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a b s t r a c t 

We address the problem of randomized learning and generalization of fair and private classifiers. From 

one side we want to ensure that sensitive information does not unfairly influence the outcome of a clas- 

sifier. From the other side we have to learn from data while preserving the privacy of individual obser- 

vations. We initially face this issue in the PAC-Bayes framework presenting an approach which trades 

off and bounds the risk and the fairness of the randomized (Gibbs) classifier. Our new approach is able 

to handle several different state-of-the-art fairness measures. For this purpose, we further develop the 

idea that the PAC-Bayes prior can be defined based on the data-generating distribution without actually 

knowing it. In particular, we define a prior and a posterior which give more weight to functions with 

good generalization and fairness properties. Furthermore, we will show that this randomized classifier 

possesses interesting stability properties using the algorithmic distribution stability theory. Finally, we 

will show that the new posterior can be exploited to define a randomized accurate and fair algorithm. 

Differential privacy theory will allow us to derive that the latter algorithm has interesting privacy pre- 

serving properties ensuring our threefold goal of good generalization, fairness, and privacy of the final 

model. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Randomized models and learning algorithms are nowadays be-

oming a trending research interest because of their effectiveness

n many real world applications [1,2] . From the Deep and Shallow

eural Networks [3,4] to the Extreme Learning Machine [5] and

he Ensemble Methods [6] , randomness plays a crucial role in im-

roving the effectiveness of a learning paradigm. The idea of using

andomness to enrich the set of models [7] , to improve the op-

imization techniques [8] , or to improve the generalization capa-

ilities of a model [9] has been a breakthrough which allowed to

evelop techniques such as Dropout [10] or Random Forest [11,12] .

At the same time, it is becoming increasingly important to

onstruct models able to exhibit privacy and fairness properties,

amely to ensure the ability to learn from data while preserving

he privacy of individual observations and to ensure that sensitive
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nformation (e.g. knowledge about gender of an individual) does

ot unfairly influence the outcome of a learning algorithm. 

The problem of learning from data while preserving the privacy

f individual observations has a long history and spans over mul-

iple disciplines [13–15] . One way to preserve privacy is to corrupt

he learning procedure with noise without destroying the infor-

ation that we want to extract. Differential Privacy (DP) is one

f the most powerful tools in this context [15,16] . DP addresses

he problem of keeping private the information about an individ-

al observation while learning useful information about a popu-

ation. In particular, a procedure is DP if and only if its output

s almost independent from any of the individual observations. In

ther words, the probability of a certain output should not change

ignificantly if one individual is present or not, where the proba-

ilities are taken over the noise introduced by the procedure. In

he last years, DP has been deeply studied from a theoretical point

f view [17–28] and exploited to develop new learning strategies

or solving real world problems [29–36] . Another way to preserve

rivacy is to federate the learning procedure in order to keep the

ata decentralized and not distribute sensitive information [37–41] .

lthough this approach sounds plausible, it is not supported by
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statistical or privacy guarantees if no additional privacy preserving

layers are added [42,43] . 

Another problem which lately received a lot of attention is al-

gorithmic fairness [44–58] . The central question is how to enhance

learning algorithms with fairness requirements, namely ensuring

that sensitive information (e.g. knowledge about the ethnic group

of an individual) does not ‘unfairly’ influence the outcome of a

learning algorithm. For example if the learning problem is to de-

cide whether a person should be offered a loan based on the pre-

vious credit card scores, we would like to build a model which

does not unfairly use additional sensitive information such as race

or sex. Several measures of fairness of a classifier have been stud-

ied in the literature [59,60] like the Demographic Parity (DPa) [61] ,

the Equal Odds (EOd) and the Equal Opportunity (EOp) [47] , the

Disparate Treatment, Impact, and Mistreatment [48] , among oth-

ers. Works on algorithmic fairness can be divided in three families.

