations of FIW database).

Table 9: Performance comparisons (%) with state-of-the-art methods on Cornell KinFace database.

Method Mean Accuracy (%)

Pictorial structure model [40] 70.67

Neighborhood repulsed metric learning [2] 69.50

Multiview neighborhood repulsed metric learning [2] 71.60

Discriminative multimetric learning [3] 73.50

Prototype discriminative feature learning [4] 71.90

MHDL3 - {HOG + Color + LPQ} [9] 76.60

Multiple kernel similarity metric [10] 81.70

Heterogeneous similarity learning [52] 68.40

Kinship metric learning [53] 81.40

Multilinear side-information based discriminant analysis [48] 86.59

Neighborhood repulsed metric learning [2] (Our) 75.52

Side-information based linear discriminant analysis [47] (Our) 71.38

Cross-view quadratic discriminant analysis [13] (Our) 84.10

Multilinear side-information based discriminant analysis [48] (Our) 83.62

TXQDA (Our) 93.04
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Table 10: Table 8: Performance comparisons (%) with state-of-the-art methods on UB KinFace

database.

Method Mean Accuracy (%)

Transfer subspace learning [41] 68.50

Neighborhood repulsed metric learning [2] 65.60

Multiview neighborhood repulsed metric learning [2] 67.05

Discriminative multimetric learning [3] 72.25

Prototype discriminative feature learning [4] 67.30

Heterogeneous similarity learning [52] 56.20

PML-COV-S [54] 84.50

Kinship metric learning [53] 75.50

Multilinear side-information based discriminant analysis [48] 83.34

Neighborhood repulsed metric learning [2] (Our) 70.55

Side-information based linear discriminant analysis [47] (Our) 67.36

Cross-view quadratic discriminant analysis [13] (Our) 82.58

Multilinear side-information based discriminant analysis [48] (Our) 82.05

TXQDA (Our) 91.53

Table 11: Performance comparisons (%) with state-of-the-art methods on TSKinFace database.

Method Mean Accuracy (%) FM-S (%) FM-D (%)

Relative symmetric bilinear model [1] 81.85 86.40 84.40

BSIF-HSV [5] 81.19 / /

Discriminative deep multi-metric learning [7] 84.15 88.50 87.10

Multiple kernel similarity metric [10] 84.52 / /

Multilinear side-information based discriminant analysis [48] 85.18 / /

SILD+WCCN/LR [46] 88.59 90.94 91.23

Neighborhood repulsed metric learning [2] (Our) 80.83 84.26 85.53

Side-information based linear discriminant analysis [47] (Our) 83.46 86.44 87.82

Cross-view quadratic discriminant analysis [13] (Our) 85.89 88.02 88.35

Multilinear side-information based discriminant analysis [48] (Our) 85.49 91.26 91.27

TXQDA (Our) 90.32 94.85 95.63
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Table 12: Performance comparisons (%) with state-of-the-art methods on KinFaceW-II database.

Method Mean Accuracy (%)

Multi-view multi-task learning [8] 77.20

Discriminative deep multi-metric learning [7] 84.30

Multi-view deep metric learning [51] 80.20

Heterogeneous similarity learning [52] 70.40

Multiple kernel similarity metric [10] 84.30

Large-margin multi-metric learning [55] 80.00

Kinship metric learning [53] 85.70

SILD+WCCN/LR [46] 86.20

Neighborhood repulsed metric learning [2] (Our) 72.95

Side-information based linear discriminant analysis [47] (Our) 76.50

Cross-view quadratic discriminant analysis [13] (Our) 81.65

Multilinear side-information based discriminant analysis [48] (Our) 82.15

TXQDA (Our) 87.15

Table 13: Performance comparisons (%) with state-of-the-art methods on the four grandparent-

grandchild relations from FIW database.

Method Mean Accuracy (%)

ResNet+CF [42] 65.51

SphereFace [42] 65.60

ResNet+SDMLoss [56] 65.58

Neighborhood repulsed metric learning [2] (Our) 56.42

Side-information based linear discriminant analysis [47] (Our) 54.98

Cross-view quadratic discriminant analysis [13] (Our) 58.10

Multilinear side-information based discriminant analysis [48] (Our) 56.05

TXQDA (Our) 66.03

6. Conclusion

In this paper, we presented an effective approach based on tensor cross-view

method to the problem of kinship verification. To achieve a low dimensional and

discriminative tensor subspace, we extended XQDA to TXQDA, which operate

on multilinear data. TXQDA finds multilinear projections of the tensor, where
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the separation between data classes is enhanced. Furthermore, TXQDA was

proposed to separate the multifactor structure of face images related to kinship,

age, gender, expression, illumination and pose from different dimensions of the

tensor. Therefore, TXQDA has many advantages as it, i) preserves data struc-

ture, ii) enlarges the margin between samples, iii) helps lightening the small

sample size problem, and iv) reduces the computational cost. The experimen-

tal evaluation showed the superiority of our method. The best results of our

approach are obtained by fusing histograms of two multiple scale local texture

descriptors (MSLPQ+MSBSIF) projected with the proposed TXQDA method.

These results outperform the state of the art on Cornell KinFace, UB KinFace,

TSKinFace, KinFaceW-II and FIW databases. Furthermore, these results point

out to the need of using cross-view methods for kinship verification. As future

work, we plan to investigate higher tensor orders (> 3) for face representation

with the proposed multilinear dimensionality reduction method.
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