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Abstract

In this paper, a novel Multilayer Interval Type-2 Fuzzy Extreme Learning Machine (ML-IT2-FELM)
for the recognition of walking activities and Gait events is presented. The ML-IT2-FELM uses a
hierarchical learning scheme that consists of multiple layers of IT2 Fuzzy Autoencoders (FAEs),
followed by a final classification layer based on an IT2-FELM architecture. The core building block
in the ML-IT2-FELM is the IT2-FELM, which is a generalised model of the Interval Type-2 Ra-
dial Basis Function Neural Network (IT2-RBFNN) and that is functionally equivalent to a class of
simplified IT2 Fuzzy Logic Systems (FLSs). Each FAE in the ML-IT2-FELM employs an output
layer with a direct-defuzzification process based on the Nie-Tan algorithm, while the IT2-FELM
classifier includes a Karnik-Mendel type-reduction method (KM). Real data was collected using
three inertial measurements units attached to the thigh, shank and foot of twelve healthy partici-
pants. The validation of the ML-IT2-FELM method is performed with two different experiments.
The first experiment involves the recognition of three different walking activities: Level-Ground
Walking (LGW), Ramp Ascent (RA) and Ramp Descent (RD). The second experiment consists
of the recognition of stance and swing phases during the gait cycle. In addition, to compare the
efficiency of the ML-IT2-FELM with other ML fuzzy methodologies, a kernel-based ML-IT2-FELM
that is inspired by kernel learning and called KML-IT2-FELM is also implemented. The results
from the recognition of walking activities and gait events achieved an average accuracy of 99.98%
and 99.84% with a decision time of 290.4ms and 105ms, respectively, by the ML-IT2-FELM, while
the KML-IT2-FELM achieved an average accuracy of 99.98% and 99.93% with a decision time of
191.9ms and 94ms. The experiments demonstrate that the ML-IT2-FELM is not only an effective
Fuzzy Logic-based approach in the presence of sensor noise, but also a fast extreme learning machine
for the recognition of different walking activities.

Keywords: Multilayer Neural Networks (ML-NNs), Fuzzy Autoencoders (FAEs), Interval Type-2 Fuzzy Logic
System (IT2 FLSs), Wearable Sensors, Kernel-based ELM, Direct-defuzzification method, Extreme Learning
Machine.

1. Introduction1

Recognition of human activities has become very popular during the last decade [1], particularly2

in fields such as bio-medicine, elderly care, sports injury detection, entertainment, military devices,3

pattern recognition and soft Robotics, innumerable applications can be found [1–7]. This is mainly4

due to new advances in the area of machine learning and artificial intelligence, as well as the5

development of new technology and mobile devices [2]. The recognition of human activities has6

been mainly approached in two different ways, namely, using wearable and external sensors [7].7

By using wearable sensors, electronic devices are attached to the main user, while for external8
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sensors, devices are fixed in predetermined points of interest making the inference engine to be9

fully dependant on the voluntary interaction of the users with sensors [7]. In healthcare, the use10

of wearable sensors for the recognition and monitoring of human daily activities have been mainly11

applied to assist disabled and elderly people [8]. Particularly to detect abnormal situations or12

prevent unpredictable events such as falls [8, 9]. Within this context, human locomotion activities13

such as walking, running, standing, laying, walking upstairs and walking downstairs usually involve14

complex movements that are commonly affected in disabled and elderly people [10, 11]. Although15

the use of numerous wearable sensors might improve the performance of a recognition algorithm,16

the design of reliable and robust machine learning methodologies for perception of human walking17

movements still represent a challenge [12, 13].18

In this work, a new Multilayer Interval Type-2 Fuzzy Extreme Learning Machine (ML-IT2-19

FELM) for the recognition of human walking activities and gait events using wearable sensors is20

presented. The ML-IT2-FELM is a hierarchical computational architecture that involves two main21

components. First, unsupervised IT2 fuzzy feature encoding is achieved by stacking a predefined22

number of FAEs, where the basic building block is based on the functional equivalence between the23

IT2-RBFNN and a class of IT2 FLSs [14]. Each FAE can be viewed as an independent/separate24

module whose output layer is a Nie-Tan direct defuzzification method [15]. Finally, the encoded25

features are classified by using an IT2-FELM with a Karnik-Mendel type-reduction algorithm as26

its output layer [16]. To study the efficiency of the proposed ML-IT2-FELM with respect to other27

ML fuzzy neural structures, a kernel-based ML-IT2-FELM that is called KML-IT2-FELM and that28

is inspired by kernel learning is suggested. Compared to other existing ML networks, both the29

ML-IT2-FELM and the KML-IT2-FELM do not employ input weights, hence a random projection30

of inputs and bias of every FAE is not required. In other words, in order to achieve an optimal31

generalisation performance no random projection mechanism is needed [17]. In this sense, the KML-32

IT2-FELM eliminates the manual tuning on the number of hidden neurons in every FAE, and exact33

inverse solution of output weights is guaranteed under invertible kernel matrix [17]. To validate the34

performance of the ML-IT2-FELM and the KML-IT2-FELM, real data collected from three inertial35

measurement units (IMUs) attached to the thigh, shanks and foot of a group of twelve people is36

used to carry out two different experiments. The first experiment consists of the recognition of three37

different walking activities, i.e. a) Level-Ground Walking (LGW), b) Ramp Ascent (RA) and Ramp38

Descent (RD), while the second experiment involves the recognition of eight events that describe a39

phase of stance and swing during the gait cycle. Such periods segment the gait cycle into eight main40

events, namely, 1) initial contact, loading response, 3) mid stance, 4) terminal stance, 5) pre-swing,41

6) initial swing, 7) mid-swing and 8) terminal swing.42

The rest of this paper is organised as follows. Section 2 reviews related work, while in section 3,43

preprocessing of the IMU data set and a background about multilayer ELM and IT2 Fuzzy Extreme44

Learning Machine (FELM) for classification is provided. Section 4 resents the proposed ML-IT2-45

FELM and KML-IT2-FELM. In section 5, the performance of the proposed ML methodologies is46

studied and compared to other existing strategies. Finally, conclusions are drawn in section 6.47

2. Related Work48

A large number of existing human activity recognition techniques using machine learning can49

be found in literature [1–7, 9, 12, 13, 18, 19]. In particular, in smart health applications, wear-50

able sensors placed at different body positions represent a realistic mechanism to the processing of51

locomotion activities, especially to provide assistance and infer human activities during the reha-52

bilitation of elderly people usually from work-related musculoskeletal disorders [20, 21]. Generally,53

the analysis of movement data involves an approach that first segments the time series data into54
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contiguous frames or sliding windows. From each window or frame a set of statistical features or55

from frequency domain is extracted [21]. This feature extraction process has an influence in the56

recognition algorithm that usually reduces the associated computational load. More recently, the57

implementation of deep learning strategies for the recognition of human activities has demonstrated58

a significant improvement in model accuracy while tackling different challenging problems that usu-59

ally result from multimodal and high dimensional sensor data. This is mainly due to the ability60

of deep structures to perform automatic feature learning [21–25]. In [21], authors explore three61

state-of-art deep learning approaches, namely, deep feed-forward networks (DNN), convolutional62

and recurrent neural network for human activity recognition using wearable sensors. First, deep63

feed-forward networks with up to five hidden layers were implemented. In [21], the DNN was used64

as a mechanism to represent a sequence of non-linear transformations to the input data of the65

network, where each hidden layer contains the same number of nodes and corresponds to a lin-66

ear transformation based on the rectified linear (ReLU) activation function. The second approach67

aimed at finding a degree of locality in the patterns matched to the input data while providing a68

translational invariance of each pattern of movement data. The last approach exploits the ability69

of recurrent neural networks to find temporal dependencies within movement data. Overall, such70

approaches achieved an average accuracy of approximately 90%. In [24], authors proposed a Deep71