Methods in the first family modify a pre-trained classifier in or-

der to increase its fairness properties while maintaining as much

as possible the classification performance [47,62–64] . Methods in

the second family enforce fairness directly during the training step

[45,60,65,66] . The third family of methods implements fairness by

modifying the data representation and then employs standard ma-

chine learning methods [45,49,52,67–70] . All methods in the pre-

vious families have in common the goal of creating a fair model

from scratch on the specific task at hand. This solution may work

well in specific cases, but in a large number of real world applica-

tions it is common to perform a fine tuning over pre-trained mod-

els [71] , keeping the internal representation fixed. Indeed, most

modern machine learning frameworks (especially the deep learn-

ing ones) offer a set of pre-trained models that are distributed in

so-called model zoos 1 . Unfortunately, fine tuning pre-trained mod-

els on novel previously unseen tasks could lead to unexpected un-

fairness behavior, even starting from an apparently fair model for

previous tasks (e.g. discriminatory transfer [72] , or negative legacy

[73] ), due to missing generalization guarantees concerning the fair-

ness property of the model. For this reason many recent methods

try to address the problem of learning a fair representation not just

a fair model [49,63,74–81] . 

In this paper, we address the problem of randomized learning

and generalization of fair and private classifiers. From one side we

want to ensure that sensitive information does not unfairly influ-

ence the outcome of a classifier. From the other side we want to

ensure to be able to learn from data while preserving the privacy

of individual observations. We first face this issue in the PAC-Bayes

(PB) framework and we present an approach which trades off and

bounds the risk and the fairness of the Randomized (Gibbs) Clas-

sifier (RC), together with the Bayes Classifier (BC) which is its de-

terministic counterpart, measured with respect to different state-

of-the-art fairness measures (e.g. EOp, EOd, and DPa). For this pur-

pose, we exploit further the idea that the PB prior can be defined

based on the data-generating distribution without actually needing

to know it. In this sense, we define a prior and a posterior with

the goal of giving more weight to functions with good generaliza-

tion and fairness properties. Furthermore, we will show that this

randomized classifier possesses interesting stability properties us-

ing the Algorithmic (Distribution) Stability (AS) theory. Finally, we

will show that the new posterior introduced for building an ac-

curate and fair RC can be exploited to define an accurate and fair

Randomized Learning Algorithm (RLA). The latter will also show

to possess interesting privacy preserving properties ensuring gen-

eralization, fairness, and privacy of the final model. DP theory will
allow us to derive such results. 

1 See for example the Caffe Model Zoo: github.com/BVLC/caffe/wiki/Model-Zoo. 
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To the best of our knowledge, our approach is the first one

hat is able to face the problem of learning from data under fair-

ess and privacy properties, backed up by three different theoreti-

al frameworks. The only paper which addresses a similar problem

s [82] – but with several differences with respect to ours. First,

agielski et al. [82] is able to deal with a single notion of fairness,

hile our approach is able to deal with a large family of them, and

lso with different kind of sensitive attributes. Secondly, the theo-

etical analysis of Jagielski et al. [82] is based on classical statistical

earning theory, characterized by loose constants and rates of con-

ergence. Our work, instead, is backed up by three different state-

f-the-art tools (PB, AS, and DP theories) and shows optimal con-

tants and rates of convergence. Thirdly, the post processing tech-

ique proposed in [82] – as also stated by the authors – is subop-

imal with respect to the in processing techniques (like the one we

ropose in this paper). Moreover, the method in [82] requires the

nowledge of a subroutine that can optimally solve classification

roblems absent from fairness constraint and even of the protected

ttribute at test time. Our method instead does not require any

f these constraints. Finally, Jagielski et al. [82] introduces privacy

ith a simple Laplacian mechanism of perturbation of the outputs

f the non-private counterparts of the algorithms (previously de-

eloped by Hardt et al. [47] , Agarwal et al. [65] ) while our method

s intrinsically fair and private by construction. 

