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ABSTRACT

Crowd counting is a challenging problem due to the scene complexity and scale variation. Although
deep learning has achieved great improvement in crowd counting, scene complexity affects the judge-
ment of these methods and they usually regard some objects as people mistakenly; causing potentially
enormous errors in the crowd counting result. To address the problem, we propose a novel end-to-
end model called Crowd Attention Convolutional Neural Network (CAT-CNN). Our CAT-CNN can
adaptively assess the importance of a human head at each pixel location by automatically encoding a
confidence map. With the guidance of the confidence map, the position of human head in estimated
density map gets more attention to encode the final density map, which can avoid enormous mis-
judgements effectively. The crowd count can be obtained by integrating the final density map. To
encode a highly refined density map, the total crowd count of each image is classified in a designed
classification task and we first explicitly map the prior of the population-level category to feature
maps. To verify the efficiency of our proposed method, extensive experiments are conducted on three
highly challenging datasets. Results establish the superiority of our method over many state-of-the-art

methods.

1. Introduction

Crowd counting by computer vision technology plays
an important role in safety management [43], video surveil-
lance [42], and urban planning [24]. The method of crowd
counting can be also extended to other applications [21],
such as cell counting, animal counting, and vehicle count-
ing. However, due to the severe occlusion, scale variation,
and high density in the crowd scene, crowd counting is still
a challenging task.

To address these problems, a lot of efforts [31, 14]
have been done in previous works including detection-
based methods [41, 13, 17] and regression-based methods
[3, 4, 12]. Detection-based methods [41, 13, 17] usually de-
tect the instances of each person with pre-trained detectors
[6, 37]. In the sparse crowd scene, they count the crowd ac-
curately, while their accuracies are downgraded in the con-
gested scene. Regression-based methods [3, 4, 12] regress
the number of the crowd without detecting people. They
implement an implicit mapping between low-level features
and crowd counts. However, the location information of the
crowd is omitted. So that many CNN-based methods with
state-of-the-art results [45, 26, 30] are proposed recently.
Most of them map the image to a density map that is more
robust than the hand-crafted features. The quantity and lo-
cation of the crowd at each pixel location are recorded in the
density map. The crowd count can be obtained by integrat-
ing the density map.

Although CNN-based methods have achieved signifi-
cant success in crowd counting, we find an important prob-
lem that needs to be solved urgently. Due to the complexity
of crowd scenes, CNN-based methods usually mistake some
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objects as the head of people. As shown in Fig. 1, there are
no people inside the red box, however, MCNN [45] regards
the dense shrubberies as human heads by mistake, which
results in enormous errors of crowd counting.

To address the above problem, we propose a novel end-
to-end model called CAT-CNN. An overview of the pro-
posed CAT-CNN is shown in Fig. 2. It contains four
modules: Multi-information Handling Module, Confidence
Module, Density Map Estimation Module, and Fusion Mod-
ule. The Multi-information Handling Module is utilized to
extract robust features for crowd counting. Motivated by
[2, 45], we leverage different convolution kernels to encode
the input image at the beginning, then we fuse rich hier-
archies from different convolutional layers, which is signifi-
cant for extracting multi-scale features. In addition, the total
crowd count of each image is classified [15] in a designed
crowd count group classifier. To the best of our knowledge,
we first explicitly map the weights of predicted class to fea-
ture maps to automatically contribute in encoding a highly
refined density map. In the Confidence Module, we clas-
sify each pixel to obtain the probability of a human head at
each pixel location to encode the confidence map. Unfortu-
nately, the ground-truth confidence map is not provided in
present crowd counting datasets. We propose a simple but
effective way to obtain the ground-truth confidence map by
pasting the ones template on a binary map. The intensive
cost of manual labeling is saved. Meanwhile, to address the
problem of unbalanced population distribution, we propose
the weighted Binary Cross-Entropy Loss (BCELoss) to en-
code a robust confidence map for population distribution.
In the Density Map Estimation Module, the estimated den-
sity map is encoded. In the Fusion Module, the estimated
density map is multiplied by the pixel-level confidence map.
With the guidance of confidence map, the position of human
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(c) (d)

Figure 1: Density estimation results. (a) Input image. (b)
Ground-truth density map. (c) The density map estimated by
MCNN. (d) The density map estimated by CAT-CNN. GT rep-
resents the ground-truth count. Est represents the estimated
count.

head in the estimated density map gets more attention to en-
code the final density map and enormous misjudgements are
avoided effectively. The final density map is integrated to
get the crowd count. These modules work collaboratively
to complete the crowd counting task. The training method
of them is not as complex as these methods in [45, 26, 30].
They are trained jointly by minimizing their loss functions.
They don’t need pre-training and need to be trained only
once.