Belief Network (DBN) that is composed of multiple Continuous Autoencoders (CAEs) to classify72

nineteen human activities. Data was collected using body-worn inertial sensors, magnetic sensors73

and accelerometers. The architecture of each CAE is based on an stochastic neural network. In74

order to reduce the number of initial features and shorten the training time, a time and frequency75

domain feature extract (TFFE) and a fast stochastic gradient descent algorithm method were imple-76

mented respectively. Based on the results presented in [24], the proposed DBN achieved an overall77

accuracy of 99.3%. However, deep learning approaches usually are trained by slow learning speeds.78

Compared to deep learning, Multilayer Extreme Learning Machine (ML-ELM) has demonstrated79

to be a faster learning method aiming to solve the heavy computational burden that results from80

learning methods such as gradient descent and quadratic programming. ML-ELM implementations81

have also shown superb efficiency in a number of different applications such as image processing [26],82

pattern recognition [17, 27, 28], complex systems modelling [29] and human-centered computing [6].83

For example, in [6], a novel ML-ELM that stacks a number of ELM autoencoders and incorporates84

a kernel-risk-sensitive-loss measure was developed to identify the motion sequence of body based85

on the skeleton data. The proposed ML methodology that is called S-ELM-KRSL has multiple86

hidden layers where each one is an autoencoder that performs unsupervised learning and feature87

representation. From the experimental results presented in [6], the proposed S-ELM-KRSL achieves88

a higher accuracy compared to traditional methods while providing a robust performance in the89

presence of noisy signals and outliers.90

In this paper, a Multilayer Interval Type-2 Fuzzy Extreme Learning Machine (ML-IT2-FELM)91

for the recognition of human walking activities is developed. The proposed ML-IT2-FELM is a hier-92

archical ML network that consist of two main components. First, multiple IT2 Fuzzy Autoenconders93

(FAEs) are stacked for unsupervised learning and feature extraction. Secondly, an Interval Type-294

Fuzzy ELM whose neural structure is based on the functional equivalence between the IT2-RBFNN95

and IT2 FLSs is applied to classify the extracted features by the first component. Compared to96

traditional approaches and deep learning structures, the proposed ML-IT2-FELM incorporates on97

its neural structure the ability of IT2 FLSs to deal with complex signals and function approximation98

in the presence of noise on the one hand.99
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Figure 1: Sensor signals for recognition and prediction of walking activities and gait periods. (A) Data collection
from 9-DoF inertial measurement units (IMU) attached to the thigh, shank and foot. (B) Example of concatenated
signals from gyroscope (x,y,z), accelerometer (x,y,z) and magnetometer (x,y,z) for a walking activity. (C)
Segmentation of the dataset, into 8 periods, for recognition and prediction of gait periods and phases during a
walking activity.102

On the other hand, the ML-IT2FELM inherits the ability of ML-ELM to provide a high trade-off103

between model accuracy and a low computational load. A detailed description of the ML-IT2-FELM104

is provided in the next sections.105

3. Preliminaries106

This section provides a description about the processing of the IMU data set as well as back-107

ground that is needed to describe the proposed ML-IT2-FELM and the KML-IT2-FELM is reviewed.108

3.1. Signal Processing and Data Collection109

Angular velocity signals were employed from three inertial measurement units (IMU, see Fig-110

ure 1a), worn by 12 healthy human participants. Anthropometric data from participants are as111

follows: ages between 24 and 34 years old, heights between 1.70m and 1.82m, and weights between112

75.5 kg and 88 kg. Participants were asked to walk at their self-selected speed and perform ten113

repetitions of three walking activities: level-ground walking, ramp ascent and ramp descent. Level-114

ground walking was performed on a flat cement surface. A metallic ramp, with a slope of 8.5 deg,115

was used for ramp ascent and descent (Figures 1b,c). Sensor signals were systematically collected116

and filtered with a cut-off frequency of 10Hz. For this process, a number of three IMUs (Shimmer117

Inc.) attached to the thigh, shank and foot of each participant were employed.118
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Figure 2: Example angular velocity data collected from three locomotion modes: Level-Ground Walking (LGW),
Ramp Ascent (RA), Ramp Descent (RD) using three inertial measurement units (IMUs) attached to the (a) thigh,
(b) shank and (c) foot of healhty humans. The data were collected using three inertial measurement units attached
to (A) the thigh, (B) shank and (c) foot of healthy participants. Plot (c) shows an example of the gait cycle which is
segmented into eight periods, i.e. 1) initial contact, 2) loading response, 3) mid stance, 4) terminal stance, 5)
pre-swing, 6) initial swing, 7) mid swing and 8) terminal swing. Such gait events are processed by the proposed
Multilayer Fuzzy Extreme Learning Machine models (ML-FELM) for the recognition of human locomotion into
three different walking activities.120

For each IMU, angular velocity signals in x-y and-z axes, were sampled at 100Hz. These signals121

were concatenated to form an initial dataset (as detailed in Fig. 1(d)), composed of 9 signals (1122

signal × 3 axes × 3 sensors) and 200 sensor samples, from each activity performed by participants.123

Thus, a dataset of 3× 1024 samples was created, where each input is a dimensional array of 9× 200124

values. Datasets from 8 and 4 participants were used to train and test the proposed Multi layer125

strategies, respectively. Fig. 1(d) shows an example of the signals collected from the wearable126

sensors during a walking activity. In addition, two foot pressure-insole sensors were used to detect127

the beginning and end of each gait cycle. Fig. 1(e) presents the segmentation of the gait cycle into128

stance phase, swing phase and eight periods (initial contact, loading response, mid-stance, terminal129

stance, pre-swing, initial swing, mid-swing, terminal swing). This segmentation allows the proposed130

strategy to recognise and predict the state of the human body during a walking activity. Hence,131

25 signal readings (or 15% out of the total gait cycle) were collected to describe each gait event as132

illustrated in Fig. 2.133

3.2. Multilayer Extreme Learning Machine (ML-ELM)134

Multilayer Extreme Learning Machine (ML-ELM) was suggested in [26] as a fast and accurate135

alternative to iterative Back Propagation (BP) learning algorithms that are frequently employed to136

train Multilayer Neural Networks (ML-NNs) [30–32]. The main advantage of an ML-ELM is the137

integration of a single learning mechanism that involves several layers for representational learning,138

followed by a final layer of ELM classification [26].139

The basic idea behind ML-ELM is an ELM-based Autoencoder (AE, See Fig. 3) that is stacked
to build a multilayer structure (deep structure) while performing layer by layer unsupervised learning
for feature representation where fine iterative tuning is not required [33]. As detailed in [17, 27], an
ML-ELM is a neural structure that consists of a number of L hidden layers, where for a given input

X(i) = [x
(i)
1 , . . . ,x

(i)
N ], k = 1, . . . , N , the ith data transformation Γ(i) = [γ

(i)
1 , . . . , γ

(i)
N ] is computed

using Eq. (1), and γ(i) is the transformation vector that corresponds to the input vector x
(i)
k .