In order to better understand our results, let us clarify the dif-

erence between deterministic and randomized models and learn-

ng algorithms in the context of classification. A Deterministic Clas-

ifier (DC) assigns always the same label given an input, while an

C may assigns different labels to the same input if we repeat the

abelling process. Analogously, a Deterministic Learning Algorithm

DLA) learns the same DC (or RC) if we keep the training set fixed,

hile an RLA may learn a different DC (or RC) even if we keep

xed the training set repeating the learning process. In order to

stimate the generalization performance of an RC the PB theory

s one of the sharpest analysis frameworks, since it can provide

ight bounds on the risk of the RC and BC [83] . The RC chooses

 classifier in the set of classifiers according to a posterior dis-

ribution each time a new sample has to be classified [84] while

he BC takes the decision based on the expected value of the RC

ver the posterior distribution [83] . In particular, in the PB theory

 prior distribution over the different classifiers must be defined

efore seeing the data, then, based on the available data, a pos-

erior distribution can be chosen, and the risk of the associate RC

nd BC is computed, based on the empirical risk and the diver-

ence between the prior and posterior distributions [85] . The PB

heory bounds the risk of the RC [85] , while the C-bound bounds

he error of the BC based on the properties of the RC [86] . The

rst result of this work is to derive a PB-based bound on the fair-

ess (measured with the EOd or EOp or the DPa) of a RC model.

hen we focus on the problem of choosing the right posterior and

rior distributions since the divergence between prior and poste-

ior distributions forms part of the bound. This choice is critical:

n some cases this choice proves to be too generic and not suited

or the particular problem [84] , other times some data are kept

part from the learning process and exploited to derive a generally

ood prior [87,88] . Consequently, in the first case the divergence

erm in the PB analysis can typically be large, while in the second

ase the bound tends to be loose since some data are wasted in

rder to design the prior. In order to address this issue in [89] a

ocalized PB analysis is proposed, which uses a Boltzmann prior

istribution defined in terms of the distribution that generated the

ata. Note that, since the prior depends on the distribution, the PB

nalysis is still valid because the prior is defined before observing

he data [84,89,90] . By tuning the prior to the distribution, Catoni

as able to remove the divergence term from the bound, hence

ignificantly reducing the complexity penalty. Note that other ap-
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Table 1 

Abbreviations and symbols. 

Abbreviation Description 

DLA Deterministic Learning Algorithms 

RLA Randomized Learning Algorithms 

DC Deterministic Classifier 

RC Randomized (Gibbs) Classifier 

BC Bayes Classifier 

PB PAC-Bayes 

AS Algorithmic (Distribution) Stability 

DP Differential Privacy 

EOp Equal Opportunity 

EOd Equal Odds 

DPa Demographic Parity 

KLD Kullback–Leibler Divergence 
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roaches for removing the divergence exist. One approach is to de-

ign a prior and a posterior such that they are aligned [83,91,92] .

he second one is to design a so called expectation-prior which

oes not require any separate set of data to build a prior which

ill be probably close to the posterior [88] . Every approach has its

wn strengths and weaknesses but the approach of Catoni seems

o be the most promising one [84,89,90] even if using Boltzmann

istributions in some contexts can be seen as a limitation [84] .

