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Abstract

In this paper we address a classification problem where two sources of labels
with different levels of fidelity are available. Our approach is to combine data
from both sources by applying a co-kriging schema on latent functions, which
allows the model to account item-dependent labeling discrepancy. We provide
an extension of Laplace inference for Gaussian process classification, that
takes into account multi-fidelity data. We evaluate the proposed method on
real and synthetic datasets and show that it is more resistant to different levels
of discrepancy between sources than other approaches for data fusion. Our
method can provide accuracy/cost trade-off for a number of practical tasks
such as crowd-sourced data annotation and feasibility regions construction in
engineering design.

Keywords: Gaussian process classification, Variable fidelity data, Laplace
inference

1. Introduction

The problem of multi-fidelity modeling [1] arises in the broad range of
applied disciplines, such as engineering design, medical diagnostics, and even
product development, when an object of interest can be modeled with a
cheaper, yet typically less reliable alternative. The main motivation behind
multi-fidelity modeling is that low-fidelity data can bring additional benefits
in terms of accuracy/cost trade-off, when it is used properly along with high-
fidelity data [2, 3]. For example, an article [4] demonstrates that high-quality
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linguistic annotation results can be achieved with much lower expenses when
non-expert annotators (i.e. low-fidelity data) are employed. The authors
concluded that four non-experts per item were enough on average to achieve
an expert-level annotation quality for their tasks, although this condition can
be relaxed further, by requiring multiple annotations only for a fraction of
the dataset. Similarly, in engineering design [5] a high-fidelity source of data
can be a physical experiment, whereas a low-fidelity can be a mathematical
model or a computer simulation.

Multi-fidelity modeling based on Gaussian processes (GPs) [6] is a rea-
sonable approach for applications discussed above, because of the Bayesian
formulation, which allows incorporation of the prior knowledge about the task
into the prediction and makes learning on small samples more robust. The
latter is especially important, since high-fidelity data typically contains just a
few examples. In addition, Gaussian processes are based on kernel functions,
whose hyperparameters can be selected via marginal likelihood maximization
instead of grid search with cross-validation.

Gaussian process regression for multi-fidelity data has been thoroughly
studied in recent years [7, 8], however multi-fidelity classification based on
Gaussian processes has been left behind until recently. For example, the
work about feasibility regions for aeroelastic stability modeling [9] pointed
out that multi-fidelity methods had been limited to continuous response
models. Although discrete response models can also be approximated with
continuous ones, in some extreme cases, such as binary classification, con-
tinuous approximations seem as weird as using Linear regression instead of
Logistic regression. On the other hand, developing appropriate models for
multi-fidelity classification is essential, because there are problems in engi-
neering design with discrete responses. For instance, report [10] points out
the problem of reality gap in robotic simulators and argues the importance of
their ability to estimate reliability regions, where accomplishment of actions
is accurately predicted by the simulator. This problem has binary responses
i.e. success or fail; simulated outcomes of robot’s actions are low-fidelity data,
whereas observations of real executions are high-fidelity data. Furthermore,
discrete responses are common and convenient when the object of interest is
a human. For example, users say they either like a new feature of the product
or not during A/B testing, which gives direct evidence of their attitude i.e.
high-fidelity data, or users are just asked to imagine the feature and express
their preferences during interviewing i.e. low-fidelity data.

In this work, we propose a co-kriging model for latent low- and high- fidelity
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functions and extend the Laplace inference algorithm for Gaussian process
classification to handle this case. The novelty of our work with respect to
other existing ones is adaptation of co-kriging model to classification problem.
This model imposes specific dependency and order on sources of data, which
help it achieve better performance that more general methods in cases when
nature of data is well explained by the model. We evaluate the proposed
method on three groups of datasets: artificially generated under the model
assumptions, real benchmark datasets with simulated noise for low-fidelity
labels and real datasets with true noise. Additionally, contribution of our work
includes study of effects of budget distribution among variable fidelity sources
under different noise conditions and sensitivity analysis of the proposed model
to its hyperparameters.

2. Related work

A comprehensive introduction into GPs in the context of machine learning
has been done previously [6]. We were guided by that book during the deriva-
tions of our algorithm. More detailed study [11] of methods for approximate
binary classification inference based on GPs demonstrates that Laplace Ap-
proximation is the fastest inference method with moderate accuracy, whereas
Expectation Propagation is the most accurate, but runs approximately 10
times slower. The study outlines that the former should be considered when
the error rate is the main metric, although the latter delivers more accurate
class probabilities. In addition, when labels contain a lot of noise, the authors
outline that all approximation methods tend to produce similar results.

Supervised classification in the presence of noise in labels [12] has been
studied with class-conditional random Bernoulli noise, such classification
problems have also got theoretical justification of their learnability.

