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ABSTRACT

Multi-view clustering is a learning paradigm based on multi-view data. Since statistic properties
of different views are diverse, even incompatible, few approaches implement multi-view clustering
based on the concatenated features straightforward. However, feature concatenation is a natural way
to combine multi-view data. To this end, this paper proposes a novel multi-view subspace clustering
approach dubbed Feature Concatenation Multi-view Subspace Clustering (FCMSC), which boosts
the clustering performance by exploring the consensus information of multi-view data. Specifically,
multi-view data are concatenated into a joint representation firstly, then, l2,1-norm is integrated into the
objective function to deal with the sample-specific and cluster-specific corruptions of multiple views.
Moreover, a graph regularized FCMSC is also proposed in this paper to explore both the consensus
information and complementary information of multi-view data for clustering. It is noteworthy that
the obtained coefficient matrix is not derived by simply applying the Low-Rank Representation (LRR)
to concatenated features directly. Finally, an effective algorithm based on the Augmented Lagrangian
Multiplier (ALM) is designed to optimize the objective functions. Comprehensive experiments on
six real-world datasets illustrate the superiority of the proposed methods over several state-of-the-art
approaches for multi-view clustering.

1. Introduction
Multi-view data, which are collected from different mea-

surements or fields to give a comprehensive description of
objects, are popular in many real-world applications [46, 51,
19, 22, 52, 10]. For example, in computer vision fields, an
image can be presented by multiple views (GIST [34], SIFT
[31], LBP [33], etc.); the words presented on a webpage and
the words presented in URL are two distinct views of the
webpage; video signals and audio signals are two common
representations and can be applied tomultimedia content un-
derstanding. Compared with single-view data, multi-view
data contain both the consensus and complementary infor-
mation among multiple views. And the goal of multi-view
learning, which has achieved success in many applications
[46, 65, 38, 69, 55, 6], is to improve the generalization per-
formance by leveraging multiple views.

As a fundamental task in unsupervised learning, cluster-
ing, which is often used to mine underlying information of
data, can be a stand-alone exploratory tool or a preprocessing
step to assist other learning tasks in machine learning as well
[71]. Many clustering approaches have been proposed, and
subspace clustering, which assumes that high dimensional
data lie in a union of low-dimensional subspaces and tries
to group data points into clusters and find the correspond-
ing subspace simultaneously, attracts lots of researches ow-
ing to its promising performance and good interpretabil-
ity. In recent years, many clustering algorithms based on
the subspace clustering with different constraints have been
proposed [20, 41, 14, 35, 36, 11, 67, 12, 37, 21]. Low-
Rank Subspace Clustering (LRSC) [41] finds a low-rank lin-
ear representation of data in a dictionary of themselves and
then employs the spectral clustering on an adjacent matrix,
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which is derived from the low-rank representation [29], to
obtain clustering results. Besides, Sparse Subspace Clus-
tering (SSC) [14], which tries to find a sparse representa-
tion based on the l1-norm, is a powerful subspace cluster-
ing algorithms as well. Additionally Low-Rank Sparse Sub-
space Clustering (LRSSC) [35] applies low-rank and sparse
constraints simultaneously based on the trace norm and l1-
norm according to the fact that the coefficient matrix is of-
ten sparse and low-rank at the same time. By combining
the labels and the affinity, Discriminative and Coherent Sub-
space Clustering (DCSC) [11] tries to enhance the labels’
discrimination for data in variant clusters and the affinity for
data in the same cluster. Although these algorithms men-
tioned above can get promising clustering results in practice,
they are designed for single-view data rather thanmulti-view
data.

Based on the subspace clustering, many multi-view sub-
space clustering approaches have been proposed [8, 57, 5,
47, 15, 66]. Most of them process multiple views separately
and obtain clustering results by finding a common shared co-
efficient matrix or fusing clustering results of different views
directly. Although good performance has been achieved in
practice, the underlying information of multi-view data is in-
sufficiently explored in these methods. To this end, in this
paper, we propose a novel multi-view subspace clustering
named Feature ConcatenationMulti-view Subspace Cluster-
ing (FCMSC), which performs clustering on all views simul-
taneously and takes advantage of the consensus information
of multi-view data to improve clustering results.

For multi-view clustering, a naive idea is concatenating
features of all views and then running a clustering algorithm
to get clustering results. Concatenated features have the fol-
lowing merits: 1) original information of multi-view data
can be maximum preserved by concatenating features of all
views into a joint view representation; 2) all views of multi-
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view data can be processed simultaneously during cluster-
ing. However, it is ineffective in practice and even gets worse
clustering results [46, 65, 24, 25, 44] by simply performing
a single-view clustering algorithm on the concatenated fea-
tures straightforward to obtain clustering results, since each
view contains its own statistical properties. It is noteworthy
that our proposed FCMSC can achieve the promising clus-
tering performance on the joint view representation. To be
specific, by introducing the concept of cluster-specific cor-
ruptions, our FCMSC decomposes the original coefficient
matrix, which is derived from concatenated features by em-
ploying low-rank representation straightforward, to obtain a
new low-rank coefficient matrix, which enjoys the consen-
sus property of multi-view data. Moreover, a graph regu-
larized FCMSC (gr-FCMSC) is also proposed, which can
explore both the consensus information and complementary
information simultaneously during clustering. Finally, an ef-
fective optimization algorithm based on the Augmented La-
grangian Multiplier (ALM) [50, 28] is designed for the ob-
jective functions of the proposed FCMSC and gr-FCMSC.
Extensive experiments on six benchmark datasets compared
with several state-of-the-arts illustrate the effectiveness and
competitiveness of the proposed methods.

The main contributions of this paper can be summarized
as follows:

1) An effective feature concatenation multi-view sub-
space clustering is proposed in this paper. By intro-
ducing the cluster-specific corruptions brought by dif-
ferent views, the proposed method can perform clus-
tering on multiple views simultaneously and explore
the consensus information of multi-view data based
on the joint view representation directly.

2) A graph regularized feature concatenation multi-view
subspace clustering (gr-FCMSC) is also proposed. By
employing the graph Laplacians, both the consensus
information and the complementary information of
multi-view data can be fully explored during cluster-
ing.

3) Comprehensive experiments are conducted on public
available datasets, and experimental results show the
effectiveness and superiority of the proposed methods
compared with several state-of-the-arts.