n fact, keeping the divergence term allowed many researchers

o design new model selection methods and learning algorithms

93–95] . Nevertheless, in this work we exploit the idea of Catoni

nd we define a Boltzmann prior and posterior which give more

eight to functions which exhibit good generalization and fairness

roperties and we show that it is possible to remove the diver-

ence term from the bound on the risk and the fairness of the

orresponding RC. Then we analyze the RC induced by the newly

efined fair and accurate posterior through the use of the AS the-

ry originally developed in [90,96–105] and then further refined in

90,98] to deal with the RC. AS allows to give an answer to a fun-

amental question in learning theory, namely what are the general

onditions for predictivity. AS answers this question in a very in-

uitive way: if the algorithm selects similar hypothesis, even if the

raining data are (slightly) modified, then we can be confident that

he learning algorithm is stable [97] . For RC the AS theory proves

hat, if the criteria used to define the posterior distribution based

n the available data do not change too much when the train-

ng data are (slightly) modified, then the associated RC will have

ood generalization performance [106] . In this work we show that

he newly posterior fair and accurate distribution inspired by the

orks of [84,89,90] has the AS property, which allows us to bound

he risk and the fairness of the RC in a new way. By exploiting

he C-bound it is also possible to bound the risk of the associated

C [83,86] . Finally, we will show how to use the newly introduced

air and accurate posterior in order to develop a RLA algorithm

hich exploits the same randomness introduced by this posterior

istribution. In particular, we will show that this RLA may possess

etter generalization, fairness, and privacy properties than the RC

hich exploits the fair and accurate newly introduced posterior,

ven if they are both based on the same data dependent posterior

istribution. For this purpose we will use the DP theory. DP ad-

resses the problem of keeping private the information about an

ndividual observation while learning useful information about a

opulation [15] . In particular, a procedure is DP if and only if its

utput is almost independent from any of the individual observa-

ions. DP allowed to reach a milestone result by connecting the

eld of privacy preserving data analysis and the generalization ca-

ability of a randomized learning algorithm. In particular DP al-

ows to prove that a RLA which shows DP properties also gener-

lizes [107–109] , namely we can effectively bound the risk of the

elected model. In this work, we will derive a DP-based bound on

oth the risk and the fairness of the model selected with the RLA

hich exploits the fair and accurate newly introduced posterior. 

The paper is organized as follows. Section 2 introduces the no-

ation while Appendix A reports the state-of-the-art results needed

or taking into account fairness and privacy issues for both RC

A .1) and/or RLA (A .2) in the framework of the PB (A.1.1) , AS (A.1.2) ,

nd DP (A.2) theories. Section 3 presents our proposal by first

efining a RC, in the PB theory framework, where the prior and

he posterior give more weight to functions which exhibit good

eneralization and fairness properties and then by showing that

his RC possesses interesting properties in the AS theory frame-

ork ( Section 3.1 ). Then, in Section 3.2 , we will show that the

roposed posterior can be exploited to define an accurate and fair

LA which is shown to possess interesting privacy preserving prop-

rties ensuring generalization, fairness, and privacy of the final

odel. Appendix B reports the proofs not reported in Section 3 . Fi-
ally, Section 4 concludes the paper. In order to improve the read-

bility of our work, Tables 1 and 2 report, respectively, the abbre-

iation and the symbols used in the paper. 

. Preliminaries 

Let us consider the binary classification problem [110] and the

otation needed for taking into account fairness [45,47] and pri-

acy issues [15,107,111,112] for both RLA and/or RC [113] in the

ramework of the PB [84,90,95] , AS [90,98] , and DP [107,112] theo-

ies [9] . Let d = { z 1 , . . . , z n } = { (x 1 , s 1 , y 1 ) , . . . , (x n , s n , y n ) } be a se-

uence of n samples drawn independently from an unknown prob-

bility distribution P Z over Z = X × S × Y, where Y = {−1 , +1 }
s the set of binary output labels, S = { 1 , . . . , k } represents group

embership, and X is the input space. We indicate with P X , P S ,
nd P Y , respectively the distributions over X , S, and Y . We indi-

ate with X , S , Y , and Z the random variable sampled respectively

rom X , S, Y, and Z according, respectively, to P X , P S , P Y , and

 Z . In this new perspective, d is a dataset inside the space of all

he possible datasets D = Z 

n , P D is the distribution of probability

enerated by P Z over D and D is a random variable sampled from

according to P D . 
For every g ∈ S and operator � ∈ {−, + , − ∨ + } , we define the

ubset of training points negatively or positively labeled which be-

ongs to the group g as d g, � = { (x, s, y ) : (x, s, y ) ∈ d, s = g, y = �1 }
here n g, � = | d g, �| , noting that d g, −∨ + = { (x, s, y ) : (x, s, y ) ∈ d, s =
} . 

We denote a series of auxiliary datasets with d \ i = d \ z i , with

 

i = d \ i ∪ ˙ z i and with 

˙ d = d i where i may assume any value in {1,

��, n } and ˙ z i is sampled from Z according to P Z . 
Let us consider a DC h belonging to a set H of possible ones,

hose functional form may h : X × S → R , or may not h : X → R ,

onsider the sensitive feature. 