Prior works extensively cover topics connected to multi-task learning [13]
in general and multi-output GPs [14] in particular. Multi-fidelity regression
based on GPs was also studied in a number of works [15, 16, 17], including
a co-kriging setup for fidelities with an exact inference schema for their
regression [7]. In our work, we adopt co-kriging for the classification problem
by applying this setup on latent functions. Note that there is no exact
inference schema for GP classification for single-fidelity case, nor for multi-
fidelity one. Several recent works are dedicated to close problems, yet they all
consider different aspects. For example, a work on the multivariate generalized
linear geostatistical model with spatially structured bias [18] is close to ours,
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however, the model studied there doesn’t take into account a scaling factor
and the proposed inference is confined to MCMC method. A more recent
work proposed a framework for handling heterogeneous outputs of GPs with
stochastic variational inference [19], also there is a study of the application of
heterogeneous multivariate GPs for joint species distribution modeling [20].
Compared to them our work is about a more specific model of multivariate
GPs, that can be adapted to a classical algorithmic framework [6] without
additional approximation techniques. This tailoring makes our method more
robust to noise in labels and accurate than others that use more general
models, as we show further in the experimental section.

Heteroscedastic models [21, 22, 23] are complementary to our model in the
sense that the former are about modeling input-dependent variance, whereas
the latter is about modeling input-dependent bias between low- and high-
fidelity processes.

There is a large branch of research on learning from multiple annotators
[24], which partially intersects with the applications of our method. Early
works in this direction started with different strategies of feature-agnostic
labels integration and active learning for optimizing annotation costs [25, 26,
27, 28]. A generative probabilistic model was proposed to estimate annotators
expertise along with items annotation difficulty [29], yet features are not
observable for the model. Another work [30] studied the problem of pruning
low-quality annotators in order to improve the quality of the training set for
binary classification problem. The same authors also built an algorithm on
top of the SVM, that decreased influence of low-quality entries [31]. Several
state-of-the-art works [32, 33, 34] model annotations as random Bernoulli
labels dependent on the true class, which in turn is generated via latent
Gaussian process; these works have similar setups and provide Variational
Bayes and Expectation Propagation inferences for them. Overall, all these
works deal with cases when many annotators are available, since otherwise
their expertise (fidelity in our case) can barely be resolved. Moreover, [35]
showed that without a bit of gold-standard labels, that is, a high-fidelity
source, crowd-sourcing labels integration methods will in some cases fail to
resolve annotators expertise. Our work stands out from this branch of research
due to explicitly fixing fidelities of data sources in our model, which takes
into account each item’s annotation difficulty.
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3. Problem statement

There is a binary function c : Ω→ {0, 1} defined on the measurable set
Ω ⊂ Rd. We have two samples:

DH = {(xHi , yHi )}nH
i=1 and DL = {(xLi , yLi )}nL

i=1, (1)

where xLi , x
H
i ∈ Ω and yLi , y

H
i ∈ {0, 1}. Let us also denote XL = {xLi }

nL
i=1, and

XH = {xHi }
nH
i=1. All notations are summarized in Table A.4.

Sample DH contains high-fidelity data, that is, it has much more reliable
labels than DL, which contains low-fidelity data respectively, so its labels can
be biased and more noisy. Using the Bayesian approach we formally express
this assumption with the following model:

c(x) = I [fH(x) > 0] ,

p
(
yHi = 1|fH(xHi )

)
= σ

(
fH(xHi )

)
,

p
(
yLi = 1|fL(xLi )

)
= σ

(
fL(xLi )

)
,

(2)

where I is an indicator function; σ(z) = 1
1+exp(−z) is a sigmoid function; fL

and fH are Gaussian processes on Ω. In our model we assume these processes
are dependent via co-kriging model [7]:

fH(xHi ) = ρfL(xHi ) + δ(xHi ), (3)

where ρ ∈ R is a linear coefficient, and δ is a residual Gaussian process
independent of fL. Processes fL and δ have prior kernels kl and kd with
hyper-parameters θl and θd respectively. Such dependency between latent
processes has been on the one hand acknowledged in many engineering
applications [36], on the other hand, it corresponds to the optimal estimate
of high-fidelity data according to the Theorem on normal correlation (see
[37], theorem 13.1). Parameter ρ can reduce or increase the confidence of
the high-fidelity model compared to the low-fidelity one, in particular, ρ = 1
corresponds to the case when the low-fidelity source contains high-fidelity
labels with additive noise. This parameter is also useful for cases, when low-
and high- fidelity labels are mostly opposed to each other. Gaussian process
δ can compensate predictions for input-dependent bias in low-fidelity data.

Finally, assuming models (2) and (3) we would like to train a classifier ĉ
that estimates the function c using samples (1).
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4. Solution

For simplicity of notation we omit specifying hyper-parameters (ρ and
parameters of kernels θl, θd) as conditions of probabilities in formulas below.

The predictive distribution of fH at x∗ ∈ Ω is:

p(fH∗ |DL, DH , x∗) =

∫∫
p(fH∗ |fL, δ, XL, XH , x∗)p(f

L, δ|DL, DH)dfLdδ, (4)

where

δ =
(
δ(xH1 ), ..., δ(xHnh

)
)T
,

fL =
(
fL(xL1 ), ..., fL(xLnL

), fL(xH1 ), ..., fL(xHnh
)
)T
.