The rest of this paper is organized as follows. The next
section reviews related works briefly. Section 3 introduces
our methods, including FCMSC and gr-FCMSC, in detail.
And Section 4 presents the related optimizations. Compre-
hensive experimental results and discussions are provided in
Section 5. Finally, Section 6 provides the conclusions.

2. Related Work
A lot of approaches have been proposed recently to solve

the multi-view clustering problem [70, 58, 57, 5, 15, 66,
24, 25, 44, 56, 39, 8, 49, 40, 42, 64, 30, 3]. Most existing
multi-view clusteringmethods can be grouped into twomain

categories roughly: generative methods and discriminative
methods [8]. The idea of generative methods is to construct
generative models for variant clusters respectively. For ex-
ample, multi-view convexmixture models [40] assign differ-
ent weights for multiple views automatically and consider
the diversity of different views. Although most generative
algorithms are robust to the missing entries and have global
optimization, they are accompaniedwith a series of hypothe-
ses and parameters, which make the optimization more dif-
ficult and time consuming.

Discriminative methods, the goal of which is to min-
imize both the intrinsic similarity of data points between
different clusters and dissimilarity of data points within the
same cluster through all multiple views simultaneously, have
achieved good clustering results in many applications and at-
tract the most attention of researchers in this research field
[8]. Taking examples of multi-view subspace clustering, La-
tent Multi-view Subspace Clustering (LMSC) [58] and gen-
eralized Latent Multi-view Subspace Clustering (gLMSC)
[56] introduce a latent representation to explore the relation-
ships of data points among all views, obtain the underlying
complementary information and seek the latent representa-
tion as well; And Multi-view Low-rank Sparse Subspace
Clustering (MLRSSC) [3] obtains multi-view clustering re-
sults by constructing an affinity matrix with the low-rank
and sparsity constraints; Multi-view subspace clustering by
learning a joint affinity graph [39] pursuits a low-rank sub-
space representation with diversity regularization and a rank
constraint for multi-view clustering. Besides, many spectral
clustering based methods are also proposed in recent years.
The co-training approach for multi-view spectral clustering
[24] and the co-regularized multi-view spectral clustering
[25] try to get clustering results that can maximize the simi-
larity graph agreement among different views; RobustMulti-
view Spectral Clustering (RMSC) [44] recovers a common
transition probability matrix via low-rank and sparse de-
composition and employs the Markov chain approach to ob-
tain clustering results. In addition, some multi-view cluster-
ing methods based on the matrix factorization method [27]
are proposed by exploring the consensus information among
views [64, 30]. For most of discriminative multi-view clus-
tering methods, the essential difference is the style they use
to explore the underlying information of multiple views.

Inspire by the success of deep learning [26, 53, 59, 54],
some clustering methods based on deep learning are pro-
posed [23, 68]. By introducing a self-expressive layer, Deep
Subspace ClusteringNetworks canmap data to a latent space
non-linearly and learns the affinity matrix straightforward.
Deep Canonical Correlation Analysis (DCCA) [1] and Deep
Canonically Correlated Autoencoders (DCCAE) [43] are
two deep learning based methods which can be employed
for multi-view clustering. Although good clustering results
can be achieved, most existing multi-view clustering meth-
ods deal with different views separately, and that is an in-
effective way since the relationships among multiple views
are ignored. A natural way is to combine all views before
clustering, and some related approaches have been proposed
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Figure 1: Illustration of the proposed method, in which multi-view subspace clustering is implemented on the joint view repre-
sentation. Multiple views are concatenated firstly, then the FCMSC is employed to obtain a desired coefficient matrix, i.e. C,
and the last step is to infer the clustering results of data points by leveraging the spectral clustering approach with the adjacency
matrix (abs(C) + abs(CT ))∕2.

[9, 7, 58, 60, 18]. However, these methods may corrupt
either the consensus information or the complementary in-
formation among views during combination to varying de-
grees. Taking the joint view representation into considera-
tion, multi-view clustering results achieved by employing a
single-view clustering algorithm to the joint view represen-
tation directly are uncompetitive [57, 5, 25, 44, 8], and few
works focus on this kind of combination styles. However, it
is obvious that original information contained among mul-
tiple views can get maximum preservation by concatenat-
ing features of all views straightforward. It is notable that
the proposed FCMSC and gr-FCMSC can get promising and
competitive clustering results by utilizing the concatenated
features of multiple views straightforward.

3. Feature Concatenation Multi-view
Subspace Clustering
In this section, we propose the Feature Concatena-

tion Multi-view Subspace Clustering (FCMSC) method by
exploring the consensus information of multi-view data.
Moreover, a graph regularized FCMSC method, termed as
gr-FCMSC, is also proposed, and it can explore both the
consensus information and complementary information of
multiple views for multi-view clustering.

3.1. FCMSC
For convenience, Table 1 lists main symbols leveraged

throughout this paper. Given a multi-view dataset with v
views and n samples, i.e. {x(i)1 , x

(i)
2 ,⋯ , x(i)n }vi=1, data points

of which are drawn from m multiple subspaces. In order to
obtain a matrix that each column has the same magnitude,
data of each view are normalized within the range of [0, 1],
and then multiple views are concatenated into a joint view
representation matrix X, which is defined as follows:

X =

⎡

⎢

⎢

⎢

⎢

⎣

x(1)1 x(1)2 ⋯ x(1)n
x(2)1 x(2)2 ⋯ x(2)n
⋮ ⋮ ⋱ ⋮
x(v)1 x(v)2 ⋯ x(v)n

⎤

⎥

⎥

⎥

⎥

⎦

, (1)

where x(k)i denotes the features of the i-th sample from the
k-th view, and the i-th column of X contains features of all
views of the i-th sample. Based on the concatenated features,
Fig. 1 displays the framework of the proposed FCMSC.

Since statistic properties of different views are diverse,
even incompatible among views, it is difficult to explore the
mutual information of multiple views effectively and fully.
In order to get a preliminary exploration of multi-view data,
we consider the following objective function in the begin-
ning:

min
Z,Ex

‖

‖

Ex‖‖2,1 + �‖Z‖∗

s.t. X = XZ + Ex,
(2)

whereZ indicates an original coefficientmatrix ofX,Ex de-
notes the sample-specific corruptions of data points, and � is
a trade-off parameter. The l2,1-norm ofEx enforcesEx to be
sparse in columns and columns of Ex to be zero. Equation
(2) is a standard low-rank representation [29] of the concate-
nated features. However, experimental results presented in
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Table 1
Main Symbols

Symbol Meaning

n The number of samples.

v The number of views.

m The number of clusters.

di The dimension of features in i-th view.

d The dimension of the concatenated features.

x(i)k ∈ Rdi The features of k-th sample from i-th view.