H(i)Γ(i) = X(i) (1)
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Fig. 3. Architecture of the ith ELM-AE used as the basic building block of a ML-ELM (Taken from [27]).

in which, H(i) is the output matrix of the ith hidden layer w.r.t the input X(i). As illustrated
in Fig. 1, data transformation is achieved by projecting X(i) along the decoder stage weights at
each ELM-AE. That means, at the encoder stage, each ELM-AE generates a number of orthogonal
random parameters, e.g. random input weights and random biases in hidden nodes for additive
nodes, or random centers and impact factors for Radial Basis Functions (RBFs) [33, 34]. Thus,
orthogonal random hidden parameters of linear and non-linear ELM-AE are computed using Eq.
2.

h(xk) = g(xkA+ b) = [h1(xk), . . . , hMi
(xk)] (2)

in which, H(i) = [h(x1), . . . ,h(xN )]T , ATA = I and bTb = 1. Hence, the ith transformation term
Γ(i) is calculated as:

Γ(i) = (H(i))T
(

I

C
+H(i)(H(i))T

)−1

X(i) (3)

Thus, the final representation Xfinal is obtained by multipliying X(i) with Γ(i)

Xfinal = g(X(i)(Γ(i))) (4)

As suggested in [26], if layer Mi = Mi+1, then g can be chosen as a linear function, otherwise g
is chosen as nonlinear piecewise function such as RBFs or sigmoids. In [27], Xfinal was used as the
hidden layer output to compute the output weight vector β as [27].

Xfinalβ = T (5)

by adding a regularisation factor C and using the pseudoinverse of the final transformation, Xfinal

as the firing strength matrix, the term β is computed as shown in Eq. 6.

β = Xfinal

(
1

C
+X(Xfinal)

)−1

T (6)

Unlike the hierarchical ML ELM suggested in [26], the methodology reviewed in this section directly140

uses the final data representation Xfinal as hidden layer to calculate the weight vector β.141
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3.3. Kernel-based Multilayer Extreme Learning Machine (ML-KELM)142

Compared to ML-ELM [27], an ML-KELM is a fast multilayer neural structure inspired by kernel
learning whose main advantages lie not only on the elimination of manual tuning on the number of
hidden nodes in every layer but also to improve the suboptimal model generalisation that usually
results from a random projection of input weights and bias in every layer of an ML-ELM [17]. As
pointed out in [17], an ML-KELM also provides an exact inverse solution for output weights under
invertible kernel matrix. As detailed in Fig. 3, an ML-KELM learns feature/data representation
by stacking a number of ′L′ KELM Autoencoders (AE). At the hidden layer of each AE, a kernel
function K(i) = exp(− ‖ xp −xj ‖ /2σ

2
j ) is employed (Radial Basis Function was suggested in [17]).

Thus, each input vector xp is mapped into a kernel matrix Ωi where the term Γ̃ is used to represent
the ith transformation matrix in the KELM-AE, which can be computed as follows:

Ω(i)Γ̃(i) = X(i) (7)

By applying the Mercer’s conditions on ELM, the kernel matrix Ω in the hidden layer of each
KELM-AE can be written as

Ω(i) =






K(x,x1)
...

K(x,xMi
)




 (8)

where Ωj,l = K(xj ,xl), j, l = 1, . . . ,Mi.

Γ̃(i) =

(
I

C
+Ω(i)

)−1

X(i) (9)

such as C is the user-specified term for regularisation, Γ̃(i) = [γ
(i)
1 , . . . , γ

(i)
M ], where γ(i) is the ith

transformation vector used for representation learning to the input data X(i). The final transfor-
mation X(i+1) is obtained using a sigmoid function

X(i+1) = g
(

X(i)(Γ̃(i))T
)

(10)

As indicated out in [17, 26, 31], if the ith transformation has the same dimension as the (i + 1)th143

layer, the activation function ′g′ can be chosen as a linear function. Ω(i) is a matrix of semidefinite144

kernels K where a Reproducing Kernel Hilbert Space (RHKS) that coincides with an N-dimensional145

space is spanned by a class of finite number of continuous positive semidefinite kernels such as the146

Radial Basis Functions (RBFs) [35]. Within this context, a KELM is a kernel method that can be147

viewed as a case of Single Layer Feedforfward Networks (SLFN) with additive neurons [36].148

3.4. Interval Type-2 Fuzzy Extreme Learning Machine for Classification (IT2-FELM)149

Most of the applications and design of hybrid neural network systems whose structure is based
on the theory of Interval Type-2 Fuzzy Logic (IT2 FL) and Extreme Learning Machine (ELM)
have been concentrated on solving regression problems. Such systems usually employed Multiple-
Input-Single-Output (MISO) neural structures with a Karnik-Mendel type-reduction layer [29, 37,
38]. In this paper, the final layer of the ML-IT2-FELM is an IT2-FELM whose main inference
engine is based on the model of a Multi-Input-Multi-Output (MIMO) IT2-RBFNN [27]. Thus,
the proposed MIMO IT2-RBFNN is applied to the classification of the set of features created
in the final transformation [39]. Both models, the RBFNN and the IT2-RBFNN are a class of
MIMO ELMs that were initially suggested for function approximation [40]. Based on the functional
equivalence between the IT2-RBFNN and IT2 FLSs [39, 41], an ELM can be constructed as an

7
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MIMO IT2 FLS if its associated inference mechanism is interpreted as an adaptive filter which
resembles an additive combination of the MFs (firing strengths). As illustrated in Fig. 4, given an
input vector xp = [x1, . . . , xN ]T , each corresponding fuzzy rule Rj in an MIMO IT2 is described
by a multi-variable Gaussian MF µRi(xp, y

s
p) = µRj [x1, . . . , xn, y

s
p], s = 1, . . . , Ñ , where the input

vector xp ∈ X1 × . . . XN and the implication engine is defined as:

µRj (xp, y
s
p) = µAj→Gj =

[

TN
k1
µ
F

j

k

(xk) ⋆ µGj(y)

]

= [f j(~xp), f j(~xp)] (11)

where ⋆ is the minimum t − norm that represents the shortest Euclidean distance to the input
vector xp. [f j(~xp), f j(~xp)] is the lower and upper membership function (LMF, UMF) respectively.
In this work, each MF in the fuzzy rule of the MIMO IT2-RBFNN is an interval Gaussian MF with
an uncertain width σj = [σ1j , σ

2
j ] and fixed center (mean) µkj as shown in Fig. 5:

F j :=







F j = [f j(xp), f j(xp)]

f j(xp) = exp



−
N∑

k=1

(

xk − µkj
2σ2j

)2




f j(xp) = exp



−
N∑

k=1

(

xk − µkj
2σ1j

)2




(12)

The jth fuzzy rule in an MIMO IT2-RBFNN is written as

R̃j : IF x1 is F j
1 and . . . IF xk is F j

s and . . . IF xN is F j
N THEN y is wjk; j = 1, . . . ,M (13)

For an IT2-RBFNN of Mamdani type (also known Zadeh type), the weight vector (consequent) ws is150

a vector of single crisp values, while for a TSK model, each term wjs = cs0+c
s
1x1+c

s
2x2+ . . .+c

s
NxN .151

Based on the functional equivalence between the RBFNN and IT2 FLSs [39, 42], in this paper, for152

each output ys, the MIMO IT2-RBFNN is a FLS having a center-of-sets type reduction, product153

inference rule and a singleton output space. The type-reduced set (yl, yr) is obtained by using a154