The probability of c to be 1 at point x∗ can be expressed by marginalization
of the predictive distribution:

p(c(x∗) = 1|DL, DH , x∗) =

∫
σ(fH∗ )p(fH∗ |DL, DH , x∗)df

H
∗ . (5)

Integrals (4) and (5) don’t have analytic solutions, therefore they have to
be numerically integrated or approximated analytically. In this work we use
Laplace Approximation method to handle the former, whereas the predicted
class label based on the latter integral can be easily calculated in the binary
case once the predictive distribution is known or estimated [38]:

ĉ(x∗) = I
[∫

σ(fH∗ )p(fH∗ |DL, DH , x∗)df
H
∗ >

1

2

]
=

= I
[∫

fH∗ p(f
H
∗ |DL, DH , x∗)df

H
∗ > 0

]
.

4.1. Laplace Approximation

Prediction based on GPs requires two steps [6]:

1. Obtaining a latent predictive distribution for the test point via marginal-
izing the posterior distribution over all possible latent values at training
points;

2. Marginalizing it over all possible latent values at the test point in order
to produce a probabilistic prediction.
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Unlike regression problem, where marginalizations are straightforward
because all underlying components are Gaussian, prediction of classes is
analytically intractable due to non-Gaussian likelihoods.

The idea of Laplace’s method is to handle intractability at step 1 by
applying a second order Taylor expansion of posterior’s logarithm around
its maximum. Thus we obtain a Gaussian approximation of the posterior
distribution, which in turn makes approximate predictive distribution also
Gaussian. Next, intractability of step 2 can be resolved by replacing marginal-
ization with maximum a posteriori predictions [38] or approximated with
numerical techniques [39, 40].

In the next three sections 4.2, 4.3 and 4.4 we will adjust our solution to fit
the algorithmic framework for Laplace Approximation. The key challenge in
our case is dependence of yHi on multiple latent components, which requires
substantial modifications of basic algorithms.

4.2. Mode-fitting

The posterior distribution in integral (4) is approximated with Gaussian
distribution q(·):

p(fL, δ|DL, DH) ≈ q(fL, δ|DL, DH) = N
(
ξ =

[
fL

δ

] ∣∣∣ ξ̂,Σ−1) , (6)

where Σ = −∇∇ log p(ξ|DL, DH)
∣∣
ξ=ξ̂

and ξ̂ = argmax
ξ

p(ξ|DL, DH). Thus,

for obtaining approximate posterior distribution we need to calculate these
parameters.

According to Bayes formula and monotonic increase of log function, the
problem of finding ξ̂ is equivalent to:

argmax
ξ

p(ξ|DL, DH) = argmax
ξ

[
log p(yL,yH |ξ) + log p(ξ|XL, XH)

]
, (7)

where yL =
(
yL1 , ..., y

L
nL

)T
and yH =

(
yH1 , ..., y

H
nH

)T
. Note that the probability

of evidence is omitted, since it is independent of the argument. Problem (7)
has a unique solution, see details in the Appendix A.1.

Let us now define Ψ(ξ)
4
= log p(yL,yH |ξ) + log p(ξ|XL, XH), and look at

its components in more detail. Let also X = XL ∪XH .
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The prior distribution of ξ is normal:

p(ξ|XL, XH) ∼ N
(

0, K =

[
kl(X,X) 0

0 kd(XH , XH)

])
. (8)

Log-likelihood is:

λ
4
= log p(yL,yH |ξ) =

∑
i=1..nl

log σ
(
ỹLi f

L(xLi )
)
+
∑

i=1..nh

log σ
(
ỹHi (ρfL(xHi ) + δi)

)
,

where for simplicity of notation we use:

δi = δ(xHi ), ỹLi = (2yLi − 1), and ỹHi = (2yHi − 1).

Having figured out expressions for components of Ψ(ξ), the solution of
problem (7) can be found with iterative Newton’s method:

ξ̂
new

= ξ̂
old − (∇∇Ψ)−1∇Ψ

∣∣
ξ=ξ̂

old .

4.3. Model selection

Let us denote q̃(.) a Gaussian approximation of the marginal likelihood
p(yL,yH |XL, XH , ρ, θl, θd). Model selection implies finding hyper-parameters
ρ, θl, and θd that maximize the approximate log marginal likelihood (this
approximation is obtained similarly to the single-fidelity case [6]):

L 4
= log q̃(yL,yH |XL, XH , ρ, θl, θd) = −1

2
ξ̂
T
K−1ξ̂ + λ− 1

2
log |B|, (9)

where B = I +W
1
2KW

1
2 and

W
4
= −∇∇ξ log p(yL,yH |ξ) =

A 0 0
0 ρ2D ρD
0 ρD D

 ; (10)

A = ∇∇fL(XL)λ = diag
(
ω
(
fL(xLi )

) ∣∣
i=1..nl

)
,

D = ∇∇δλ = diag
(
ω
(
ρfL(xHi ) + δi

) ∣∣
i=1..nh

)
,

ω(z) = σ′(z) = σ(z)(1− σ(z)).
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Unlike single-fidelity case, W in multi-fidelity case is non-diagonal, so
computation of its square root is not straightforward. We have derived the
exact formula for its fast and numerically stable calculation:

W
1
2 =

A 1
2 0

0 1√
ρ2+1

[
ρ2 ρ
ρ 1

]
⊗D 1

2

 , (11)

note that matrices A and D are diagonal, so their square roots are easily
calculated.