Our contributions are summarized as follows:

1. We propose the CAT-CNN that can adaptively assess
the importance of a human head at each pixel location to
avoid enormous misjudgements in crowd counting.

2. We design a novel classification model that can
take input of arbitrary size for training in crowd counting.
And we first explicitly map the prior information of the
population-level category of images to feature maps to au-
tomatically contribute in encoding a highly refined density
map.

3. Our CAT-CNN is a multi-stage and multi-supervision
model. Meanwhile, it is robust to scale variations by the
novel design in the Multi-information Handling Module.
Extensive experiments demonstrate that our method outper-
forms many state-of-the-art methods on three highly chal-
lenging datasets ([12, 45, 43]).

2. Related work

In recent years, crowd counting has drawn much atten-
tion and various methods have been proposed, especially in
deep learning. Next, we will give these methods some in-
troductions.

2.1. Detection-based methods
Traditional detection-based algorithms such as Haar
wavelets [33], HOG [6], and LBP [37] occupy an important
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Figure 2: Overview of the proposed CAT-CNN. The Multi-
information Handling Module is a feature extractor. The con-
fidence map and estimated density map are generated re-
spectively in the two middle modules. Then they are mul-
tiplied and further encoded to generate the high-precision
density map in the Fusion Module.

position in early works. Lin et al. [13] employed the Haar
wavelet transform to detect the head-like contour. Zeng et
al. [41] detected the head-shoulder of people by HOG and
LBP. Lin et al. [17] proposed a part-template tree model for
human detection. The crowd count can be obtained by sum-
ming the total number of positive samples in their methods.
Detection-based methods perform very well in the sparse
crowd. However, when the crowd becomes dense, some
people are too small to be detected.

2.2. Regression-based methods

Since the accuracy of detection-based method is not very
high in the highly congested scene, researchers attempt to
use regression-based methods to handle this problem. The
regression-based methods learn a mapping between high-
level features and crowd counts. The high-level features are
extracted from low-level information such as edge informa-
tion [3], texture information [20], and segmentation infor-
mation [24], then the crowd count is regressed according
to high-level features. Chan et al. [3] proposed the Gaus-
sian regression algorithm to learn a mapping between fea-
ture maps and crowd counts. Chan et al. [4] employed the
Poisson regression algorithm to model the crowd count as
the Poisson random variable. To decrease crowd counting
errors, Idrees et al. [12] utilized some outstanding features
such as people’s heads to regress the crowd count. Although
the regression-based methods can regress the crowd counts
directly, the location information of each person is omitted.

2.3. CNN-based methods

Recently, due to the success of CNNs in many fields
[32, 9, 19, 22, 11], CNN-based methods are widely used
in crowd counting. The density map generated by CNNs
records the count and location information of the crowd.
Zhang et al. [45] proposed the MCNN to overcome scale
variations. The MCNN leveraged three-branch CNNs with
different convolution kernels to extract multi-scale features.
Based on [45], Sam et al. [26] designed the Switch-CNN
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Figure 3: The proposed architecture of the Multi-information Handling Module.

with a classifier to select the optimal branch to encode a
density map according to the variation of crowd counts. To
employ the temporal correlation across frames in video se-
quences to assist crowd counting, Xiong et al. [38] intro-
duced the ConvLSTM that could extract bidirectional tim-
ing information. Sindagi et al. [30] proposed the CP-CNN
to incorporate global and local contextual features to en-
code a high-quality density map. Li et al. [18] proposed
the DecideNet model to adaptively leverage the estimations
of detection and regression. Zhang et al. [44] proposed the
MRA-CNN that could automatically focus on head regions
by score maps. Hossain et al. [10] introduced a scale-aware
attention mechanism to adapt the scale variation of crowds.
Wang et al. [36] designed the data collector and labeler to
automatically generate and annotate the crowd data to re-
duce over-fitting caused by limited training data. In this pa-
per, we propose a novel method to avoid misjudgements that
can result in enormous errors of crowd counting.