Karnik-Mendel algorithm [16].155
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Figure 5: Singleton fuzzification and interval secondary MF that is activated when xp = x′

l for the jth receptive
unit of the IT2-RBFNN (Taken from [29]).157

According to Fig. 4, if wjs is a crisp value and the inference engine for the IT2-RBFNN is either
of Mamdani or TSK type, the matrix representation of the sth output in the MIMO IT2-RBFNN
can be written as [16, 43]:

ys =
1

2
(Ys

l +Ys
r)w

T
s , s = 1, . . . , Ñ (14)

in which ysl = Ys
lw

T
s and ysr = Ys

rw
T
s and

Ys
l =

fTQT
s E

T
1sE1jQs + fTQT

s E
T
2sE2sQs

rTl Qsf+ ŝTlsQsf
(15)

In which ws = (w1s, . . . , wMs) is the set of original rule-ordered consequent weights, and Ys
l =158

(ψls,1, . . . , ψls,M ), and the terms E1s, E2s, rls and ŝls are defined as:159

E1s = (e1s|e2s| . . . |eLs|0| . . . |0)
T Ls ×M

E2s =
(
0| . . . |0|ξs1|ξ

s
2| . . . |ξ

s
M−Ls

)T
(M − Ls)× 1

rls ≡ (1, 1, . . . , 1
︸ ︷︷ ︸

L

, 0, . . . , . . . , 0)T M × 1

ŝls ≡ (0, . . . , . . . , 0

M−Ls
︷ ︸︸ ︷

1, 1, . . . , 1)T M × 1

in which Ls is the switching point that corresponds to the sth output, em ∈ RL
s (m = 1, . . . , Ls)

and ξm ∈ RM−Ls , m = 1, . . . ,M − Ls as the elementary vectors where all the elements are zero
except the mth one that is equal to 1.

Ys
r =

fTQT
s E

T
3sE3sQs + fTQT

s E
T
4sE4sQs

rTrsQsf+ ŝTlsQsf
(16)

9



where Ys
r = (ψrs,1, . . . , ψrj,M )

E3s = (e1s|e2s| . . . |eRs|0| . . . |0)
T Rs ×M

E4s = (0| . . . |0|ξ1s|ξ2s| . . . |ξM−Rs)
T (M −Rs)× 1

rrs ≡ (1, 1, . . . , 1
︸ ︷︷ ︸

Rs

, 0, . . . , . . . , 0)T M × 1

ŝrs ≡ (0, . . . , . . . , 0

M−Rs
︷ ︸︸ ︷

1, 1, . . . , 1)T M × 1

with em ∈ RRs (m = 1, . . . , Rs) and ξm ∈ RM−Rs , s = 1, . . . ,M − Rs as the elementary vectors
where all the elements are zero except the mth one that is equal to 1 [44]. f = (f1, . . . , fM )T ,

f =
(
f1, . . . , fM ,

)T
. By using Karnik-Mendel algorithms [16], the reordered consequent weight w̃s

that results from the permutation process to finding the switching points L and R is obtained as
follows [44]:

w̃s = Qsw
T
s , Qs ∈ RM×M (17)

in which Qs is the corresponding permutation matrix [44]. Hence, the pth MIMO IT2-RBFNN

output is the vector of Ñ outputs Yp =
[
y1, . . . , yÑ

]T
. As pointed out in , in order to consider a

of system IT2, only one out of its components must be of IT2. Within this context, the Thereby,
in order to find the parameters of the MIMO IT2-RBFNN, ELM is systematically called in two
different steps in order to update the consequent weights in the IT2-RBFNN output layer [29, 37].
At first step [37], the optimal initial values for the consequents are obtained by approximating the
reduced set for the sth output [ysl , y

s
r ] as:

ysl,1 =

∑M
j=1 f jwjs
∑M

j=1 f j
=

M∑

j=1

f ′jwjs; f
′
j =

f j
∑M

j=1 f j
(18)

yjr,1 =

∑M
j=1 f jwjs
∑M

j=1 f j
=

M∑

j=1

f ′jwjs; f
′
j =

f j
∑M

j=1 f j
(19)

where the weight vectorws = [w1s, . . . , wMs]
T and the weight matrix is defined asW = [w1, . . . ,wÑ ].

By using Eq. (15) and (16), the following linear system can be written for a number of P patterns
[45]:

T = ΦA(x)W, W ∈ RM×Ñ (20)

in which, T = [t1, . . . , tP ]
T , is the desired output vector, p = 1, . . . .P and each tp = [t1j , . . . , tMp]

T .
For an IT2-RBFNN with a TSK (Mamdani) fuzzy rule structure, matrix ΦA can be written as.

ΦA(x) =








Φ1

Φ2
...

ΦP








∈ RP×(M×N) (21)

From Eq. (18) and (19) it follows for a TSK implication:

ΦpW1 =
1

2

M∑

j=1

(f ′j + f ′j)

[
N∑

k=1

cj1k xk, . . . ,

N∑

k=1

cjÑk xk

]

; s = 1, . . . , Ñ (22)
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For an IT2-RBFNN of Mamdani type, the second addition term in Eq. (25) is a single crisp value
wjs. Therefore, the solution to the linear system described in Eq. (20) is calculated as follows:

W1 = ΦA(x)†T (23)

whereW1 is the optimal initial value for the consequent matrixW and ΦA(x)† is the Moore-Penrose
generalised inverse of ΦA(x). Secondly, the final optimisation of W consists of implementing Ñ
times the Karnik-Mendel algorithm. That is, each column vector in the matrix W = [w1, . . . ,wÑ ]T

is used to form a linear system given by

ts = Φs
B(x)ws,ws ∈ RM (24)

Therefore, From Eq. (15) and (16) the terms Ys
l and Ys

r are used to calculate each weight vector
ws where each Φs

B
(x) becomes

Φs
B(x) =








Φ̃1

Φ̃2
...

Φ̃P








∈ RP×(M×N) (25)

Such that

Φ̃pws =
M∑

i=1

hspj

(
N∑

k=1

cjsk xkp

)

(26)

In which, hspj =
1
2 (ψls,j + ψrs,j). In other words, for classification purposes, the matrix representa-

tion of an IT2-RBFNN that is based on ELM can be written as:

Φ1
BV1 + . . .+Φs

BVs + . . .+ΦÑ
BVÑ = T (27)

Φs
BVs =








hs11 . . . hs1M
hs21 . . . hs2M
... . . .

...
hsP1 . . . hsPM















0 . . . w1s . . . 0
0 . . . w2s . . . 0
...

...
...

...
0 . . . wMs . . . 0








where Φs
B
∈ RP×M , Vs ∈ RM×Ñ , where the target matrix T is defined as follows:

T =








t11 . . . t1Ñ
t21 . . . t2Ñ
... . . .