In order to maximize log marginal likelihood (9), one can use gradient-
based optimization, which requires its partial derivatives w.r.t. hyper-
parameters.

Derivatives of L and ξ̂ w.r.t. kernel hyper-parameters θl and θd are
analogous to formulas in the single-fidelity case ([6], section 5.5.1), thus we
omit them here, except the formula 5.23 from [6] for partial derivatives of L
w.r.t. components of ξ̂, which reduces calculation of trace to multiplication of i-
th diagonal elements. That reduction doesn’t take place for multi-fidelity case,
since ∂W

∂ξ̂i
is not diagonal in general. We propose the following modification of

that formula:

∂L
∂ξ̂i

= −1

2
tr

(
(K−1 +W )−1

∂W

∂ξ̂i

)
= −1

2

∑
all elements

(
(K−1 +W )−1 ◦ ∂W

∂ξ̂i

)
,

(12)
where ◦ is an Hadamard (entrywise) product. Note that ∂W

∂ξ̂i
is a sparse matrix

that has at most 4 non-zero elements (see details in the Appendix A.3),
therefore computation time of the derivatives remains linear.

Derivative of L w.r.t to ρ is:

∂L
∂ρ

= −ξ̂TK−1∂ξ̂
∂ρ

+
∂λ

∂ρ
− 1

2

∂ log |B|
∂ρ

. (13)

Note that in our setup K doesn’t depend on ρ. Now let’s look into components
of (13) in more detail. We differentiate by ρ the necessary condition of the
maximum∇Ψ(ξ)|ξ=ξ̂ = 0, where∇Ψ(ξ) = ∇ξλ−K−1ξ, obtaining an equation
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Table 1: Components of ξ, corresponding derivatives of λ and the explicit term in (14);
here fLi = fL(xLi ) and fHi = ρfL(xHi ) + δ(xHi ).

components of ξ components of ∇ξλ components of
∂∇ξλ|ξ=ξ̂

∂ρ

∣∣
explicit

fL(XL) yLi − σ(fLi ) 0
fL(XH) ρ(yHi − σ(fHi )) yHi − σ(fHi )− ρfL(xHi )ω(fHi )
δ(XH) yHi − σ(fHi ) −fL(xHi )ω(fHi )

on ξ:

∂ξ̂

∂ρ
= K

−W ∂ξ̂

∂ρ
+
∂∇ξλ

∣∣
ξ=ξ̂

∂ρ

∣∣∣∣∣
explicit

⇒
⇒ ∂ξ̂

∂ρ
= (I +KW )−1K

 ∂∇ξλ
∣∣
ξ=ξ̂

∂ρ

∣∣∣∣∣
explicit

 ,

(14)

where the components of the explicit term in formula (14) and derivatives of
λ w.r.t. components of ξ are provided in Table 1.

Next component of (13) is:

∂λ

∂ρ
=
∑

i=1..nh

ỹHi f
L(xHi )

(
1− σ

(
ỹHi (ρfL(xHi ) + δ(xHi ))

))
+
∑
i

∂λ

∂ξi

∂ξi
∂ρ

. (15)

The last component is (see the derivation in the Appendix A.2):

∂ log |B|
∂ρ

=
∑

all elements

(
(K−1 +W )−1 ◦ ∂W

∂ρ

)
, (16)

where

∂W

∂ρ
=

0 0

0

[
ρ2 ρ
ρ 1

]
⊗ ∂D

∂ρ

∣∣∣
explicit

+

[
2ρ 1
1 0

]
⊗D

+
∑
i

∂W

∂ξi

∂ξi
∂ρ

;

∂D

∂ρ

∣∣∣
explicit

= diag
(
fL(xHi )ζ(fHi )

∣∣
i=1..nh

)
and ζ(x) = σ′′(x).
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4.4. Predictions

Once we know estimates of parameters and hyper-parameters, we can use
an ordinary schema of exact multi-fidelity posterior from [7] to obtain MAP
predictions :

E[f∗|DL, DH , x∗] ≈ Eq[f∗|DL, DH , x∗] = k̃T∗ K̃
−1f̂ , (17)

where

k̃T∗ =
[
kl(x∗, XL) ρkl(x∗, XH) + kd(x∗, XH)

]
,

ξ̂ =
[
f̂L(XL) f̂L(XH) δ̂(XH)

]T
,

K̃ =

[
kl(XL, XL) ρkl(XL, XH)
ρkl(XH , XL) ρ2kl(XH , XH) + kd(XH , XH)

]
,

f̂ =

[
f̂L(XL)

ρf̂L(XH) + δ̂(XH)

]
.