3. Proposed methods

3.1. Network architecture

An overview of the proposed CAT-CNN is shown in Fig.
2. Our CAT-CNN is composed of three stages. The first
stage contains the first module where the features which
can automatically adapt different scales and different crowd
count groups are extracted. The second stage consists of two
modules in the middle to encode confidence map and esti-
mated density map respectively. The third stage contains the
final module. With the guidance of the confidence map, fi-
nal density map is encoded from the estimated density map
in this stage. Next, we will elaborate these modules in each
stage.
Multi-information Handling Module: This module is pro-
posed to overcome the scale variation and explicitly map
the prior information of the population-level category back
to feature maps to automatically contribute in encoding a

highly refined density map. This module is illustrated in
Fig. 3. To extract multi-scale features to overcome the scale
variation, inspired by MCNN [45], we exploit four different
kernels to convolve the input image at the beginning of this
module. Besides, several 2X2 max-pooling layers are de-
signed inside this module. And we fuse convolutional lay-
ers of different depths to fully excavate the multi-scale fea-
tures. To alleviate overfitting caused by redundant parame-
ters, we widely employ the dilated convolution [40] in our
CAT-CNN which can expand the receptive fields of convolu-
tion with fewer parameters. In this paper, all convolutions of
different shapes are constituted by the 3x3 convolution with
corresponding dilation, except for the 1x1 convolution. Ev-
ery convolution is followed by a rectified linear unit (ReLU)
[7].

Inspired by [29], the crowd counts are quantized into
five groups in each dataset and a crowd count group clas-
sifier is learned. A simple example about the process of
statistics and classification of datasets is shown in Fig. 5.
In the crowd count group classifier, the total crowd count
of each image is classified. To feed arbitrarily sized im-
ages into the fully-connected (FC) layer for training without
resizing images to maintain the original distribution of the
crowd, inspired by [16, 29], we employ AdaptiveMaxPool
and AvgPool (AMA) to design a novel model named AMA
Component. As shown in Fig. 3, arbitrarily sized input can
be fed to the AMA Component. And the output is always
1x1 node. This component is placed between convolutional
layer and FC layer to form the novel classification model.
Inspired by [46], the major improvement is that AMA has
one more AvgPool layer than SPP used in [29, 39]. The
purpose of this design is to directly map the weights of the
predicted population-level category back to feature maps,
which is also the main distinction from [29, 39]. We first
explicitly map the prior information of the population-level
category back to feature maps to automatically contribute in
encoding a highly refined density map.
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Figure 4: The proposed architecture of our CAT-CNN.
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Figure 5: A simple example about the process of statistics
and classification of datasets: The crowd counts range from
110 100 in a dataset and they are quantized into five groups.
The crowd count group classifier can divide the image into
corresponding groups according to the crowd count in the
image. The number in red box represents the crowd count in
images.

As shown in Fig. 3, we leverage the feature map (FM1)
to feed the AMA Component and outputs are sent to the FC
layer followed by Parametric ReLU [8]. The maximum ac-
tivated neuron in FC layer represents the population-level
category of input image. We explicitly use the prior of the
population-level category by multiplying the weights of pre-
dicted category to feature maps (FM1). The mapped feature
maps (FM2) can be used as a feature vector representation
to characterize the population-level category. FM2 is con-
catenated with FM1 to serve as the output of this module

to retain more sufficient feature information for following
modules. We choose minimizing the cross-entropy loss to
optimize the novel classification task.

Confidence Module: Due to the complexity of crowd
scenes, CNN-based methods often mistake some objects as
human heads. If the prior of whether there are people at
each pixel location can be used, this problem will be solved
easily. We propose the Confidence Module based on proba-
bility. The probability of each pixel belonging to a person’s
head can be estimated by dense classifications.

The proposed Confidence Module is shown in Fig. 4.

The output of the Multi-information Handling Module is
fed into this module. With the supervision of ground-truth
confidence map, the 1x1 convolution followed by ReLU
is utilized to encode the feature maps and transform them
into predicted confidence map. The ground-truth confidence
map is a binary map. We set the probability of the pixel be-
longing to a human head to 1. The predicted confidence
map records the estimated possibility of a human head at
each pixel location. The greater probability in the predicted
confidence map, the more attention our model will pay in
the density map by multiplying the confidence map in the
Fusion Module. Due to the unbalanced population distribu-
tion, we propose the weighted BCEloss to obtain a robust
confidence map for population distribution. The weighted
BCEloss will be elaborated in Sec. 3.2.
Density Map Estimation Module: The estimated density
map of human heads is encoded in this module. As shown in
Fig. 4, the output of the Multi-information Handling Mod-
ule is fed into this module. With the supervision of ground-
truth density map, the 1x1 convolution followed by ReLU
is utilized to encode the feature map to the estimated den-
sity map. The ground-truth density map will be elaborated
in Sec. 3.2. Euclidean loss is used to optimize the estimated
density map.
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Figure 6: Visualization results of the ground-truth density
map and ground-truth confidence map (mask).