A RC, instead, draws an h ∈ H, according to a probability distri-

ution Q over H, each time a label for an input x ∈ X is required.

e will call G Q this RC. 

A DLA A maps a dataset d into a classifier (which can be both a

C or a RC). A RLA, instead, maps a dataset into a classifier (which

an be, again, both a DC or a RC but for the purpose of this pa-

er it will be always a DC) with non-deterministic rules that can

e encapsulated in a probability distribution P A 

over the whole

ossible set of classifiers (in our case over H) given the dataset at

and (in our case d ). 

The accuracy of h ∈ H in representing the unknown relation be-

ween input and output space is measured with reference to a pre-

cribed [0,1]-bounded loss function � : H × Z → [0 , 1] . Hence, we

an define the true risk (or generalization error) of h , namely gen-

ralization error, as 

 

� (h ) = E Z { � (h, Z ) } , (1) 
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Table 2 

Abbreviations and symbols. 

Symbols Description 

X Input space 

S Group membership { 1 , . . . , k } 
Y Set of binary output labels {−1 , +1 } 
Z X × S × Y
n Number of samples 

D Z n 
P X , P S , P Y , P Z Unknown probability distributions over X , S, Y, and Z, respectively 

P D Distribution of probability induced by P Z over D
X , S , Y , Z , D Random variables sampled from X , S, Y, Z, and D according to P X , P S , P Y , P Z , and P D, respectively 

x, s, y, z, d Element in X , S, Y, Z, and D, respectively 

� Placeholder for one of the following symbols {−, + , − ∨ + } 
d g , � { (x, s, y ) : (x, s, y ) ∈ d, s = g, y = �1 } 
n g , � | d g , �| 

d �i d �z i 
d i d \ i ∪ ̇ z i 
˙ d d i where i in { 1 , . . . , n } and ˙ z i from Z according to P Z 
H Set of DC 

h DC in H
Q Probability distribution over H
G Q RC 

B Q BC 

A A DLA or a RLA that maps a dataset d into an DC or a RC 

P A 

Probability distribution that encapsulates non-deterministic rules behind the RLA 

� A loss function such that � : H × Z → [0 , 1] 

R � ( · ) Risk of a DC or an RC measured according to � ̂ R � 
d 
(·) Empirical Risk of a DC or an RC measured according to � over d 

kl KLD function 

KL KLD 

F � ( · ) Fariness of a DC or an RC measured according to � ̂ F � 
d 
(·) Empirical Fairness of a DC or an RC measured according to � over d 
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Since P Z is unknown, R � ( h ) cannot be computed. Therefore, we

have to resort to its empirical estimator, the empirical error 

̂ R 

� 
d (h ) = 

1 

| d| 
∑ 

z∈ d 
� (h, z) . (2)

Also for G Q , we can define its risk together with its empirical

counterpart, respectively 

R 

� (G Q ) = E h ∼Q { R 

� (h ) } and 

̂ R 

� 
d (G Q ) = E h ∼Q ̂

 R 

� 
d (h ) . (3)

The deterministic counterpart of G Q , namely the BC B Q , is defined

as 

B Q (x (, s )) = E h ∼Q h (x (, s )) (4)

and, consequently, its true and empirical error are, respectively 

R 

� (B Q ) = E Z � (B Q , Z ) and 

̂ R 

� 
d (B Q ) = 

1 

| d| 
∑ 

z∈ d 
� (B Q , z) . (5)

Let us recall, in the PB theory framework, the definitions of the

Kullback–Leibler Divergence (KLD) function [114] of two real num-

bers in the interval (0,1) as 

kl [ q || p] = q ln 

[ 
q 

p 

] 
+ [1 − q ] ln 

[ 
1 − q 

1 − p 

] 
, (6)

and the KLD between two distributions [114] Q and P over F as

KL [ Q || P ] . 
The fairness of the model 2 h ∈ H, instead, can be measured

with respect to many notions of fairness [45,47,60] . For a deter-

ministic model we can use the EOp constraint defined as EOp 

� for

� ∈ {−, + } as 

P Z { h ( X (, S )) > 0 | S = 1 , Y = �1 } = · · · = P Z { h ( X (, S )) > 0 | S = k, Y = �1 } , 
(7)
2 Remember that the functional form of the model may depend or not on the 

sensitive feature and so we will write h ( x (, s )). 