5. Experiments

We compared our model with a number of baseline approaches. The
baselines are built upon ordinary Gaussian Process Classifier (gpc), Logistic
Regression (logit) and Gradient Boosting Classifier (xgb). We trained those
baselines in three modes:

1. Training only on high-fidelity data (no prefix);

2. Training on concatenated high- and low- fidelity data (with prefix C);

3. Stacking low-fidelity predictions, that is, predictions of a classifier
trained on low-fidelity data were used as additional features for training
the classifier on high-fidelity data (with prefix S).

All GPs-based methods used isotropic RBF kernel. More details regarding
the experimental implementation see in the Appendix A.4.

5.1. Evaluation metrics

In order to compare performance of various methods we use areas under
receiver operating characteristic curves [41] (ROC AUC) metric.

Further, to aggregate performance across many tests and datasets, we
average ROC AUC over them. We also supplement results with figures of
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ROC AUC profiles, which show the share of tests where the corresponding
methods had greater ROC AUC than the threshold pointed on the abscissa
axis. The rule of thumb for assessing such profiles is the higher the curve, the
better the corresponding method.

5.2. Datasets

We evaluated models on three groups of datasets:

1. Artificial datasets1: we constructed datasets by virtue of the model
(2) and (3). Latent functions fL and δ were generated as instances of
Gaussian processes, linear coefficients ρ were adjusted to the desired
discrepancy (noise level) between low- and high- fidelities. We used
input dimensions 2, 5, 10, and 20. For each of them, we generated 10
datasets.

2. Datasets from Penn Machine Learning Benchmarks repository [42]: we
selected several representative benchmarks with different types of fea-
tures, namely diabetes (dbts), german (grmn), waveform-40 (wvfr),
satimage (stmg), splice (splc), spambase (spmb), hypothyroid (hpth),
and mushroom (mshr). Since some datasets had multiple classes, we also
selected one target representative class to test its classification against
others: class 0 for waveform-40 and splice, class 1 for satimage and
class 2 for diabetes. Low-fidelity labels were generated by flipping
original labels with the specified probability (noise level).

3. Real datasets: we used music genre (mscg) and sentiment polarity

(sntp) from [33], which had been annotated with crowd-sourcing. Each
object in those datasets was labeled by multiple annotators, therefore
we considered majority voting statistic over object labels as high-fidelity
and a single random annotation as low-fidelity. Such an approach to
model fidelity is reasonable in the context of crowd-sourced annotations
where each of them costs some amount of resources (e.g. money or
time). For example, some objects are easy to classify with machine
learning algorithms, thus one vote would be enough to annotate them,
whereas for complex objects many votes are necessary for obtaining good
confidence in labels. Finally, since music genre dataset had multiple

1We published them in this repository https://github.com/user525/mfgpc
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Figure 1: Comparison of predicted class probabilities with multi-fidelity MCMC and
Laplace inference on datasets from group 2: typical cases of correlations.

Table 2: Comparison of ROC AUC in a single run for MCMC and Laplace inference on
datasets from group 2 during verification tests.

dbts grmn stmg mshr splc spmb hpth wvfr
MF gpc Laplace 0.815 0.787 0.998 0.999 0.940 0.942 0.614 0.932
MF gpc MCMC 0.809 0.780 0.997 0.999 0.922 0.946 0.624 0.927

classes, we tested each of them with the one-vs-all scheme as separate
datasets.

5.3. Comparison of methods

For datasets in groups 1 and 2 we compared methods with the state-of-
the-art hetmogp [19]. For datasets on crowd-sourcing annotation (group 3)
we also compared our method with the state-of-the-art method gp-ma [33].
No comparison was made with the method of [34], since we couldn’t find
publicly available source code.

At the outset, we verified our implementation of Laplace inference by
comparing its predictions with those of MCMC (implemented with PyMC3
package [43]) with the same hyper-parameters on real datasets from group 2
ensuring that true posteriors are non-Gaussian. Each training set contained
75 randomly sampled high fidelity observations and flip probability 0.2 in
low-fidelity observations. The typical results of comparison are shown in
Figure 1 and Table 2. The overall performance of two inference approaches is
on par, whereas correlation behavior resembles patterns observed in single-
fidelity GPs classification ([11], figure 6), which lends evidence supporting
the correctness of our method.

The main evaluation procedure was the following: for a single test, we
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Figure 2: Average ROC AUC among multiple runs on artificial datasets from group 1.
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Figure 3: Average ROC AUC among multiple runs on datasets from group 2 with noise
level 0.2.

selected a small random subsample of high fidelity observations and 3 times
larger subsample of low fidelity observations. We trained all methods on
those subsamples and evaluated predictions on the high-fidelity test set.
For each dataset, we run 3 tests with different random subsamples, except
sentiment polarity, for which we run 15 tests.

We report average ROC AUC across all tests and methods in figures 2, 3,
4 (see also appendix with corresponding tables B.5, B.6, B.7) and table 3. For
those tests, each training set contained 75 high fidelity observations. Methods
that performed not worse than 1 percent compared to the best result on the
dataset are highlighted with bold.