Fusion Module: Firstly, we distinguish the difference be-
tween confidence map and estimated density map in detail.
The classification-based confidence map reflects the possi-
bility of a human head at each pixel location. But it can’t
be used to count the crowd directly. The estimated den-
sity map contains the pivotal information of crowd counts.
However, it usually regards some objects as human heads
mistakenly. We combine both to avoid the misjudgements
in crowd counting. As shown in Fig. 4, the estimated den-
sity map is multiplied by confidence map and the results are
sent to the following convolutional layer and ReLU. With
the guidance of the confidence map, the position of human
head in the estimated density map gets more attention to
encode the final density map. Then enormous misjudge-
ments can be avoided in the final density map. Euclidean
loss is used to optimize the final density map. The crowd
count can be obtained by integrating the final density map.
In [44], its attention mechanism is also important in MRA-
CNN, which inspires us to explore the attention mechanism
of MRA-CNN in the future.

3.2. Implementation

Ground truth generation: Following the method in [29],
the head positions P are provided in each image I;. All
of annotated points A; are convolved by a Gaussian kernel
centered on each annotated point to encode the ground-truth
density map. The Gaussian kernel with o = 4.0 has been
normalized to 1. The density of a specific pixel p in one
image can be regarded as the Gaussian function effects of
its surrounding effective annotated points:

PEILDP) =Y N@:u,o L), e))

PEA,

where N represents the response of a 2D Gaussian func-
tion with its mean y;. I,,, represents its isotropic 2 X 2
covariance matrix with variance o>. We can integrate the
density value at each pixel over the entire map to get the
crowd count >, D(p) = Num;.

Due to the enormous number of people in datasets, the
cost of manually labeling the ground-truth confidence map
is expensive. For example, the ShanghaiTech Part_A [45]
dataset contains 241,677 people. We propose a simple but
effective method to obtain the ground-truth confidence map.
Specifically, the ones template where all pixels are set to
1 is first generated. Then the ones template centered on

each annotated point is pasted on a binary map to encode
the ground-truth confidence map (mask). The ones template
and the Gaussian kernel have the same size that is set to
15%15 in [29]. The ground-truth confidence map (mask)
generation uses the same size on different datasets. In the
ground-truth confidence map (mask), ’1” represents 100%
possibilities of a human head at this pixel location and 0’
represents O possibility of a human head at this pixel lo-
cation. The BCEloss that can predict the probability of a
positive sample is utilized to optimize the confidence map
by supervised learning. The greater probability in the pre-
dicted confidence map, the more attention our model will
pay in the density map by multiplying the confidence map.
Visualization results are shown in Fig. 6.

Module Optimization: Our CAT-CNN contains four mod-
ules. The whole loss function L is given by Eq.(2):

whole

Lwhale = qus + Lden + j’1 Lcon + ’12Lmul’ (2)

where L,,,;, Leons Lgens and Ly, are the losses for Multi-
information Handling Module, Confidence Module, Density
Map Estimation Module, and Fusion Module, respectively.
A1 and A, are the hyper-parameters to balance the magnitude
of two tasks. 4, is set to 2 and 4, is set to le-2.

In the Multi-information Handling Module, we classify
the crowd into five groups according to the crowd counts in
each dataset. The cross-entropy loss function is used in this
module:

G (X1,0)], )

'MN

Il
—_

1N
ul=_FZ

i=1j

where N represents the total number of training images. 6
represents a set of network parameters. X; represents the
i"" training image. ¢’ represents the ground-truth class and
K represents the whole number classes. G, (X i 0) repre-
sents the output of classification.

In the Confidence Module, we first propose employing
classification at each pixel location to judge whether there
are people. Due to the unbalanced population distribution
in images, we propose the weighted BCELoss to encode
a robust confidence map for population distribution. The
weighted binary-cross entropy loss adopted in this module
is shown as follows:

L., = —w; [yi IOgXi + (l - yi) log (1 - Xl)] NG

where X; represents the confidence map that records the
predicted probability of a positive sample. y; indicates the
ground-truth confidence map (mask). w; is the weight given
to the loss of each element. The derivation process of w; is
given as follows:
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Table 1

Statistics of training datasets: Num represents the number of images; Range repre-
sents the range of crowd counts; Average represents the average crowd counts; Total
represents the total number of labeled people.

Dataset Resolution Color Num Range Average Total
UCF_CC_50 different Grey 50 [94, 4543] 1279.5 63,974
ShanghaiTech Part_A different RGB,Grey 482  [33, 3139] 501.4 241,677
ShanghaiTech Part_ B 768 x 1024 RGB 716 [9, 578] 123.6 88,488
WorldExpo’10 576 x 720 RGB 3980 [1, 253] 50.2 199,923
w; = fi-yi+ by
- = mean(y;),
fi ) 5)
bi=1-1
yi=1-y. ~
1076, if fi=0; e n Shamehatt UCE C kb, .
w;: = (6) Shang| LA S B UCF_CC_50 WorldExpo’10
! A=2f)y: + fi else.