...
tP1 . . . tpÑ








As described in [41], the IT2-RBFNN for classification problems can be viewed as an ensemble of160

weighted networks that defines the associated uncertainty of each class as a measure for ambiguity161

as a variation of the output over unlabeled data sharing the same IT2 firing strength.162
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Figure 6: Interval Type-2 Extreme Learning Machine using a NieTan algorithm for classification problems [46].164

3.5. Simplified IT2-ELM using the Nie-Tan Method165

To reduce the associated computational load that implies the iterative nature of Karnik-Mendel
type-reduction methods, a number of close-form algorithms have been suggested [46]. As described
in [41], the Nie-Tan is a direct defuzzification process that employs the vertical representation of
the Footprint Of Uncertainty (FOU). As illustrated in Fig. 6, an Interval Type-2 Fuzzy Extreme
Learning (IT2-FELM) using a Nie-Tan (NT) direct-defuzzification layer does not require a sorting
process. The application of a Nie-Tan layer represents a zero Taylor series approximation of Karnik-
Mendel+defuzzification method [41]. Moreover, a Nie-Tan operator is equivalent to an exhaustive
and accurate type-reduction for both discrete and continous IT2 Fuzzy Sets (FSs) [15]. Therefore,
the output of a KIT2-FELM with a NT layer and with a variable width [σ1j , σ2j ] and fixed center
can be formulated as follows:

T = HNTW (28)

where HNT is the matrix for IT2 firing strengths, and β is the weight vector in the output layer.
Thus, HNT is defined as:

HNT (µ1, . . . , µM , σ11, . . . , σ1M , σ21, . . . , σ2M ,x1, . . . ,xP )

=






ϕ11(µ1, σ11, σ21,x1) · · · ϕ1M (µM , σ1M , σ2M ,x1)
...

...
...

ϕP1(µ1, σ11, σ21,xP ) · · · ϕ1M (µM , σ1M , σ2M ,xMP )






P×M

in which

ϕ(µ, σ1j , σ2j ,xp) =
f j + f j

∑M
j=1 f j +

∑M
j=1 f j

(29)

where µj = (µ1j , . . . , µNj) and ws and the target T are defined as follows:

β =






wT
1
...

wT
M






M×Ñ

and T =






tT1
...
tTP






P×Ñ

(30)

Therefore, the learning parameter for an IT2-ELM using a Nie-Tan algorithm follows a much166

simpler methodology.167
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Figure 7: Neural architecture of the ML-IT2FELM, (a) Input data format using 3 wearable sensors, b) IT2 Fuzzy
Autoencoder (FAE) based on the NT algorithm, c) L FAEs using the NT algorithm and d) IT2-FELM as using the
KM method.169

4. Multilayer Interval Type-2 Fuzzy Extreme Learning Machine (ML-IT2-FELM)170

The proposed ML-IT2FELM is a multilayer feedforward neural structure that is based on the171

original ELM algorithm and the theory of Interval Type-2 Fuzzy Sets (IT2 FSs). As illustrated172

in Fig. 7, the general architecture of the ML-IT2FELM consists of a number of L hidden layers,173

where the first L− 1 ones are used to stack a number of Fuzzy Autoencoders (FAEs), followed by a174

IT2-ELM using a KM type-reduction method. Similar to the hierarchical learning scheme presented175

in [26], the training of the proposed ML-IT2FELM is a forward methodology that is separated into176

two phases, in the former phase, a number of L − 1 FAEs are applied to extract a high feature177

data representation, while in the latter, this representation is classified using an IT2-ELM with178

a KM algorithm. On the one hand, to reduce the computational burden that results from the179

implementation of the iterative nature of KM algorithms, each FAE in the ML-IT2-FELM is an180

MIMO IT2-ELM that employs a NT algorithm as output layer. On the other hand, to provide a181

high generalisation performance, an IT2-ELM using a KM is used as a classifier. In this paper, two182

different learning approaches for the ML-IT2FELM are suggested, i.e. a) a ML architecture based183

on the hierarchical learning scheme of Stacked Autoencoders (SAE) proposed in [26, 27] in which184
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the number of hidden untis at each FAE is tuned manually and that we call hierarchical it ML-185

IT2-FELM for short, and b) an IT2 ML structure based on Kernel extreme learning (kernel-basel186

ML-IT2-FELM for short) [17].187

4.1. Hierarchical ML-IT2-FELM188

This methodology involves two hierarchical phases, i.e. first, an initial process for high-level
feature extraction is performed by stacking ′L′ FAEs. At each ′ith′ hidden layer, an independent
IT2-FELM with a NT output layer is implemented. Unlike the ML-ELM suggested in [26] and [27],
at layer ’zero’ the input raw data does not need to be transformed into an ELM random feature
space. Hence, in the first phase, representation learning of the input raw data is initially performed
by constructing the following system:

H
(i)
NT Γ̃

(i) = X(i), i = 1, . . . , L− 1 (31)

in which, H
(i)
NT = [h(x1), . . . , h(xP )] and Γ(i) is the ith hidden matrix of IT2 firing strengths and the

ith transformation matrix respectively, where h(xp) = [ϕp1(xp), . . . , ϕpM (xp)]. H
(i)
NT is built using

Eq. (19) which results from applying a NT algorithm in the output layer with respect to the input
vector X(i). [f j(~xp), f j(~xp)] is the jth interval firing strength computed using Eq. (12). Hence, the

transformation matrix Γ̃(i) is obtained from Eq. (32) [17]:

Γ̃(i) = (H
(i)
NT )

T

(
I

C
+H

(i)
NT (H

(i)
NT )

T

)−1

X(i) (32)

in which C is the user-specified parameter for regularisation. Thus, X(i+1) = g(X(i)(Γ(i))T ). In189

a similar way to [26], g(·) can be any activation function. However, if the dimension of layer (i)190

and layer (i + 1) is the same, it is recommended to chose a linear piecewise function [17]. In the191

second phase, the final hidden layer L is an IT2-FELM whose input is X(i+1). As described in the192

previous section, in order to find the parameters of the IT2-FELM, ELM is systematically called193

in two different steps in order to update the consequent weights in the IT2-FELM output layer194

[29, 37].195

4.2. Kernel-Based ML-IT2-FELM196

The second learning approach for the ML-IT2-FELM is based on Kernel ELM [17] (called KML-
IT2-FELM for short). Similar to the KML-ELM, the KML-IT2-FELM eliminates the manual tuning
on the selection of the number of hidden nodes at each kernel-based FAE which is defined as

Ω
(i)
NT Γ̃

(i) = X(i) (33)

in which, K(xk,xl) = [f j(~xp), f j(~xp)], and the ith matrix transformation Γ̃(i) is calculated as:

Γ̃(i) =

(
I

C
+Ω

(i)
NT

)−1

X(i) (34)

In a like manner to the learning method developed for the ML-IT2-FELM, if the dimension of layer197

(i) and layer (i+1) is the same, it is recommended to chose a linear piecewise function [17]. Thus, the198

(i+1)th transformation is used as the input of an IT2-FELM where the matrices ΦA and Φs
B
in Eq.199

(23) and (25) are replaced by the corresponding kernel matrices ΩA and Ωs
B

respectively. In other200

words, the number of hidden units is equal to the number of inputs. Thereby, a KML-IT2-FELM201

can be viewed as a ML FLS of IT2 if [39, 41]:202
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1. The input layer of each kernel-based FAE performs singleton fuzzification and the MFs within203

each rule are chosen as Radial Basis Functions of Interval Gaussian type [40, 42].204

2. The number of kernels (K(xj ,xl), j, l = 1, . . . , N) is equal to the number of IF-THEN fuzzy205

rules. The output of each kernel is an interval, i.e. k(xj ,xl) = [f j(~xp), f j(~xp)]206