X ∈ Rd×n The joint view representation matrix.

Z ∈ Rn×n The original coefficient matrix.

Ex ∈ Rd×n The sample-specific corruptions.

C ∈ Rn×n The desired coefficient matrix.

Ecs ∈ Rd×n The cluster-specific corruptions.

Ez ∈ Rn×n The term derived from Ecs.
Li ∈ Rn×n The Laplacian matrix of i-th view.

‖A‖∗ The trace-norm of matrix A.
‖A‖2,1 The l2,1-norm of matrix A.

[57, 5, 8] and later section of this paper show that the clus-
tering performance is uncompetitive if a spectral clustering
algorithm is performed based on the coefficient matrix Z.
This is because each view has specific statistical properties,
which may be contradictory among views, and it is unrea-
sonable to explore the joint views representation by directly
employing single-view clustering algorithm.

In this paper, we introduce the cluster-specific corrup-
tions, which are accompanied with multi-view data, as
shown in Fig. 2. Without considering the cluster-specific
corruptions, it is expected that running a single-view clus-
tering algorithm on the concatenated features is hard to get
satisfied clustering results. And the original coefficient ma-
trix Z, obtained in (2), is far from good enough for multi-
view clustering. In order to handle the concatenated features
better and get a desired coefficient matrix, it is suggested to
consider the following formulation:

X = DC + Ecs + Ex, (3)

whereD indicates a dictionary matrix,C denotes the desired
coefficient matrix, and Ecs represents the cluster-specific
corruptions among multiple views. Equation (3) considers
both the cluster-specific and sample-specific corruptions.

Obviously, the choices ofD andEcs are vital for the final
multi-view clustering performance. Since matrix D is free
of the sample-specific corruptions, it is reasonable to employ
the reconstructed features, obtained from (2), as the dictio-
nary matrix, i.e. D = XZ. ForEcs, most existing norms are
not suitable for it. As shown in Fig. 2, under the assump-
tion that the true underlying clustering would assign corre-
sponding points in each view to the same cluster, the num-
ber of columns with cluster-specific corruptions in matrix
X should be small, and the major part of columns achieves

Figure 2: Illustrating the cluster-specific corruptions brought
by multiple views. Taking 12 images of 3 individuals for ex-
amples, and they are described by 3 views. With the joint
view representation, (a) is an ideal situation that clustering
results of all views are coincident. (b) is the actual situation
since clustering results of different views are different to some
degree. The columns of joint view representation matrix, con-
taining red rectangles, indicate the cluster-specific corruptions,
which are brought by multiple views obviously.

the same clustering results. However, it is difficult to process
the cluster-specific corruptions directly. In this paper, we de-
composedEcs asEcs = XEz. By assuming thatEz is sparse
in columns,XEz can capture the cluster-specific corruption
approximately. So it is reasonable to impose the l2,1-norm
minimization constraint on Ez, and Ecs = XEz can char-
acterize the cluster-specific corruptions of multi-view data
properly. Accordingly, (3) is rewritten as follows:

X = XZC +XEz + Ex. (4)

For simplicity, we can reformulate the above equation as
follows:

X = X(ZC + Ez) + Ex. (5)

As a consequence, it is straightforward to design the fol-
lowing objective function for multi-view clustering based on
the joint view representation X:

min
Z,C,Ex,Ez

‖

‖

Ex‖‖2,1 + �1‖‖Ez‖‖2,1 + �2‖C‖∗
s.t. X = XZ + Ex, Z = ZC + Ez,

(6)

where �1 and �2 are trade-off parameters. Although Ex and
Ez are both imposed with the l2,1-norm constraint, they are
totally different in essence. More specifically, Ex illustrates
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Figure 3: Visualization of coefficient matrices obtained from
the Yale Face dataset. (a) is derived from (2), and (b) is cal-
culated from (6). where Z and C are both displayed in the
form of (abs(ZT )+abs(Z))/2 and (abs(CT )+abs(C))/2, and
obviously, C characters the underlying clustering structures of
data much better than Z.

the sample-specific corruptions, and Ecs = XEz is used to
process the cluster-specific corruptions caused by multiple-
views. Theoretically, compared with the coefficient matrix
obtained in (2), the coefficient matrix C is much better for
multi-view clustering. To view the difference in a more in-
tuitive way, Fig. 3 displays a visualization of Z and C con-
ducted on the Yale Face dateset1. As shown in Fig. 3, it is
clear that the matrix C has more suitable structures than Z
for clustering.

3.2. gr-FCMSC
In FCMSC, only the consensus information of multi-

view data is employed for clustering. In order to leverage
the complementary information as well, a graph regularized
Feature Concatenated Multi-view Subspace Clustering (gr-
FCMSC) is also proposed in this paper. Graph regulariza-
tion can preserve local manifold structures [4, 45, 16], and
inspired by [45] we impose the following graph Laplacian
regularizer of multiple views on the FCMSC to explore the
complementary of multi-view data:

v
∑

i=1
T r(CTLiC), (7)

where CT denotes the transpose of C , Li represents the
graph Laplacian matrix of i-th view, Li = Di − Wi, and
Di is the degree matrix of the i-th view,Wi is the adjacency
matrix of the i-th view [32]. And, the objective function of
gr-FCMSC can be formulated as follows:

min
Z,C,Ex,Ez

‖

‖

Ex‖‖2,1 + �1‖‖Ez‖‖2,1 + �2‖C‖∗

+ �3
v
∑

i=1
T r(CTLiC)

s.t. X = XZ + Ex, Z = ZC + Ez

(8)

1The Yale Face database contains 165 grayscale images in GIF format
of 15 individuals. More details will be presented in the section of experi-
ment.