Where f; represents the weight of crowd positions, and
b; represents the weight of background positions. y; rep-
resents the ground truth of background. For better conver-
gence of our CAT-CNN, when f; = 0 which means that there
is no person in the training image, we set w; to 10~ instead
of 0.

In the Density Map Estimation Module and Fusion
Module, the Euclidean distance loss is used to optimize
these modules:

! )

1 - 2
o e Bl

where D (X i 9) represents the estimated density map in the
Density Map Estimation Module. F (X i 0) represents the
final density map in the Fusion Module. These two modules
have the same ground-truth density map D;. M represents
the total number of training samples.

Each module has its subtask. These four subtasks are
completed synchronously in a synergistic manner. The opti-
mized process is a multi-task learning [5, 34] which is help-
ful to reduce overfitting caused by limited data for train-
ing. Multi-task learning can extract the generalizable rep-
resentation of similar data and assist our model in alleviat-
ing crowd counting errors. [39] also adopts the strategy of
multi-task learning. There are two main differences between
two works. Firstly, our proposed CAT-CNN is a multi-stage
model. The confidence map is encoded in the second stage.
In the third stage, the predicted confidence map is multi-
plied by the estimated density map to directly participate

Figure 7:
datasets.

Some representative examples from these

in the generation of final density map to avoid enormous
misjudgements. In [39], the BG/FG mask is not directly in-
volved in density map generation, but fine-tunes the density
map as a multi-task learning. The rationality of two designs
is guaranteed by different loss functions. Secondly, for the
classification task in Fig. 3, inspired by [46], we design
the AMA Component and the weights of the predicted cat-
egory are directly mapped back to previous feature maps to
contribute in generating a highly refined density map in our
work, which is the second difference from [39].

4. Experiments

Our model is trained on three benchmark datasets sep-
arately: Shanghaitech dataset [45], UCF_CC_50 dataset
[12], and WorldExpo’10 dataset [43]. Statistics of them
are summarized in Table 1. Some example images of these
datasets are shown in Fig. 7. The data augmentation
schemes in [29] are utilized to reduce overfitting. In the
process of creating training datasets, 9 patches are cropped
from each original image at random locations, and the size
of each patch is 1/4" of the original image. Random flip-
ping and uniform noise are used in the patch with a prob-
ability of 0.5. The Adam optimization algorithm with a
batch size of 1 is used to optimize these loss functions in
our model. Its parameter of learning rate is set to 1e-6. The
number of epochs is set to 5000. In every iteration, gradi-
ents for each loss function are calculated and corresponding
parameters are updated. The curve of each loss function
is expected to converge to smaller values. It may have a
brief shock at the beginning. The experiments are conducted
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Table 2

Estimation errors (MAE) of different configurations about the number of population-level

categories.

population-level categories

3 5 7 10 15
ShanghaiTech Part_ A 78.2 66.7 69.8 71.8 71.3
ShanghaiTech Part_ B 15.3 11.2 13.2 12.9 12.2

UCF_CC_50

308.4 235.5 280.3 301.6 340.4

WorldExpo’10 8.6 7.2 8.0 8.5 71
Table 3
Estimation errors of different kernel sizes at the beginning of CAT-CNN.
Part_ A Part B UCF_CC_50  WorldExpo’'10
MAE MSE MAE MSE MAE MSE MAE MSE
3x3 76.8 1259 143 241 2896 4415 84 11.3
3%3,5%5,7x7 782 1281 134 227 3064 4656 9.2 13.8
3%3,5x5,7x7,9x9 66.7 101.7 112 20.0 2355 3248 7.2 9.5
3x3,5%5,7x7,9x9,11x11  73.8 120.3 128 228 2718 3702 74 9.3

on NVIDIA GTX 1080Ti and Intel Core i7 with the Torch
framework.

Following existing methods [45, 26, 30, 25, 18, 27, 28,
1], the Mean Absolute Error (MAE) and Mean Squared Er-
ror (MSE) are used to measure the count errors. They are
defined as:

N
1 - 1
MAE=— ,2:1 |z - Z| . MSE= ~

< 2
Z (z-2)" ®
i=1

Where N is the number of test images. z; is the actual
crowd count by integrating the ground-truth density map,
and Z; is the estimated crowd count by integrating the final
density map.