R  
ince we can define the EOp of the positively (EOp 

+ ) or negatively

EOp 

−) labeled samples, or the EOd constraint defined as the con-

urrent verification of the EOp 

+ and EOp 

−, or also the DPa con-

traint defined as 

 Z { h ( X (, S )) > 0 | S = 1 } = · · · = P Z { h ( X (, S )) > 0 | S = k } , (8)

hich is equivalent to the EOp 

−∨ + . Since h , in general, will not be

ble to exactly fulfill the EOp 

� constraint with � ∈ {−, + } , nor the

Od constraints, nor the DPa constraints we define the Difference

f EOp 

�, namely DEOp 

�( h ), with � ∈ {−, + } as 

1 

k 

∑ 

g∈S 

∣∣P Z { h ( X (, S )) > 0 | S = g, Y = �1 } − P̄ (h ) 
∣∣, (9)

here 

 ̄(h ) = 

1 

k 

∑ 

g 2 ∈S 
P Z { h ( X (, S )) > 0 | S = g 2 , Y = �1 } , (10)

he Difference of EOd, namely DEOd( h ), which is defined as the

verage value between the DEOp 

+ (h ) and DEOp 

−(h ) , and the Dif-

erence of DPa, namely DDPa( h ), as 

1 

k 

∑ 

g 1 ∈S 

∣∣∣∣∣P Z { h ( X (, S )) > 0 | S = g 1 } −1 

k 

∑ 

g 2 ∈S 
P Z { h ( X (, S )) > 0 | S = g 2 } 

∣∣∣∣∣. 
(11)

ote that all these fairness measures can be reformulated as dif-

erence of risks [45,60] . In particular, let us define the Hard loss

unction � H , namely the function which detects a classification 

 H (h, z) = � { yh (x (, s )) ≤ 0 } . (12)

hen the EOp 

� constraint for � ∈ {−, + } can be defined as 3 

 

� H 
d 1 , �

(h ) = · · · = R 

� H 
d k, �

(h ) , (13)
3 Note that, R � H 
d i, �

(h ) = E Z { � (h, Z ) | S = i, Y = �1 } . 
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l  
nd consequently the DEOp 

�( h ) for � ∈ {−, + } can be defined as 

1 

k 

∑ 

g 1 ∈S 

∣∣∣∣∣R 

� H 
d g 1 , �

(h ) −
∑ 

g 2 ∈S 
R 

� H 
d g 2 , �

(h ) 

∣∣∣∣∣. (14) 

nalogously it is possible to reformulate the EOd and the DPa to-

ether with the DEOd( h ) and the DDPa( h ). In order to simplify

he presentation from now on we will focus on the EOp 

+ and the

EOp 

+ (h ) which we will call respectively, for brevity, EOp and F ( h )

nd to the case when k = 2 since the extension to the more gen-

ral case is conceptually trivial but rather technical. Then the EOp

onstraint can be be defined respectively as 

 

� H 
d 1 , + 

(h ) = R 

� H 
d 2 , + 

(h ) , (15) 

nd the F ( h ) can be be defined, respectively as 

 (h ) = 

∣∣∣R 

� H 
d 1 , + 

(h ) − R 

� H 
d 2 , + 

(h ) 

∣∣∣. (16) 

s we did for the risk we can also define the empirical EOp con-

traint, namely ̂ EOp ̂ 

 

� H 
d 1 , + 

(h ) = ̂

 R 

� H 
d 2 , + 

(h ) , (17) 

nd the empirical F ( h ), namely ̂ F d (h ) , as 

 

 d (h ) = 

∣∣∣̂ R 

� H 
d 1 , + 

(h ) − ̂ R 

� H 
d 2 , + 

(h ) 