4. The T-norm operator used to compute each rule’s firing strength in the hidden layer is mul-207

tiplication (meet).208

5. A type-reduction algorithm such as the KM or a direct defuzzification method is employed to209

find the FLS output.210

Thus, any kind of FLS enhancement might be directly applicable to each hidden layer of the ML-211

IT2-FELM models because the structure of its fuzzy rule base in going from T1 Fuzzy Sets (FSs)212

to higher order FSs does not change; it is the way the associated antecedent and consequent parts213

are modelled [43, 47].214

5. Experiments and Evaluation215

In this section, the model evaluation of the proposed ML-IT2-FELM structures is conducted216

on two different experiments, i.e. for the recognition of 1) walking activities and 2) gait events.217

The former involves the recognition of three walking activities: a) level-ground walking (LGW),218

b) ramp ascent (RA) and c) ramp descent (RD), while the latter consists of the recognition of219

gait events which are divided into eight periods: (1) initial contact, (2) loading response, (3) mid220

stance, (4) terminal stance, (5) pre-swing, (6) initial swing, (7) mid swing and (8) terminal swing.221

Experiments are carried out using MATLAB 2014b running on a 3.6-GHz i7 CPU with 16-GB RAM.222

Model performance of the ML-IT2-FELM and KML-IT2-FELM and their associated computational223

burden are compared to the performance of other existing machine learning approaches such as the224

ML-ELM [27], a multilayer neural network (ML-RBFNN) based on the RBFNN architecture [41],225

an ensemble of classifiers [48], a DBN [49], Support Vector Machines (SVMs) [50], and an adaptive226

Bayesian inference system (BasIS) [10]. For cross validation purposes, the IMU data set is divided227

into two subsets, i.e. 85% for training (from 8 healthy participants) and 15% (from 4 healthy228

participants) for testing.229

To more completely understand the non-obvious contributions of each suggested ML method,230

each experiment consists of ten individual cross validations runs, where the samples for training231

and testing are randomly selected. For determining the sources of variation in measures of model232

accuracy, a one-way ANOVA method was implemented. In this work, model assumption for ANOVA233

method is related to the evidence for the variance in model testing accuracy being influenced by234

each ML learning methodology.235

In this paper, signals about angular velocity (Deg/s) are collected from three IMU sensors236

and used to train the ML-IT2-FELM and the KML-IT2-FELM models. For both ML models, an237

Interval Type-2 Gaussian function with a fixed mean mj and variable width [σ1, σ2] is selected.238

In other words, an IT2 MF is used as the main fuzzifier for the matrix of firing strengths of a239

ML-IT2-FELM, and for each ith matrix Ω(i) composed of a set of Gaussian kernel functions in240

the KML-IT2-FELM models. Finally, the performance of the proposed models is evaluated in the241

presence of noisy signals, for each experiment, a Gaussian noise with a signal-to-noise ratio of 50dB242

was randomly added to each sensor signal.243

15



(a)  ML-IT2-FELM: Average Training Accuracy 100.00%

100.0%

0.0%

0.0%100.0%

0.0%

0.0%

100.0%

0.0%

0.0%

Estimated Walking Activity
Level Ground Walking Ramp Ascent Ramp Descent

A
c
tu

a
l 
W

a
lk

in
g
 A

c
ti
v
it
y

L
e
v
e
l 
G

ro
u
n
d
 W

a
lk

in
g

R
a
m

p
 A

s
c
e
n
t

R
a
m

p
 D

e
s
c
e
n
t

R
e
c
o
g
n
it
io

n
 A

c
c
u
ra

c
y
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

99.95%

0.05%

0.0%

0.05%

99.95%

0.0%

0.0%

0.0%

100.0%

(b) ML-IT2-FELM: Average Testing Accuracy 99.97%

Estimated Walking Activity
LGW Ramp Ascent Ramp Descent

A
c
tu

a
l 
W

a
lk

in
g
 A

c
ti
v
it
y

L
G

W
R

a
m

p
 A

s
c
e
n
t

R
a
m

p
 D

e
s
c
e
n
t

R
e
c
o
g
n
it
io

n
 A

c
c
u
ra

c
y
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

244

100.0%

0.0%

0.0%

0.0%

100.0%

0.0%

0.0%

0.0%

100.0%

(c) KML-IT2-FELM: Average Training Accuracy 100%

Estimated Walking Activity
LGW Ramp Ascent Ramp Descent

A
c
tu

a
l 
W

a
lk

in
g
 A

c
ti
v
it
y L

G
W

R
a

m
p

 A
s
c
e

n
t

R
a

m
p

 D
e

s
c
e

n
t

R
e
c
o
g
n
it
io

n
 A

c
ti
v
it
y
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

100.0%

0.0%

0.0%

0.04%

99.96%

0.0%

0.0%

0.0%

100.0%

(d) KML-IT2-FELM: Average Testing Accuracy 99.98%

Estimated Walking Activity
LGW Ramp Ascent Ramp Descent

A
c
tu

a
l 
W

a
lk

in
g
 A

c
ti
v
it
y

L
G

W
R

a
m

p
 A

s
c
e
n
t

R
a
m

p
 D

e
s
c
e
n
t

R
e
c
o
g
n
it
io

n
 A

c
c
u
ra

c
y
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

245

Figure 8: Cross-validation results based on the Confusion matrix and obtained by the ML-IT2-FELM (a,b) and
KML-IT2-FELM (c,d) to the recognition of walking activities, i.e. a) Level-Ground Walking (LGW), Ramp Ascent
(RA) and Ramp Descent (RD)246

5.1. Recognition of Walking Activities247

This section presents the model accuracy provided by the ML-IT2-FELM and KML-IT2-FELM248

to the recognition of walking activities, i.e. 1) Level-Ground Walking (LGW), 2) Ramp Ascent249

(RA) and 3) Ramp Descent (RD). The experimental setup of ML-IT2-FELM consists of 3 hidden250

layers, followed by an IT2-FELM classifier, i.e. L = 4, set as 4×Mi, [100−500−500−300−3] with251

a regularisation parameter Ci(i = 1, . . . , 3) defined as Ci = [0.1, 4.1×107, 5×108, 55.3] while for the252

KML-IT2-FELM is used as Ci = [0.1, 4.1× 102, 102, 100]. Similar to [10], the noise was added to a253

sensor randomly selected for each decision process performed during the walking activity. Opposite254

to ML-IT2-FELM, KML-IT2-FELM does not need to manually estimate the number of hidden nodes255

at each ith hidden layer. In Fig. 8, a confusion matrix is used to show the average cross-validation256

results of ten experiments that correspond the training and testing provided by the ML-IT2-FELM257

(Fig. 8(a,b)) and the KML-IT2-FELM (Fig. 8(c,d)), where white and black colours represent 0%258

and 100% recognition accuracy correspondingly. As can observed from Fig. 8(b) and (d), for the259

recognition of walking activities, both the ML-IT2-FELM and KML-IT2-FELM achieved a testing260

accuracy of 99.97% and 99.98% respectively.261
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Figure 9: Box-and-whisker diagrams of the average of ten random testing experiments for the recognition of
walking activities using six different ML methodologies.263