4.1. Ablation study

To further demonstrate the effectiveness of different

components in our CAT-CNN, we perform an ablation study
by a discussion.
Benefits of Multi-Scale Features: The crowd at differ-
ent distances from the camera have different scale charac-
teristics in the image. So it is very important to extract
multi-scale features. In [45], Zhang et al. proposed the
three-column CNN structures to extract multi-scale features.
However, every column needs to be pre-trained separately
and the multi-column CNNs are hard to be trained. By con-
trast, our model is more convenient and effective to extract
multi-scale features.

As shown in Fig. 3, at the beginning of our model, the
convolution kernels with different scales are used to map the
head to feature maps from input image. From Table 3, it can
be found that the performance of using four type convolu-
tion kernels is best in most cases. As shown in Fig. 3, in-
side the network, feature maps from convolutional layers of

different depths are merged by cross-layer connection to au-
tomatically adapt the scale variations in the crowd. Higher
layers encode the semantic concept of the person, whereas
lower layers extract rich discriminative features from the
person. Both of them can provide complementary informa-
tion on the same person with different levels. Hence, from
Table 4, we can observe that fusing features from convolu-
tional layers of different depths is very effective to alleviate
the crowd counting errors on these benchmarking datasets.
Benefits of The Prior of Population-Level Categories: In
our CAT-CNN, we classify the crowd counts of images in
each dataset into 5 categories according to experiments. The
results are shown in Table 2. When the number of cate-
gories is set to 15 on the WorldExpo’10 dataset, the per-
formance is improved slightly compared with the third col-
umn. We think that due to a large number of images in this
dataset, 15 categories are suitable. However, it can be ob-
served that the performance of 5 categories is best in most
cases. We argue that due to the limitations of model ca-
pacity and training data, 5 categories are sufficient for most
datasets. To prove the effectiveness of explicit use of the
prior of population-level category, in the comparative exper-
iment, FM1 and FM2 respectively serve as the output of the
Multi-information Handling Module. The results are shown
in Table 5. We can observe that by only using FM2 where
we explicitly use the prior of population-level categories,
the performance is better, with the MAE/MSE 5.4/6.2 lower
than only using FM1 where we do not explicitly use the
prior of population-level categories. When FM1 and FM2
are concatenated and used simultaneously, the performance
is the best, with the MAE/MSE 10.0/13.6 lower than only
using FM1. We argue that both FM1 and FM2 can encode
the crowd count feature. The concatenation of them can pro-
vide more sufficient feature information for following mod-
ules.
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Table 4

Estimation errors of different configurations about the cross-layer connection.

Part_A

Part B UCF_CC_50 WorldExpo'10

MAE MSE

MAE MSE MAE MSE MAE MSE

Without cross-layer connection  75.5 124.9
With cross-layer connection 66.7 101.7

16.3 282 2642 3828 10.1 14.2
11.2 20.0 2355 3248 7.2 9.5

Est: 755

Figure 8: Results of the proposed CAT-CNN on ShanghaiTech Part_A. First Row: test image. Second Row: test image
overlaid by the estimated confidence map. Third Row: ground-truth density map. Fourth Row: the final estimated density

map.

Benefits of The Confidence Map: To demonstrate the
effectiveness of the confidence map, performances of our
model with and without confidence map are compared. In
the comparative experiment, the Confidence Module is re-
moved from our CAT-CNN. Comparison results are given

in Table 6. We can see that the performances of our model
are further enhanced by a confidence map generated in the
Confidence Module, with the MAE/MSE 14.5/27.2 lower
than that without a confidence map. The estimated count
of each image and its actual count are shown in Fig. 10.
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Figure 9: Results of the proposed CAT-CNN on ShanghaiTech Part_B. First Row: test image. Second Row: test image
overlaid by the estimated confidence map. Third Row: ground-truth density map. Fourth Row: the final estimated density

map.

Table 5
Estimation errors of different configurations about the out-
put of Multi-information Handling Module on ShanghaiTech
Part_A.

Method MAE MSE
Only FM1 76.7 115.3
Only FM2 71.3 1091

FM1 and FM2 66.7 101.7

We can see that the green line (estimated count with confi-
dence map) is closer to the red line (actual count) than the
blue line (estimated count without confidence map), which

Table 6
Estimation errors of different configurations about the confi-
dence map on ShanghaiTech Part_A.

Method MAE MSE
Without confidence map 81.2 128.9
With confidence map 66.7 101.7

denotes that the confidence map plays an important role in
reducing the error of crowd counting.

To visualize the effectiveness of confidence map, the
confidence map is resized to the same size as the input im-
age. And it is overlaid on the input image with 70% trans-
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Table 7
Comparison of real time in Cascade-MTL, MRA-CNN, and
CAT-CNN. Time represents the time to process a frame.