Algorithm 1 Optimization of the proposed FCMSC
INPUT:
Multi-view data {x(i)1 , x

(i)
2 ,⋯ , x(i)n }vi=1;

Ex = 0, Ez = 0, C = 0, J = 0,
Y1 = 0, Y2 = 0, Y3 = 0,
� = 10−4, �max = 106, " = 10−6,
Initialize Z with random values;

OUTPUT:
C , Z, Ez, Ex;

REPEAT
Update Ex according to the problem (12);
Update Ez according to the problem (14);
Update J according to the problem (15);
Update C according to the problem (18);
Update Z according to the problem (20);
Update Y1, Y2, Y3 and � according to the problem (23);

UNTIL
‖

‖

X −XZ − Ex‖‖∞ < ",
‖

‖

Z −ZC − Ez‖‖∞ < ",
and ‖C − J‖∞ < ".

where �1, �2, and �3 denote trade-off parameters. Obvi-
ously, the desired coefficient matrix C , derived from (8),
takes specificmanifold structures of different views into con-
sideration, in other words, the complementary information
of multi-view data are also leveraged for clustering.

Once the desired coefficient matrix C is learned, we
construct an adjacency matrix for spectral clustering to get
multi-view clustering results as follows:

W =
abs(C) + abs(CT )

2
, (9)

where abs(⋅) denotes the absolution function, which can deal
with a matrix and return the absolute value of each element
in the matrix.

4. Optimization
In this section, the optimization algorithms of the ob-

jective functions, including FCMSC and gr-FCMSC, are in-
troduced in detail, then the computational complexity and
convergence are analyzed as well.

4.1. Optimization for FCMSC
Although the optimization problem of (6) is not convex

with respect to the variables, i.e. Z, C , Ex, and Ez, jointly,
subproblems with respect to each of them are convex. So
we apply the Alternating Direction Minimization strategy
based on the Augmented Lagrangian Multiplier (ALM) [28]
method to solve the objective function (6) effectively. Ad-
ditionally, an auxiliary variable is introduced here so as to
make the objective function separable and convenient for
optimization. Accordingly, (6) can be reformulated equiv-
alently as follows:

min
Z,C,Ez,Ex,J

‖

‖

Ex‖‖2,1 + �1‖‖Ez‖‖2,1 + �2‖J‖∗
s.t. X = XZ + Ex, Z = ZC + Ez, C = J .

(10)
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where J denotes the auxiliary variable, �1 and �2 are trade-
off parameters.

The corresponding ALM problem of (10), which should
be minimized in this section,can be shown as follows:

(Ex, Ez, J , C, Y1, Y2, Y3, �)
= ‖

‖

Ex‖‖2,1 + �1‖‖Ez‖‖2,1 + �2‖J‖∗
+ ⟨Y1, X −XZ − Ex⟩ +

�
2
‖

‖

X −XZ − Ex‖‖
2
F

+ ⟨Y2, Z −ZC − Ez⟩ +
�
2
‖

‖

Z −ZC − Ez‖‖
2
F

+ ⟨Y3, C − J ⟩ +
�
2 ‖C − J‖

2
F ,

(11)

where Y1, Y2, and Y3 are Laplacian multipliers, � indicates a
positive adaptive penalty parameter, ⟨A,B⟩ denotes the trace
of ATB.

Since the Alternating Direction Minimization strategy is
employed to minimize the above ALM problem, the whole
problem is decomposed into several subproblems, which are
convex and can be optimized effectively.

1) Updating Ex: To update Ex with other variables
fixed, the following minimization problem should be opti-
mized:

min
Ex

‖

‖

Ex‖‖2,1+
�
2
‖

‖

‖

‖

Ex − (X −XZ +
Y1
�
)
‖

‖

‖

‖

2

F
, (12)

which has a closed-form solution.
Specifically, the solution of the above subproblem is de-

noted as E∗x , and we can get the following closed-form solu-
tion [48]:

[

E∗x
]

∶,j =

⎧

⎪

⎨

⎪

⎩

‖

‖

‖

[TE]∶,j‖‖
‖2
− 1
�

‖

‖

‖

[TE]∶,j‖‖
‖2

[

TE
]

∶,j , if
‖

‖

‖

[

TE
]

∶,j
‖

‖

‖2
> 1

�

0 , otherwise
,

(13)

where [A]∶,j represents the j-th column of the matrixA, and
TE = X −XZ + Y1

� .
2) Updating Ez: The subproblem of updating Ez, in

which other variables are all fixed, can be written as follows:

min
Ez

�1 ‖‖Ez‖‖2,1 +
�
2
‖

‖

‖

‖

Ez − (Z −ZC +
Y2
�
)
‖

‖

‖

‖

2

F
. (14)

This subproblem is similar to the subproblem of updat-
ing Ex, and can be optimized effectively in the same way.

3) Updating J : With other variables fixed, we solve the
following problem to update variable J :

min
J
�2‖J‖∗ +

�
2
‖

‖

‖

‖

J − (C +
Y3
�
)
‖

‖

‖

‖

2

F
, (15)

which can be optimized by leveraging the singular value
threshold method [28]. Specifically, by setting TJ = C +
Y3∕� and performing singular value decomposition (SVD)
on TJ , i.e. TJ = UΣV T , we achieve the optimization as
follows:

J = US�2∕�(Σ)V
T , (16)

where S" denotes a soft-thresholding operator as following
and can be extended to matrices by applying it element-wise.

S"(x) =

⎧

⎪

⎨

⎪

⎩

x − ", if x − " > 0
x + ", if x − " < 0
0 , otherwise.

(17)

4) Updating C: When other variables are fixed, the sub-
problem with respect to C can be written as follows:

min
C

⟨Y2, Z −ZC − Ez⟩ +
�
2
‖

‖

Z −ZC − Ez‖‖
2
F

+ ⟨Y3, C − J⟩ +
�
2 ‖C − J‖

2
F .

(18)

In order to get an optimization, we take the derivative
of the above function with respect to variable C and let the
derivative to be zero, then obtain the following solution:

C = T −1CATCB ,
TCA = �(I +ZTZ),
TCB = �J − Y3 +ZT Y2 + �(ZTZ −ZTEz),

(19)

where I is an identity matrix with the proper size.
5) Updating Z: With other variables being fixed, the

subproblem of updating Z can be written as follows:

min
Z

⟨Y1, X −XZ − Ex⟩ +
�
2
‖

‖

X −XZ − Ex‖‖
2
F

+ ⟨Y2, Z −ZC − Ez⟩ +
�
2
‖

‖

Z −ZC − Ez‖‖
2
F .