Table 1: One-way ANOVA Method for the recognition of gait events.264

Source SS df MS F-value P-value

Model Accuracy 0.00943 5 0.01989 2.67 0.0316

Within 0.40246 54 0.00745

Total 0.50189 59

265

266

The confusion matrix in Fig. 8(c) shows that Level-Ground Walking and Ramp Ascent activities267

are slightly affected by noisy measurements.268

In Fig. 9, a box-and-whisker diagram is presented in order to illustrate the performance distri-269

bution of the ML-IT2-FELM and KML-IT2-FELM with respect to other ML neural structures such270

as: ML-ELM [27], Convolutional Neural Networks (CNN) [4], ML-IT2-FELM-NT and ML-KELM271

[17]. A ML-IT2-FELM-NT is a ML-IT2-FELM that utilises a Nie-Tan method as a defuzzifier at272

each hidden layer, including the classification stage. It is apparent in Fig. 9, the distribution of273

testing performance among models ranges between the values 99.63% and 100%. It can be also274

observed from Fig. 9, ML-ELM, KML-IT2-FELM and CNN produce the highest accuracy, where275

their medians of the distributions are within the interval [99.95%, 100%]. To confirm the model276

variability presented in Fig. 9, one-way ANOVA results are described in Table 1. As can be ob-277

served from Table 1, model assumption for one-way ANOVA is related to the variance affected by278

each model accuracy (%). A significance value of α = 0.05 was employed. From Table 1, it can be279

concluded that null hypothesis can be rejected as p− value < α. This means, not all of population280

means are equal as illustrated in Fig. 9. To illustrate the level of transparency that can be achieved281

by the ML-IT2-FELM, the universe of discussion for the MFs that correspond to the first FAE282

(hidden layer 1) and the IT2-FELM for classification is presented in Fig. 10(a) and (b). To build283

each universe, the normalised mean value of µkj and [σ1j , σ
2
j ] is employed. It can be concluded from284

Fig. 10, a low level of overlapping is achieved by the first FAE of the ML-IT2-FELM for the feature285

representation of each sensor signal, while for the IT2-FELM such overlapping is much higher.286
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(a) Universe of Discussion of the Normalised Angular Velocity                             
              extracted from the first FAE (i=1)                                          
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                      (b) Universe of Discussion of the Normalised Angular Velocity                   
                                          extracted from the IT2-FELM                                 
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Figure 10: Final Membership Functions (MFs) for the fuzzy sets (FSs): Low Ground Walking for axes X, Y and Z
(LGW-X, LGW-Y, LGW-Z), Ramp Ascent for axes X, Y and Z (RA-X, RA-Y, RA-Z) and Ramp Descent for axes
X, Y and Z (RD-X, RD-Y, RD-Z) that correspond to the first hidden layer (FAE) of the hierarchical ML-IT2-FELM
and the IT2-FELM classifier.289

5.2. Recognition of Gait Events290

For the classification of gait events, in this experiment the IMU data set was rearranged resulting291

in an data set of 8192 × 25 signal recordings. As reported in [51], a set of 25 contiguous signals292

is suggested to describe each gait event (See Fig. 2(c)). To investigate the optimum number of293

signal readings (samples or measurements) that is required to recognise a gait event, six experiments294

using a different average of ns contiguous samples is implemented. Thus, the associated time to the295

processing of the optimum number of signals for the recognition of gait events is called decision time.296

For example, if ns = 3, a number of three new inputs is computed, where inputs x̂1 =
∑3

k=1 xk/ns,297

x̂2 =
∑7

k=4 xk/ns and x̂4 = x25. In Fig. 11, the average testing accuracy of ten random experiments298

obtained by the ML-IT2-FELM and KML-IT2-FELM using six different values for ns is illustrated.299

As can be noted from Fig. 11, the highest average testing performance for the ML-IT2-FELM300

is achieved by using a value for ns = 25, while for the KML-IT2-FELM is ns = 1. According to our301

simulations, the highest trade-off between testing accuracy and decision time is achieved by using302

ns = 5 (105 ms) for the ML-IT2-FELM and ns = 1 (94 ms) for the KML-IT2-FELM. From Fig.303

11, it is also clear that for both models, the lowest accuracy is obtained when ns = 3.304
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Figure 11: Average Testing accuracy for the recognition of Gait Events of six experiments using a different average
value for the (a) ML-IT2-FELM and (b) KML-IT2-FELM.306

To illustrate the statistical variability of the suggested models, in Fig. 12, a box-and-whisker307

diagram that corresponds to the testing accuracy of the ML-IT2-FELM and KML-IT2-FELM with308

an average number ns of 5 and 1 contiguous signals is presented respectively.309

According to Fig. 12(a), a clear model variability is produced when using a value of ns < 5310

for the ML-IT2-FELM. Opposite to this, from Fig. 12(b), model accuracy for the recognition of311

gait events using a KML-IT2-FELM is significantly affected when ns > 15 contiguous signal values.312

To identify model contributions of the ML-IT2-FELM and KML-IT2-FELM in relation to other313

ML techniques such as ML-ELM, CNN, MML-KELM and an ML-IT2-FELM with a Nie-Tan type-314

reduction process at each hidden layer, in Fig. 13 a box-and-whisker plot is presented. To evaluate315

the model distribution provided in Fig. 13, a one-way ANOVA procedure with a significance value316

α = 0.001 was implemented. From Fig.13, even a certain level of overlapping among the means of317

all ML techniques, a clear variance in model accuracy influenced by choice of ML learning technique318

is contained. Particularly those solutions produced by CNN, ML-IT2-FELM-NT and ML-KELM319

in relation to ML-ELM, ML-IT2-FELM and KML-IT2-FELM.320
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Figure 12: Box-and-whisker plots for the recognition of gait events using an (a) ML-IT2-FELM and (b)
KML-IT2-FELM with a value for ns = 1, 3, 5, 10, 15, 25.322
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Figure 13: Box-and-whisker plots for the recognition of gait events using six different ML neural structures.324

Table 2: One-way ANOVA results for the recognition of gait events.325

Source SS df MS F-value P-value

Model Accuracy 20.823 5 4.165 161.7 3.3229e-31

Within 1.390 54 0.025

Total 22.21 59

326

327

Moreover, it is also evident no outlier solutions were produced by any ML methodology either to328

recognise walking activities or gait events. For the recognition of individual gait events, the confusion329

matrices in Fig. 14 show the average training and testing accuracy provided by the ML-IT2-FELM330

and KML-IT2-FELM using 5 contiguous samples respectively.331

In this experiment, the network structure of the ML-IT2-FELM involves 3 hidden layers, [500−332

200 − 200 − 300 − 8]. Opposite to ML-IT2-FELM, finding the appropriate number of M fuzzy333

rules for the KML-IT2-FELM is not necessary. The regularisation parameters Ci used by the334

ML-IT2-FELM and KML-IT2-FELM is defined as Ci = [0.15, 9.1 × 102, 4 × 102, 820] and Ci =335