Supplementary ROC AUC profiles are presented in figures 5 and 6. Overall,
MF gpc has a good performance, except sntp dataset. Notably, on this dataset
all GPs-based methods have poor performance, which is not surprising, since
we used a translation-invariant isotropic kernel, which is not suited well for
highly clustered non-stationary data.
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Figure 4: Average ROC AUC among multiple runs on datasets from group 2 with noise
level 0.4.

Table 3: Average ROC AUC among multiple runs on datasets from group 3 with natural
noise.

MF gpc gpc logit xgb C gpc C logit C xgb S gpc S logit S xgb gp-ma
mscg 0.851 0.772 0.794 0.773 0.849 0.812 0.843 0.785 0.797 0.800 0.744
sntp 0.504 0.502 0.542 0.520 0.505 0.569 0.538 0.504 0.553 0.533 0.531

5.4. Budget distribution among variable fidelity sources

We studied how the ratio of low- and high-fidelity samples sizes affects the
classification quality of MF gpc on datasets from group 1. An experimental
setup was the following: we assumed each high-fidelity entry cost X units,
whereas low-fidelity entries cost a fraction of X (with various fractions for
different experiments). Training samples were formed based on the total
budget: some part of it was allocated for high-fidelity data, the rest was for
low-fidelity data. If the whole budget was spent on high-fidelity data, then
the training sample contained 100 entries.

Figure 7 demonstrates the more low-fidelity data is available or the less
noise is in it, the better classifier works w.r.t. fixed amount of high-fidelity
entries. That is, having fixed DH , adding more data to DL with the same noise
level in low-fidelity labels does not reduce the quality of predictions of our
classifier. In the worst-case scenario, when low-fidelity labels are independent
of high-fidelity ones, for example they consist of merely random noise, MF gpc
model degenerates to an ordinary gpc trained on DH , because in co-kriging
formula (3) component ρfL(xHi ) becomes 0, thus fH(xHi ) = δ(xHi ).

Figure 8 shows that in case of low noise level in low-fidelity labels sample
size advantage overbalances decreased labels quality, thus spending all budget
on low-fidelity data is the best option for this case. On the other hand, when
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Figure 5: ROC AUC profiles for artificial datasets from group 1.
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Figure 6: ROC AUC profiles for real datasets from groups 2 and 3. Colors represent the
same legend as in figure 5.

the noise in low-fidelity is high, adding any amount of low-fidelity entries
instead of high-fidelity ones to training sample reduces the performance of
the classifier.

These experiments show that in boundary cases single-fidelity gpc is the
choice either for training on low-fidelity data when the noise in labels is low or
for training on high-fidelity data when noise is high, whereas MF gpc works
slightly better for intermediate noise levels in low-fidelity. It is not trivial to
find the right balance in advance, but observations in this section can be used
as a rule of thumb in practice.
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Figure 7: Performance of MF gpc depending on share of budget allocated to high-fidelity
data (HF share) for different ratios of low-fidelity cost to high-fidelity cost.
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Figure 8: Performance of MF gpc depending on share of budget allocated to high-fidelity
data (HF share) for different noise levels in low-fidelity labels.

5.5. Sensitivity to hyperparameters

We used radial basis functions as kernels for Gaussian processes in the
following form:

k∗(xi, xj) = exp(s∗) exp

(
−1

2

‖xi − xj‖2

σ2
∗

)
, (18)

where (s∗, σ∗) = θ∗ are kernel parameters, ∗ ∈ {l, d} indicates the correspond-
ing Gaussian process.

In these series of experiments we first tuned model on training samples,
then varied some hyperparameters while kept others fixed to their values
obtained during the training. While ρ was varied, parameters of kernels
were fixed. While θl = (sl, σl) was varied across the grid of sl and σl values,
parameters of kd and ρ were fixed and vice versa for θd = (sd, σd). Eventually,
for each combination of hyperparameters we estimated model’s performance
on the corresponding validation samples.
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Figure 9: Sensitivity of model performance to its hyperparameters in case of low or
moderate noise in low-fidelity labels. Curves of different shades in figures 9b and 9c are
associated with the the log-scale coefficient (s∗ in (18)) of the corresponding kernel. Red
mark indicates parameters and performance of the tuned model during the training.
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Figure 10: Sensitivity of model performance to its hyperparameters in case of high noise in
low-fidelity labels. Curves of different shades in figures 10b and 10c are associated with
the the log-scale coefficient (s∗ in (18)) of the corresponding kernel. Red mark indicates
parameters and performance of the tuned model during the training.

Figures 9 and 10 show a typical sensitivity of model’s performance on the
validation set with respect to the hyperparameters ρ, θl, θd for cases with low
or moderate noise and case with high noise in low-fidelity data respectively.
The former cases are characterized with low local sensitivity to ρ and a sharp
decrease in performance when its sign changes; performance is also more
sensitive to parameters of kl than to those of kd. For latter cases the situation
is opposite: the performance is more affected by local changes in ρ, regarding
kernels the model is vice versa more sensitive to parameters of kd than those
of kl.
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6. Discussions

Despite the algorithm was proposed for two levels of fidelities, it can be
trivially generalized to an arbitrary number of levels assuming the Markov
property of fidelity-levels [15].