(20)

Differentiating (20) with respect to Z and letting it to be
zero, the following equivalent equation can be achieved, so-
lution of which is the optimization of this subproblem:

TZAZ +ZTZB = TZC , (21)

where TZA, TZB , and TZC can be written as follows:

TZA = XTX + I,
TZB = CCT − C − CT ,
TZC = XTX −XTEx + Ez − EzCT

+ 1
�X

T Y1 +
1
� (Y2C

T − Y2).

(22)

Equation (21) is a Sylvester equation and can be opti-
mized effectively referring to [2].

6) Updating Lagrange multipliers and �: According
to [28], we update the Lagrange multipliers and the param-
eter � as following:

Y1 = Y1 + �(X −XZ − Ex),
Y2 = Y2 + �(Z −ZC − Ez),
Y3 = Y3 + �(C − J ),
� = min(��, �max),

(23)

where � > 1 and the parameter � is monotonically increased
by � until reaching the maximum, �max.

Algorithm 1 outlines the whole procedure of optimiza-
tion for FCMSC. It is should be noticed that we random ini-
tialize Z in practice to avoid all zeros solutions.
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4.2. Optimization for gr-FCMSC
Algorithm 1 can be generalized to optimize the problem

of (8) in this section, and following ALM problem is con-
structed:

(Ex, Ez, J , C, Y1, Y2, Y3)
= ‖

‖

Ex‖‖2,1 + �1‖‖Ez‖‖2,1
+�2‖J‖∗ + �3

v
∑

i=1
T r(CTLiC)

+ ⟨Y1, X −XZ − Ex⟩ +
�
2
‖

‖

X −XZ − Ex‖‖
2
F

+ ⟨Y2, Z −ZC − Ez⟩ +
�
2
‖

‖

Z −ZV C − Ez‖‖
2
F

+ ⟨Y3, C − J ⟩ +
�
2 ‖C − J‖

2
F .

(24)

Clearly, the subproblem with respect to C , which can be
formulated as follows, is different from (18):

min
C

⟨Y2, Z −ZC − Ez⟩ +
�
2
‖

‖

Z −ZC − Ez‖‖
2
F

+ ⟨Y3, C − J⟩ +
�
2 ‖C − J‖

2
F +�3

v
∑

i=1
T r(CTLiC)

(25)

And the optimization of the above problem is

C = T −1CATCB ,

TCA = �3
v
∑

i=1
(LTi + Li) + �(I +Z

TZ),

TCB = �J − Y3 +ZT Y2 + �(ZTZ −ZTEz)

(26)

As for other subproblems, we optimize they according to
Algorithm 1 straightforward. And we skip they over for the
compactness of this paper.

4.3. Computational Complexity and Convergence
As shown in Algorithm 1, the main computational bur-

den is composed of five parts, i.e. the five corresponding
subproblems. The complexity of updatingEx isO(dn2+n3),
and the complexity of updating Ez is O(n3), both of which
are matrix multiplication. As for the subproblem of updating
J , the complexity isO(n3). In the subproblem of updatingC ,
the complexity is O(n3), since matrix inversion is included
during optimization process. For updating Z, the Sylvester
equation is optimized, and the complexity of this subprob-
lem isO(d3+n3). To sum up, the computational complexity
of each iteration is O(dn2 + d3 + n3).

For the convergence analysis, unfortunately, we find that
it is difficulty to give any solid proof on the convergence
of the proposed algorithm, since more than two subprob-
lems are involved during the optimization. Inspired by
[50, 63, 61], convergence discussion will be presented in
the experiments section, extensive experimental results on
the real-world datasets show that the proposed algorithm
can converge effectively with all-zero initialization except
for variable Z, which is initialized with random values.

5. Experiments
In this section, extensive experiments are conducted on

six benchmark datasets. Accordingly, experimental results

are presented with the corresponding analyses. Both valida-
tion experiments and comparison experiments are provided,
and the convergence properties and parameters sensitivity
are analyzed as well. All codes are implemented in Matlab
on a desktop with a four-core 3.6GHz processor and 8GB of
memory.

5.1. Experimental Settings
To evaluate the performance of the proposed FCMSC,

we employ six real-world datasets in experiments, including
BBCSport1 [24, 17], Movies 6172, MSRCV13, Olympics4,
ORL5, and Yale Face6. To be specific, BBCSport is col-
lected from the BBC Sport website corresponding to sports
news in 5 topical areas, and it consists of 544 documents,
each which is divided into two sub-parts as two differ-
ent views, and the standard TF-IDF normalization is uti-
lized to obtain the corresponding features. Movie 617
is a movie dataset containing 617 movies of 17 genres,
and it consists of two views, including keywords-mapping
(view 1) and actors-mapping (view 2). MSRCV1 used in
this paper consists of 210 images of 7 object classes, in-
cluding building, cow, car airplane, tree, face, and bicy-
cle, and 6 types of features are utilized, including: CENT
(view1), CMT (view2), GIST (view3), HOG (view4), LBP
(view5), and SIFT (view6). Olympics consists of 464
London 2012 Summer Olympics players’ information ac-
tive on Twitter of 28 different sports, and 9 different
views are provide, including followedby-dictionary (view
1), follows-dictionary (view 2), mentionedby-dictionary
(view 3), mentions-dictionary (view 4), retweets-dictionary
(view 5), retweetedby-dictionary (view 6), listmerged500-
dictionary (view 7), lists500-dictionary (view 8), tweets500-
dictionary (view 9). ORL, which contains 400 images from
40 individuals, and Yale Face, which consists of 165 images
from 15 individuals, are both face image datasets, three types
of features, i.e., intensity (view1), LBP (view2) and Gabor
(view3), are employed in datasets.

Meanwhile, three metrics are employed in this section to
evaluate the clustering performance, including NMI (Nor-
malizedMutual Information), ACC (accuracy), and F-score,
which are commonly used in multi-view clustering [56, 3].
To make more precise statements, the definition of the ACC
utilized in this paper can be written as follows:

ACC =
∑n
i=1 �(�i,map(!i))

n
, (27)

where xi denotes the i-th sample, !i is the clustering la-
bel of the i-th sample, and �i illustrates the corresponding
ground-truth label. The function of map(!i) is the permu-
tation map function, in which the Kuhn-Munkres algorithm
is employed. And �(⋅, ⋅) denotes the Dirac delta function. It

1http://mlg.ucd.ie/datasets/
2http://lig-membres.imag.fr/grimal/data/movies617.tar.gz
3http://research.microsoft.com/en-us/projects/objectclassrecognition/
4http://mlg.ucd.ie/aggregation/
5https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
6http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html
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Figure 4: Clustering results comparison between the proposed FCMSC conducted on the joint view representation and LRR
performed on each single view. Six benchmark datasets are employed and clustering results are presented in the metric of NMI,
ACC, and F-Score.

should be noted that the higher value of all metrics corre-
sponds the better clustering performance. All parameters of
the competed methods are fine-tuned. To eliminate the ran-
domness, 30 Monte Carlo (MC) trials are conducted with
respect to each benchmark dataset. Experimental results are
reported in form of the mean value and the standard devia-
tion, and the best and the second best clustering results are
present in bold font.