Method Time (s)
S1 S2 S3 S4 S5  Average
Cascade-MTL [29] 0.08 0.08 0.08 0.08 0.08 0.08
MRA-CNN [44] 0.02 0.02 0.02 0.02 0.02 0.02
CAT-CNN(OURS) 0.03 0.03 0.03 0.03 0.03 0.03

~~~~~

‘‘‘‘‘‘‘

Figure 10: The crowd count comparison of different configu-
rations about the confidence map on ShanghaiTech Part_A.
X-axis: the ID of images, Y-axis: the crowd counts of images.

parency to display both of them clearly. They are shown
in the second row of Fig. 8. We can observe that only the
position of the human head is highlighted, which denotes
that our CAT-CNN encodes an accurate confidence map to
avoid enormous misjudgements. The ground-truth density
map and final high-precision density map are also shown in
Fig. 8. We can observe that our CAT-CNN encodes a high-
precision density map to count the crowd very well. Similar
results can be found in Fig. 9.

Evaluations of The Real Time: To verify the real-time per-
formance of our proposed method, some experiments are
conducted on a video surveillance dataset (WorldExpo’10
dataset) using NVIDIA GTX 1080Ti and Intel Core i7. Its
test set contains 600 frames from 5 different scenes (S1-S5).
The resolution of each frame is 576x720. Comparisons with
other state-of-the-art methods are given in Table 7. It can be
observed that our proposed method obtains competitive re-
sults.

4.2. Shanghaitech dataset

Zhang et al. [45] introduced the large-scale Shang-
haiTech dataset. It consists of two parts: Part_A with 300
training images and 182 test images, Part_B with 400 train-
ing images and 316 test images. In Part_A, the crowd den-
sity is high while the crowd density is relatively low in
Part_B. We generate the ground-truth density map by using
the method in Sec. 3.2.

In Table 9, we compare our method with other recent
state-of-the-art methods. The LBP and RR are traditional
algorithms for crowd counting. In [36], the data collec-
tor and labeler were proposed to generate and annotate the

crowd data. In [45], the MCNN with three-column CNNs
was proposed to extract multi-scale features to adapt scale
variations. In [26], the Switch-CNN with a classifier was
proposed to select an optimal branch to generate the density
map. In [30], global and local features were used to gener-
ate a high-quality density map. In [25], the top-down feed-
back TDF-CNN was proposed to get initial accurate predic-
tion. In [18], detection and regression were used for crowd
counting simultaneously. In [27], the GANs were proposed
to mitigate blurring in the estimated density map. In [44],
head regions were focused on automatically. In [28], the
deep negative correlation learning was proposed to reduce
over-fitting. In [10], a scale-aware attention model was pro-
posed to adapt the scale variation of crowds. In [1], a grow-
ing CNN was proposed to adapt the variability seen from the
crowd by increasing its capacity. In [35], the interference
from background could be removed to automatically alle-
viate the mapping between input images and crowd counts.
We can find that most of them pay attention to the extrac-
tion of multi-scale features in the crowd. Because the scale
variation of crowds restricts the performance of proposed
methods.

In Table 9, it can be observed that all of the CNN-based
methods have an absolute advantage over the traditional al-
gorithms. In the CNN-based methods, our method achieves
the best results on both Part_A and Part_B, which indicates
that the accurate judgement of human head is important for
improving the accuracy of crowd counting. We can also
observe that Part_A is more challenging than Part_B. The
crowd density is higher and the training is harder. As shown
in Fig. 11 that is from Part_A, the final estimated density
map and its ground truth are very similar, except for the re-
gion in red rectangles where people are more difficult to rec-
ognize and these samples are more difficult to train. In the
future, we plan to introduce the hard example mining tech-
nology to break through the limitation to further improve
counting accuracy.

4.3. UCF_CC_50 dataset

Idrees et al. [12] collected 50 images from internet to
produce the challenging UCF_CC_50 dataset. The number
of annotated heads in each image ranges from 94 to 4,543.
The total number of people in the dataset is 63,974. It is
a challenging dataset because of its dense crowd, limited
image, and low resolution. We generate the ground-truth
density map by using the method in Sec. 3.2. The 5-fold
cross validation is performed to evaluate proposed methods.