Further research should be dedicated to the theoretical investigation
of budget distribution among fidelities for optimizing the performance of
multi-fidelity classifier over single-fidelity ones. The prior work [2] has been
successfully studied this issue for the regression problem, which resulted in
the analytic formula for the optimal budget balance, although the case for
classification problem looks more challenging.

Finally, in order to make our method applicable to a wide range of real
projects, its scalability should be improved. A number of approaches to do
this has been recently reviewed [8, 44].

7. Conclusions

Multi-fidelity modeling of discrete response surfaces can be put to good use
in a number of applied disciplines, yet such methods have got little attention
so far. In this work, we extended Laplace inference algorithm for classification
based on GPs to make it work with multi-fidelity data. By modeling latent
GPs dependency with a co-kriging schema, which has been used previously
for multi-fidelity regression, our method can identify not only the overall
relevance of low-fidelity data, but resolve local item-dependent discrepancies
between fidelities due to inference on residual Gaussian process δ.

We evaluated our method on multiple artificial and real datasets with
natural and various levels of simulated noise and compared its performance
with a number of baseline approaches and state-of-the-art methods. We also
experimentally studied under which conditions adding noisy low-fidelity to
the training set increases quality on top of high-fidelity data classification.
Depending on the dataset nature, MF gpc can alternate its performance with
respect to other methods, however, it is more resistant to different noise levels
in low-fidelity labels. That is, when the classifiers based on GPs can learn
datasets well, MF gpc has a top performance, whereas in other cases our
method is on par with the considered methods.
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Appendix A. Theoretical and experimental details

This appendix contains detailed information about some key identities
and experimental setup. We also published source code for our model and
experiments in this repository https://github.com/user525/mfgpc.

Notations Descriptions Specification
Ω the measurable domain of data Ω ⊂ Rd

c(·) a binary function defined on Ω -
DH high-fidelity sample DH = {(xHi , yHi )}nH

i=1

DL low-fidelity sample DL = {(xLi , yLi )}nL
i=1

XH points of high-fidelity sample XH = {xHi }
nH
i=1

XL points of low-fidelity sample XL = {xLi }
nL
i=1

fH(·) latent Gaussian Process for high-fidelity fH(x) = ρfL(x) + δ(x)
fL(·) latent Gaussian Process for low-fidelity -
δ(·) latent residual Gaussian Process -
ρ linear coefficient for co-kriging dependency ρ ∈ R

kl(·, ·) prior kernel for fL(·) -
kd(·, ·) prior kernel for δ(·) -
θl parameters of kernel kl a multi-dimensional real vector
θd parameters of kernel kd a multi-dimensional real vector
σ(·) sigmoid function σ(z) = 1

1+exp(−z)
ω(·) first derivative of σ(·) ω(z) = σ(z)(1− σ(z))
ζ(·) second derivative of σ(·) ζ(x) = σ(x)(1− σ(x))(1− 2σ(x))
λ log-likelihood log p(yL,yH |ξ)
L approximate log marginal likelihood log q̃(yL,yH |XL, XH , ρ, θl, θd)

Table A.4: Some of notations used in the paper.

Appendix A.1. Correctness Of The Method

Optimization problem (7) has a unique solution if Ψ is concave. We prove
it by showing that Hessian of Ψ is negative semi-definite. The Hessian is

∇∇Ψ(ξ) = −W −K−1, (A.1)

where K is positive semi-definite, since it is a kernel matrix.
Matrices A and D in the definition of W (10) are positive semi-definite,

because their diagonal elements are non-negative. The block of W that
contains D can be represented via Kronecker product:[

ρ2D ρD
ρD D

]
=

[
ρ2 ρ
ρ 1

]
⊗D. (A.2)
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Both multiplicands in (A.2) are positive semi-definite, thus, their Kro-
necker product is also positive semi-definite [45].

Hence, matrix W is positive semi-definite, because it factorizes into two
positive semi-definite blocks. Finally, the Hessian is negative semi-definite as
a negation of sum of two positive semi-definite matrices.

Appendix A.2. Inference For Equation (16)
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The last line of (A.3) is obtained because of the following identities:
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W−1 = K(K+W−1)−1W−1 = (K−1+W )−1

(A.5)

W− 1
2W

1
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(
W

1
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1
2

)
K = W−1(K+W−1)−1K = (K−1+W )−1

(A.6)

Appendix A.3. Components Of (12)

Let us denote M
4
= (K−1 +W )−1.
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For indices i corresponding to low-fidelity data on XL (i = 1...nl):

Mi,i
∂3

∂ξ̂i
λ ≡Mi,iζ(fL(xLi )) (A.7)

For indices i corresponding to low-fidelity data on XH (i = nl+1...nl+nh):(
Mi,i

∂3

∂ξ̂3i
+ 2Mi,i+nh

∂3

∂ξ̂i+nh
∂ξ̂2i

+Mi+nh,i+nh

∂3

∂ξ̂2i+nh
∂ξ̂i

)
λ ≡

≡
(
Mi,iρ

3 + 2Mi,i+nh
ρ2 +Mi+nh,i+nh

ρ
)
ζ(ρfL(xHi−nl

) + δi−nl
)