5.2. Validation Experiments
To validate our method, we compare the clustering re-

sults, achieved by the proposed FCMSC, with the clustering
results, obtained by performing LRR on each single view.
Specifically, validation experiments are conducted on all six
benchmark datasets, and we shown the clustering perfor-
mance of our methods and LRR on each single view with
respect to NMI, ACC and F-score.

As shown in Fig. 4, the clustering performance of our
FCMSC based on the joint view representation is much bet-
ter than those of all single view. Taking BBCSport as ex-
ample, NMI and ACC obtained by LRR [29] with the best
single view are 69.96% and 79.70% respectively. As for
the proposed FCMSC based on the concatenated features,
NMI and ACC are 89.04% and 96.51% respectively. In
other words, our FCMSC achieves a relative increase of
27.27% and 21.09% with respect to NMI and ACC. Since
FCMSC performs clustering on multiple view simultane-
ously and handles the cluster-specific corruptions properly,
it can take advantage of consensus information to improve

clustering results. Therefore, the proposed FCMSC is valid
and can achieve promising clustering performance for multi-
view data.

5.3. Comparison Experiments
To demonstrate the competitiveness of our FCMSC and

gr-FCMSC, eleven approaches are employed for comparison
and listed as follows:

1) SCBSV [32]: Spectral Clustering of the Best Single
View. Spectral clustering algorithm is employed on
each single view, and the best clustering results of
these views are presented.

2) SCFC: Spectral Clustering based on the Concatenated
Features. Features ofmultiple views are concatenated,
and then spectral clustering algorithm is applied to the
joint view representation.

3) LRRBSV [29]: Low-Rank Representation of the Best
Single View. Similar to the SCBSV, low-rank repre-
sentation algorithm is conducted on each view, and
the results of the view with the best clustering perfor-
mance are reported.

4) LRRFC: Low-Rank Representation based on the Con-
catenated Features. We apply the low-rank represen-
tation algorithm to the joint view representation to get
multi-view clustering results.

5) Kernel Addition [13]: This approach combines infor-
mation ofmulti-view data by averaging the sumof ker-

Qinghai Zheng et al.: Preprint submitted to Elsevier Page 8 of 14



Feature Concatenation Multi-view Subspace Clustering

Figure 5: Visualization of adjacency matrices (a, b, c, d, g, h, i, and j) and coefficient matrices (e, f, k, and l), where Z and C
are both displayed in the form of (abs(ZT )+abs(Z))/2 and (abs(CT )+abs(C))/2.

nel matrices of all views, then gets clustering results
based on spectral clustering.

6) Co-reg [25]: Co-regularized multi-view spectral clus-
tering. This approach clusters multi-view data by pur-
suing graph similarity agreement of multiple views.

7) RMSC [44]: Robust Multi-View Spectral Clustering
via Low-Rank and Sparse Decomposition. RMSC re-
covers a common low-rank transition probability ma-
trix via low-rank and sparse decomposition, and then
obtain clustering results based on the standardMarkov
chains.

8) LMSC [58]: Latent Multi-view Subspace Clustering.
It learns a latent multi-view representation and attains
the corresponding subspace coefficient matrix simul-
taneously.

9) MLRSSC [3]: Multi-view low-rank sparse subspace
clustering. It learns the affinity matrix of multi-view
data with the low-rank and sparsity constraints. Lin-
ear kernel MLRSSC algorithm is employed here for
comparison.

10) DCCA [1]: Deep Canonical Correlation Analysis. It
is a learning method which employs the neural net-
works to extend Canonical Correlation Analysis. We
use k-means to obtain cluster results.

11) DCCAE [43]: Deep Canonically Correlated Autoen-
coders. Two autoencoders are employed and DCCAE
tries to maximize the canonical correlation between
two views. K-means is utilized for clustering.

As shown in Table 2 and 3, experimental results are
reported in form of the mean score, as well as the stan-
dard deviation. Overall, the proposed FCMSC and gr-
FCMSC can achieve better clustering results on six bench-
mark datasets than other competed multi-view clustering ap-

proaches with respect to all the clustering metrics. For ex-
ample, on MSRCV1 dataset with six views, our FCMSC
gains a relative increase of 6.01%, 4.48% and 5.92% with
respect to NMI, ACC, and F-Score, respectively, comparing
with the corresponding best competed method. Moreover,
the proposed gr-FCMSC get 13.74%, 10.69%, and 16.03%
relative improvement in metrics of NMI, ACC, and F-Score
as well. Furthermore, take experiments on ORL for exam-
ples, some statistical experimental results on ORL dataset
are presented in Fig. 6, it can be observed clearly that the
proposed FCMSC and gr-FCMSC can achieve significantly
improvement compared with competitors. Compared with
deep learning based methods, i.e., DCCA and DCCAE, our
methods can also achieve the better clustering performance,
since both the sample-specific and the cluster-specific cor-
ruptions are taken into account for clustering.

Compared with LRRFC, the proposed FCMSC takes the
cluster-specific corruptions, which are brought by multiple
views, into consideration, and the clustering results indicate
that it is essential to handle the clustering-specific corrup-
tions during multi-view clustering. Since each view has its
own specific properties that may be contrary to other views,
it is difficult to explore and utilize the consensus information
of multi-view data by performing some existing single-view
clustering approaches on the concatenated features. To get
an intuitive analysis, taking experiments on ORL and Yale
Face datasets for example, Fig. 5 presents the visualization
of adjacency matrices, which are calculated from each view
and concatenated features by different methods. Clearly, the
adjacency matrix C achieved by our proposed FCMSC has
more suitable underlying structures for clustering.