[1.1, 3.4× 102, 1× 104, 190]. To perform each experiment, the original IMU data set was normalised336

to the interval [0 − 1]. The confusion matrix of the average training and testing of ten random337

experiments that correspond to the ML-IT2-FELM and KML-IT2-FELM is presented in Fig. 14,338

where black and white colours represent low and high accuracy respectively.339

Similar to the recognition of walking activities, the first four gait events are slightly affected340

by noisy measurements not only during the training stage but also to recognise unseen signals. As341

illustrated in Fig. 14, the proposed ML strategies are more accurate for the prediction of gait events342

that correspond to the swing phase, in particular to mid and terminal swings. These experimental343

results show not only the ability and robustness to recognise gait events in the presence of noise,344

but also to determine in which gait phase is the human during the walking activity, i.e. stance or345

swing phase.346
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(a) ML-IT2-FELM: Average Training Accuracy 99.77%
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(c) KML-IT2-FELM: Average Training Accuracy: 99.55%
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(d) KML-IT2-FELM: Average Testing Accuracy 99.68%
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Figure 14: Training and testing confusion matrix obtained by the ML-IT2-FELM and KML-IT2-FELM to the
recognition of stance and swing phases composed of eight gait events: (1) initial contact, (2) loading response, (3)
mid stance, (4) terminal stance, (5) pre-swing, (6) initial swing, (7) mid swing and (8) terminal swing.349

5.3. Performance analysis with respect to state-of-art shallow and multilayer strategies350

This section provides a comparison analysis of the average testing performance obtained by351

the proposed ML-IT2-FELM, KML-IT2-FELM, a ML-IT2-FELM using an IT2-FELM with a NT352

direct defuzzification as the final layer (ML-IT2-FELM-NT for short) and other existing shallow353

and multilayer strategies to the recognition of walking activities and gait events. As detailed in354

previous sections, the robustness of all the methodologies presented in Table 1 are tested adding355

Gaussian noise with signal-to-noise ratio of 50 dB. Particularly, the noise was randomly added356

to all sensors for each decision process along the walking cycle. As can be observed from Table357

1, the recognition of gait events is affected by the added noise. In table 1, column ’accuracy’358

indicates the average testing performance that results from ten random experiments while column359

’decision time’ is the average number of milliseconds that is required to recognise either a walking360

activity or a gait event. In other words, decision time is the optimum number of contiguous samples361

(signal measurements) necessary to recognise a human walking activity. Based on our simulation362
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results, the optimum number of contiguous samples for the ML-IT2-FELM and KML-IT2-FELM363

that provides the highest trade-off between model accuracy and decision time for the recognition of364

walking activities and gait events is 5 and 1 respectively.365

According to Table 1, for the recognition of walking activities, the proposed ML structures as366

well as the ML-ELM and the ML-IT2-FELM-NT provided the highest trade-off between accuracy367

and low computational load on the one hand. On the other hand, for the recognition of gait events,368

ML-ELM and the proposed ML-IT2-FELM and KML-IT2-FELM outperformed not only other ML369

strategies, but also other shallow structures such as ELM, ANN [52], SVM [50] and an ensemble of370

classifiers [48]. Thus, the implementation of ML ELM theory improves not only the performance of371

existing IT2 fuzzy methodologies, but also the original ELM. As the proposed ML methodologies do372

not use input weights to compute the firing strengths at each FAE, an input projection mechanism373

is not necessary. This accounts to reduce the final decision time while providing a high model374

performance in terms of generalisation. In this sense, KML-IT2-FELM shares the ability of Kernel-375

based ELM to avoid manual tuning of the number of hidden units (fuzzy rules), all transformation376

matrices are unified into two matrices where each transformation is also learned by exact inverse,377

and as presented in Table 1, decision time is particularly reduced.378

Interestingly, using an IT2-FELM as a classification layer, the robustness of the proposed ML379

strategies is higher than that provided by other methodologies such as the ML-IT2-FELM-NT,380

ML-KELM, ELM and RBFNN. This confirms the ability of IT2 Fuzzy Logic Systems to better deal381

with uncertainty, in particular to the classification of walking activities in the presence of noisy382

signals.383

6. Conclusions384

In this research work, a novel Multilayer Interval Type-2 Fuzzy Extreme Learning Machine385

(ML-IT2-FELM) for the recognition of walking activities and gait events was presented. The ML-386

IT2-FELM is a neural structure that consists of two main components. First, a number of stacked387

Interval Type-2 Fuzzy Autoencoders (FAEs) for unsupervised learning and feature extraction was388

implemented. The second component is an IT2-FELM that was employed for the classification of389

the extracted features. To compare the effectiveness of the proposed ML-IT2-FELM with respect390

to other ML fuzzy approaches, an ML-IT2-FELM method, inspired by kernel learning and called391

KML-IT2-FELM was also implemented. To evaluate the model performance of the ML-IT2-FELM392

and KML-IT2-FELM, two different experiments were used. In the first experiment, both models393

were applied to the recognition of three different walking activities, i.e. 1) Level-Ground Walking394

(LGW), 2) Ramp Ascent (RA) and 3) Ramp Descent (RD), while the second experiment is about395

the recognition of eight different gait events.396

The results for the recognition of walking activities and gait events showed that an average397

accuracy of 99.97% and 99.84%, with decision times of 290.4ms and 105ms, were achieved by the398

ML-IT2-FELM, while the KML-IT2-FELM provided an average accuracy of 99.98% and 99.93%399

with a decision times of 191.9ms and 94ms. These results allow us to conclude the following:400
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Table 3: Activity and gait recognition performance between the ML-IT2-FELM, KML-IT2-FELM and with respect
to other shallow and multilayer methodologies.401

Model Activity # Sensors Recognition Activity Recognition Gait Event

Accuracy
(%)

Decision
time(ms)

Accuracy
(%)

Decision
time(ms)

ELM LGW, RA, RD 3 99.66 54.1 99.19 32.3

SVM [50]
LGW, RA, RD,
stair

9 99.00 150.4 97.00 -

DBN [49]
LGW, RA, RD,
stairs

13 98.00 300.9 95.25 -

ANN [52] LGW 3 98.78 - - -

Adaptive BasIS [10] LGW, RA, RD 3 99.87 240.0 99.20 130.0

CNN [4] LGW, RA, RD 3 99.88 380.3 98.32 279.3

Ensemble of Classifiers
[48]

LGW, RA, RD,
stairs

9 97.60 - - -

ELM-RBFNN [29] LGW, RA, RD 3 99.83 70.1 99.11 34.2

RBFNN [29] LGW, RA, RD 3 98.83 210.3 97.00 40.6

IT2-RBFNN [39] LGW, RA, RD 3 99.59 240.1 98.71 72.8

ML-ELM [27] LGW, RA, RD 3 99.97 124.3 99.99 83.9

ML-IT2-FELM LGW, RA, RD 3 99.97 290.4 99.84 105.0

ML-IT2-FELM-NT LGW, RA, RD 3 99.96 156.5 99.59 67.2

IT2-ELM-NT LGW, RA, RD 3 99.77 70.2 98.92 38.2

IT2-ELM-KM [29] LGW, RA, RD 3 99.88 52.9 99.30 45.0

KML-IT2-FELM LGW, RA, RD 3 99.98 191.9 99.93 94.0

ML-KELM [17] LGW, RA, RD 3 99.88 81.7 99.10 65.0

402

403

• The ML-IT2-FELM and the KML-IT2-FELM do not need an input projection mechanism as404

each FAE is based on the IT2-RBFNN.405

• Both models achieve a more robust and better model accuracy compared to other state-of-art406

approaches.407

• The KML-IT2-FELM avoids manual tuning of the number of hidden nodes or fuzzy rules and408

each transformation is also learned by exact inverse.409

• Both ML models follow a hierarchical learning scheme where parameters of each hidden layer410

do not need to be tuned.411
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