(A.8)

For indices i corresponding to delta on XH (i = nl + nh + 1...nl + 2nh):(
Mi,i

∂3

∂ξ̂3i
+ 2Mi,i−nh

∂3

∂ξ̂i−nh
∂ξ̂2i

+Mi−nh,i−nh

∂3

∂ξ̂2i−nh
∂ξ̂i

)
λ ≡

≡
(
Mi,i + 2Mi,i−nh

ρ+Mi−nh,i−nh
ρ2
)
ζ(ρfL(xHi−nl−nh

) + δi−nl−nh
)

(A.9)

Appendix A.4. Specifications Of Implementation
For experiments we used Python 3.6.

• Implementations of Gaussian Process Classifiers and Logistic Regressions
were used from scikit-learn package2; Out method was implemented on
top of GaussianProcessClassifier module from this package;

• Classifiers based on GPs used isotropic RBF kernels;

• Classifiers based on GPs and Logistic Regression were used in the
pipeline with the Standard Scaler features preprocessor;

• Implementation of Gradient Boosting Classifier was used from XG-
Boost module3 with the following parameters: n estimators=100,
max depth=3, learning rate=0.05, subsample=0.85;

• For each run of the evaluation procedure we generated a random training
subsample that has at least one label of each class (both for low- and
high-fidelity subsamples), that is, positive and negative;

• The set of random seeds for different runs was shared across series of
method-dataset evaluations.

2http://scikit-learn.org/
3https://xgboost.readthedocs.io
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Appendix B. Supplementary materials

This appendix contains supplementary materials for experimental results.

Table B.5: Average ROC AUC among multiple runs on artificial datasets from group 1.

Noise level 0.2 0.4
Dimensionality 2D 5D 10D 20D 2D 5D 10D 20D
MF gpc 0.975 0.853 0.716 0.643 0.968 0.750 0.615 0.573
gpc 0.970 0.732 0.616 0.587 0.970 0.732 0.616 0.587
logit 0.738 0.590 0.559 0.559 0.738 0.590 0.559 0.559
xgb 0.914 0.662 0.591 0.574 0.914 0.662 0.591 0.574
C gpc 0.944 0.854 0.721 0.654 0.811 0.683 0.626 0.592
C logit 0.721 0.619 0.580 0.585 0.675 0.584 0.557 0.557
C xgb 0.916 0.725 0.644 0.607 0.807 0.637 0.586 0.567
S gpc 0.949 0.812 0.686 0.616 0.938 0.713 0.617 0.589
S logit 0.740 0.592 0.563 0.559 0.742 0.591 0.561 0.559
S xgb 0.921 0.700 0.608 0.583 0.914 0.657 0.591 0.575
hetmogp 0.909 0.500 0.500 0.500 0.802 0.500 0.500 0.500

Table B.6: Average ROC AUC among multiple runs on datasets from group 2 with noise
level 0.2.

dbts grmn stmg mshr splc spmb hpth wvfr
MF gpc 0.805 0.702 0.997 0.997 0.936 0.925 0.646 0.919
gpc 0.778 0.704 0.997 0.995 0.901 0.907 0.633 0.908
logit 0.812 0.683 0.998 0.994 0.913 0.915 0.772 0.858
xgb 0.742 0.702 0.982 0.987 0.971 0.925 0.827 0.886
C gpc 0.804 0.699 0.996 0.995 0.937 0.914 0.570 0.910
C logit 0.803 0.704 0.989 0.955 0.794 0.859 0.654 0.820
C xgb 0.767 0.696 0.987 0.987 0.958 0.946 0.791 0.891
S gpc 0.804 0.725 0.997 0.997 0.915 0.914 0.616 0.918
S logit 0.812 0.684 0.997 0.994 0.924 0.923 0.766 0.861
S xgb 0.738 0.687 0.971 0.983 0.967 0.943 0.766 0.895
hetmogp 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
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Table B.7: Average ROC AUC among multiple runs on datasets from group 2 with noise
level 0.4.

dbts grmn stmg mshr splc spmb hpth wvfr
MF gpc 0.781 0.710 0.997 0.996 0.905 0.914 0.676 0.909
gpc 0.778 0.704 0.997 0.995 0.901 0.907 0.633 0.908
logit 0.812 0.683 0.998 0.994 0.913 0.915 0.772 0.858
xgb 0.742 0.702 0.982 0.987 0.971 0.925 0.827 0.886
C gpc 0.685 0.642 0.986 0.981 0.846 0.852 0.479 0.840
C logit 0.743 0.630 0.934 0.827 0.626 0.725 0.579 0.711
C xgb 0.697 0.621 0.934 0.921 0.831 0.849 0.674 0.771
S gpc 0.791 0.711 0.997 0.996 0.901 0.906 0.622 0.907
S logit 0.811 0.683 0.997 0.994 0.914 0.916 0.771 0.858
S xgb 0.747 0.680 0.984 0.988 0.972 0.927 0.752 0.885
hetmogp 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
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