5.4. Comparisons Between FCMSC and
gr-FCMSC

Both the proposed FCMSC and gr-FCMSC perform
clustering onmultiple views simultaneously, and get promis-
ing clustering results. The consensus information of multi-
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Table 2
Comparison results of different methods on the benchmark datasets

Dataset Method NMI ACC F-SCORE

BBCSport

SCBSV 0.7182 (0.0054) 0.8456 (0.0099) 0.7671 (0.0067)
SCFC 0.8019 (0.0095) 0.8505 (0.0262) 0.8452 (0.0206)
LRRBSV 0.6996 (0.0001) 0.7970 (0.0015) 0.7612 (0.0001)
LRRFC 0.5580 (0.0110) 0.6684 (0.0088) 0.6064 (0.0055)

Kernel Addition 0.6170 (0.0085) 0.7347 (0.0099) 0.6684 (0.0059)
Co-reg 0.7185 (0.0031) 0.8465 (0.0050) 0.7674 (0.0041)
RMSC 0.8124 (0.0074) 0.8562 (0.0198) 0.8514 (0.0132)
LMSC 0.8393 (0.0043) 0.9180 (0.0031) 0.8996 (0.0033)

MLRSSC 0.8855 (0.0000) 0.9651 (0.0000) 0.9296 (0.0000)
DCCA 0.2779 (0.0041) 0.5490 (0.0042) 0.4116 (0.0010)
DCCAE 0.3298 (0.0046) 0.5438 (0.0089) 0.4088 (0.0080)
FCMSC 0.8904 (0.0000) 0.9651 (0.0000) 0.9317 (0.0000)

gr-FCMSC 0.8973 (0.0000) 0.9670 (0.0000) 0.9348 (0.0000)

Movies 617

SCBSV 0.2606 (0.0020) 0.2579 (0.0035) 0.1481 (0.0025)
SCFC 0.2668 (0.0017) 0.2604 (0.0033) 0.1542 (0.0019)
LRRBSV 0.2667 (0.0059) 0.2747 (0.0071) 0.1545 (0.0047)
LRRFC 0.2839 (0.0075) 0.2824 (0.0135) 0.1813 (0.0063)

Kernel Addition 0.2917 (0.0026) 0.2901 (0.0049) 0.1764 (0.0033)
Co-reg 0.2454 (0.0018) 0.2396 (0.0017) 0.1381 (0.0016)
RMSC 0.2957 (0.0032) 0.2971 (0.0040) 0.1810 (0.0028)
LMSC 0.2813 (0.0098) 0.2747 (0.0094) 0.1606 (0.0068)

MLRSSC 0.2975 (0.0061) 0.2887 (0.0111) 0.1766 (0.0068)
DCCA 0.1764 (0.0002) 0.1948 (0.0018) 0.1141 (0.0014)
DCCAE 0.1759 (0.0061) 0.2009 (0.0118) 0.1214 (0.0056)
FCMSC 0.3043 (0.0052) 0.3090 (0.0063) 0.1852 (0.0034)

gr-FCMSC 0.3169 (0.0059) 0.3051 (0.0049) 0.1930 (0.0035)

MSRCV1

SCBSV 0.6047 (0.0112) 0.6826 (0.0171) 0.5724 (0.0122)
SCFC 0.4398 (0.0021) 0.5073 (0.0077) 0.3978 (0.0032)
LRRBSV 0.5704 (0.0054) 0.6732 (0.0091) 0.5368 (0.0076)
LRRFC 0.6257 (0.0105) 0.6871 (0.0105) 0.5913 (0.0142)

Kernel Addition 0.6176 (0.0087) 0.7102 (0.0130) 0.5973 (0.0097)
Co-reg 0.6583 (0.0106) 0.7674 (0.0169) 0.6459 (0.0128)
RMSC 0.6696 (0.0064) 0.7819 (0.0125) 0.6614 (0.0093)
LMSC 0.6162 (0.0676) 0.6992 (0.0700) 0.5936 (0.0763)

MLRSSC 0.6709 (0.0352) 0.7774 (0.0497) 0.6524 (0.0470)
DCCA 0.6606 (0.0000) 0.7429 (0.0000) 0.6270 (0.0000)
DCCAE 0.6782 (0.0040) 0.7662 (0.0015) 0.6462 (0.0025)
FCMSC 0.7112 (0.0031) 0.8122 (0.0030) 0.6910 (0.0046)

gr-FCMSC 0.7631 (0.0036) 0.8605 (0.0022) 0.7570 (0.0036)

Figure 6: Clustering results on ORL in metrics of NMI (left
column) and ACC (right column).

view data is both leveraged by FCMSC and gr-FCMSC. Ad-

ditionally, gr-FCMSC also takes advantage of the comple-
mentary of multiple views by means of graph Laplacian reg-
ularizers for multi-view clustering. As shown in Table 2,
gr-FCMSC improves FCMSC significantly by exploring the
complementary information. For example, Compared with
FCMSC, gr-FCMSC gains 7.30% and 5.95% relative im-
provement on MSRCV1 in metrics of NMI and ACC. And
onMovie 617 dataset, gr-FCMSC achieves 3.42% and 4.04%
relative improvement with respect to the metrics of NMI and
F-Score.

5.5. Parameters Sensitivity and Convergence
Analysis

Besides, Convergence analysis, shown in Fig. 7, and pa-
rameters influence of the proposed methods, shown in Fig.
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Table 3
Comparison results of different methods on the benchmark datasets

Dataset Method NMI ACC F-SCORE

Olympics

SCBSV 0.7617 (0.0046) 0.6288 (0.0112) 0.5178 (0.0134)
SCFC 0.5625 (0.0038) 0.4610 (0.0078) 0.3194 (0.0085)
LRRBSV 0.8674 (0.0038) 0.7830 (0.0093) 0.7112 (0.0088)
LRRFC 0.8910 (0.0054) 0.7746 (0.0190) 0.7532 (0.0190)

Kernel Addition 0.7245 (0.0038) 0.6093 (0.0073) 0.5189 (0.0071)
Co-reg 0.8308 (0.0027) 0.7341 (0.0071) 0.6707 (0.0079)
RMSC 0.7573 (0.0063) 0.6372 (0.0108) 0.5687 (0.0117)
LMSC 0.8902 (0.0065) 0.8043 (0.0140) 0.7814 (0.0154)