In Table 10, Other recent state-of-the-art methods are
compared with our method. In [23, 12], traditional fea-
ture extractors were used to extract crowd features. In [38],
the ConvLSTM employed the temporal correlation to assist
crowd counting. Other methods on Shanghaitech dataset are
still compared on this dataset. In Table 10, we can observe
that the density map learned by CNN is more robust than
the hand-crafted features extracted in [23, 12]. Our method
outperforms all other methods on MAE metric, while we ob-
tain a competitive MSE score which denotes the robustness
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Table 8

Estimation errors on the WorldExpo’10 dataset.

Method S1 S2 S3 S4 S5  Average
LBP+RR 136 589 371 21.8 234 31.9
SE Cycle GAN[36] 4.3 591 437 170 7.6 26.3
MCNN [45] 34 206 129 13.0 8.1 11.6
TDF-CNN [25] 27 234 107 176 3.3 11.5
IG-CNN [1] 2.6 16.1 102 202 7.6 11.3
Xiong. et al [38] 6.8 145 149 135 3.1 10.6
DDCN [35] 4.8 16.2 124 109 49 9.8
Switch-CNN [26] 44 157 100 11.0 5.9 9.4
DecideNet [18] 20 13.1 89 174 48 9.2
D-ConvNet-V1 [28] 1.9 121 20.7 8.3 2.6 9.1
CP-CNN [30] 29 147 105 104 538 8.9
MRA-CNN [44] 24 114 93 105 37 7.5
ACSCP [27] 2.8 141 9.6 8.1 2.9 7.5
CAT-CNN(OURS) 2.2 98 102 112 25 7.2
Table 9 Table 10
Estimation errors on the ShanghaiTeach dataset. Estimation errors on the UCF_CC_50 dataset.
Method Part_A Part_B Method MAE MSE
MAE MSE MAE MSE Rodrlguez etal. [23] 655.7 697.8
Lempitsky etal. [12] 419.5 541.6
LBR + RR 303.2 371.0 591 817
MCNN [45] 377.6  509.1
SE Cycle GAN [36] 1234 1934 199 283
SE Cycle GAN [36] 373.4 528.8
MCNN [45] 110.2 1732 26.4 413
. TDF-CNN [25] 354.7 4914
Switch-CNN [26] 90.4 135.0 216 334 .
Switch-CNN [26] 318.1 439.2
TDF-CNN [25] 97.5 1451 20.7 32.8
. CP-CNN [30] 295.8 320.9
DecideNet+R3 [18] - - 20.8 294
IG-CNN [1] 291.4 3494
ACSCP [27] 757 1027 172 27.4
ACSCP [27] 291.0 404.6
MRA-CNN [44] 74.2 112.5 119 213
D-ConvNet-V1 [28] 288.4 404.7
CP-CNN [30] 736 1064 20.1 30.1
DDCN [35] 286.2 479.6
D-ConvNet-V1[28] 735 1123 18.7 26.0 .
. Xiong. et al [38] 2845 297.1
Hossain et al. [10] - - 16.9 284 .
Hossain et al. [10] 271.6 391.0
IG-CNN [1] 725 1182 136 21.2
MRA-CNN [44] 240.8 352.6
DDCN [35] 71.5 1104 13.8 20.1 CAT-CNN(OURS) 235.5 3248
CAT-CNN(OURS) 66.7 101.7 11.2 20.0 : :

of proposed methods. We argue that the limited data for
training cause this result as the UCF_CC_50 dataset only
contains 50 images.

4.4. WorldExpo’10 dataset

The WorldExpo’10 dataset [43] consists of 3,980 an-
notated frames collected from 1,132 video sequences. The
video sequences contain 108 different scenes. This dataset
is divided into a training set with 3,380 frames and a test
set with 600 frames from 5 different scenes (S1-S5). This
dataset provides the region of interest (ROI) and perspective
map for each scene. For fair comparisons, we follow the
experimental setting in [43] to generate density maps.

In Table 8, we compare our method with other recent
state-of-the-art methods. MAE is used to evaluate the results
of different methods, which is suggested in [43]. We can
observe that our proposed method obtains the best results

Ground-truth density map Estimated density map

Figure 11: Limitation of the proposed method

on the average MAE of five different scenes. It can be also
observed that we get competitive results in the three of five
scenes. By reviewing all test images, we find that due to the
effect of ROI, the images in these three scenes are no longer
complicated. There are fewer people and little background
noise. Therefore, it is difficult to play our strengths.
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5. Conclusion

In this paper, we proposed an end-to-end model named
CAT-CNN in crowd counting. Our CAT-CNN can adap-
tively assess the importance of a human head at each pixel
location to avoid enormous misjudgements. To obtain
a robust confidence map for population distribution, the
weighted BCELoss is proposed. The crowd counts are clas-
sified into five groups in each dataset and we first explic-
itly map the prior of the population-level category to feature
maps to automatically contribute in encoding a highly re-
fined density map. We evaluate our method on three bench-
mark datasets separately. Extensive experimental results in-
dicate that our method outperforms many state-of-the-art
methods. In the future, we will focus on hard example min-
ing technology to handle the problem proposed in Fig. 11.
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