MLRSSC 0.9122 (0.0067) 0.8454 (0.0208) 0.8236 (0.0285)
DCCA 0.7782 (0.0015) 0.6474 (0.0047) 0.4024 (0.0072)
DCCAE 0.7686 (0.0042) 0.6515 (0.0115) 0.4096 (0.0172)
FCMSC 0.9357 (0.0062) 0.8815 (0.0199) 0.8576 (0.0264)

gr-FCMSC 0.9389 (0.0037) 0.8890 (0.0137) 0.8649 (0.0176)

ORL

SCBSV 0.8868 (0.0069) 0.7459 (0.0121) 0.6805 (0.0159)
SCFC 0.8084 (0.0027) 0.6323 (0.0061) 0.5236 (0.0069)
LRRBSV 0.9240 (0.0054) 0.8122 (0.0203) 0.7650 (0.0166)
LRRFC 0.8497 (0.0085) 0.7178 (0.0190) 0.6119 (0.0218)

Kernel Addition 0.8028 (0.0033) 0.6349 (0.0074) 0.5224 (0.0061)
Co-reg 0.8277 (0.0040) 0.6653 (0.0080) 0.5672 (0.0092)
RMSC 0.8885 (0.0056) 0.7482 (0.0128) 0.6866 (0.0139)
LMSC 0.9215 (0.0168) 0.8193 (0.0360) 0.7623 (0.0419)

MLRSSC 0.9102 (0.0113) 0.8042 (0.0234) 0.7459 (0.0281)
DCCA 0.8589 (0.0025) 0.7093 (0.0041) 0.5716 (0.0001)
DCCAE 0.8906 (0.0171) 0.7476 (0.0356) 0.6741 (0.0399)
FCMSC 0.9249 (0.0055) 0.8359 (0.0165) 0.7792 (0.0180)

gr-FCMSC 0.9370 (0.0065) 0.8382 (0.0229) 0.7991 (0.0227)

Yale Face

SCBSV 0.6229 (0.0354) 0.5715 (0.0497) 0.4319 (0.0472)
SCFC 0.5761 (0.0335) 0.5145 (0.0460) 0.3653 (0.0420)
LRRBSV 0.7134 (0.0098) 0.7034 (0.0125) 0.5561 (0.0159)
LRRFC 0.6917 (0.0190) 0.6667 (0.0236) 0.4941 (0.0303)

Kernel Addition 0.5872 (0.0320) 0.5352 (0.0397) 0.3823 (0.0390)
Co-reg 0.6146 (0.0084) 0.5638 (0.0108) 0.4208 (0.0110)
RMSC 0.6590 (0.0108) 0.6091 (0.0161) 0.4773 (0.0133)
LMSC 0.7073 (0.0105) 0.6758 (0.0116) 0.5138 (0.0172)

MLRSSC 0.7005 (0.0311) 0.6733 (0.0384) 0.5399 (0.0377)
DCCA 0.7642 (0.0004) 0.7392 (0.0011) 0.6159 (0.0012)
DCCAE 0.6888 (0.0226) 0.6442 (0.0291) 0.5152 (0.0307)
FCMSC 0.7939 (0.0206) 0.7691 (0.0267) 0.6058 (0.0306)

gr-FCMSC 0.7979 (0.0202) 0.7717 (0.0222) 0.6095 (0.0335)

8, Fig. 9, and Fig. 10, are discussed in the this section as
well.

In the proposed methods, as shown in the objective func-
tions (6) and (8), there are two trade-off parameters required
to be fine-tuned, i.e. �1 and �2, for FCMSC, and an extra
trade-off parameter �3 for gr-FCMSC. Values of �1 and �2
are selected from {1, 10, 100, 1000, 10000}. As shown in
Fig. 8 and Fig. 9, it can be observed that promising clus-
tering results can be attained when �1 is relative large and
�2 equals to 100. To be specific, curves drawn in Fig. 8
demonstrate the influence of �1 and �2, respectively. For
�1, it can be observed that promising clustering results can
be achieved with a relatively large value. As for �2, gen-
erally speaking, the prior knowledge of the dataset error
level determines the choice of �2 mainly, and the promis-

ing clustering performance can be achieved with �2 = 100
on MSRCV1 dataset. Meanwhile, the influence of �3 for gr-
FCMSC is also discussed as shown in Fig. 9, it can be ob-
served that the best clustering performance can be attained
with �3 = 0.01, and the clustering performance degenerates
when the value of �3 is larger than 0.01.

Meanwhile, we explore the convergence properties of
the proposed FCMSC and gr-FCMSC. Fig. 7 displays the
convergence of our approaches conducted on three datasets,
including BBCSport, MSRCV1, and Yale Face. It can be
observed that both FCMSC and gr-FCMSC can achieve the
quick convergence within 40 iterations. Although it is dif-
ficult for us to give an solid proof on the convergence, ex-
perimental results demonstrate the effectiveness and conver-
gence of our methods empirically.
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Figure 7: Convergence of the proposed FCMSC and gr-FCMSC. Convergence curves about the stop criteria of reconstruction
errors versus the iteration numbers on three datasets, including (a)-(b) BBCSport, (c)-(d) MSRCV1, and (e)-(f) Yale Face, are
displayed in this section.

Figure 8: Clustering results of proposed FCMSC with different
�1 and �2 on MSRCV1 dataset.

6. Conclusion
This paper proposes a feature concatenation multi-view

subspace clustering approach, termed FCMSC, and a graph
regularized FCMSC (gr-FCMSC) as well. Different from
most of existing approaches, the proposed methods can per-
form clustering on all views simultaneously by exploring the
consensus information and complementary information of
multi-view data based on the concatenated features. By tak-
ing the cluster-specific corruptions into consideration, the
proposed methods can obtain a desired coefficient matrix
and achieve promising clustering results. Extensive exper-

Figure 9: Influence of �1 and �2 on MSRCV1 dataset. (a)
illustrates the influence of �1 with �2 = 100, (b) illustrates the
influence of �2 with �1 = 1000.

iments on six benchmark datasets demonstrate the superior-
ity of our approach over some state-of-the-arts.

Despite effectiveness of the proposed methods, they are
time consuming due to the operation of matrix inversion and
SVD decomposition involved in the optimization, especially
when the number of data is large. Further work will focus on
the improvement of proposed methods for large-scale data,
by employing the dimensionality reduction and the binary
representation [62] strategies. And for the gr-FCMSC, the
incompatible graph information among multiple views is ig-
nored, further work will also focus on this problem.
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Figure 10: Clustering results of proposed gr-FCMSC with dif-
ferent �3 on MSRCV1 dataset.
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