∣∣∣. (18) 

nalogously, it is possible to define the EOp constraint and the

 (G Q ) for a RC, respectively as 

 

� H 
d 1 , + 

(G Q ) = R 

� H 
d 2 , + 

(G Q ) and F (G Q ) = 

∣∣∣R 

� H 
d 1 , + 

(G Q ) − R 

� H 
d 2 , + 

(G Q ) 

∣∣∣, (19) 

ogether with their empirical counterparts 

̂ 

 

� H 
d 1 , + 

(G Q ) = ̂

 R 

� H 
d 2 , + 

(G Q ) and 

̂ F d (G Q ) = 

∣∣∣̂ R 

� H 
d 1 , + 

(G Q ) − ̂ R 

� H 
d 2 , + 

(G Q ) 

∣∣∣. 
(20) 

ppendix A reports the state-of-the-art results needed for taking

nto account fairness and privacy issues for both RC (A.1) and/or

LA (A.2) in the framework of the PB (A.1.1) , AS (A.1.2) , and DP

A.2) theories. 

. Fair and private randomized learning 

In this section we will extend the state-of-the-art results

n Randomized Learning and generalization (see Section 2 and

ppendix A ) to the problem of learning accurate and fair models

ithout compromising the privacy of the individual observations.

or this purpose, we further develop the idea that the PB prior can

e defined based on the data-generating distribution without ac-

ually needing to know it. In particular, we define a prior and a

osterior giving more weight to functions which exhibit good gen-

ralization and fairness properties. Furthermore, we will show that

his RC possesses interesting stability properties using the AS the-

ry. Finally, we will show that the new posterior introduced for

uilding a randomized accurate and fair classifier can be exploited

o define accurate and fair RLA. Exploiting DP theory, we will also

how that the accurate and fair RLA possesses interesting privacy

reserving properties ensuring generalization, fairness, and privacy

f the final model. In order to improve the readability of this sec-

ion, we have included a summary our results in Table 3 . 

.1. Fair randomized classifiers 

With respect to what is described in Section A.1.1 , our scope is

ot to simply fit the data minimizing the risk of the RC, but we

equire also the fairness of the solution (measured with respect to

istance from the equal opportunity). In other words we want to
imultaneously minimize the risk and the fairness of the RC, re-

pectively the R (G Q d 
) and the F (G Q d 

) . In order to achieve this goal,

rst we have to bound the F (G Q d 
) analogously to what has been

one with R � (G Q d 
) in Theorem 10 ; then we will have to define a P

nd an Q d able to both reduce the risk, the fairness, and the KLD.

et us start with the first objective with the following theorem. 

heorem 1. For any probability distribution P over H, chosen before

eeing d, we have that 

 D 

{ 

∃ Q d : 
∣∣̂ F D (G Q D ) −F (G Q D ) 

∣∣≥√ 

1 

2 n 1 , + 

[
KL [ Q D || P ] + ln 

(
2 

√ 

n 1 , + 
δ

)]

+ 

√ 

1 

2 n 2 , + 

[
KL [ Q D || P ] + ln 

(
2 

√ 

n 2 , + 
δ

)]} 

≤ 2 δ. (21)

The proof can be retrieved in Section B.1 . 

After this first result, analogously to what is described in

ection A.1.1 , we have to define a P and a Q d able to give more

mportance to functions with good accuracy and fairness. In par-

icular, exploiting the idea developed in [45,60] , a good function

hould minimize the risk subject to fairness constraints such that 

 

∗ : arg min 

h ∈H 

R 

� (h ) 

s.t. F (h ) ≤ �, (22) 

here � ∈ (0, 1] is necessary since for � = 0 some problems may

rise [62] . Equivalently, for a particular value of λ ∈ [0, ∞ ) [115] 

 

∗ : arg min 

h ∈H 

R 

� (h ) + λF (h ) . (23) 

onsequently � and λ regulate the trade off between accuracy and

airness of the solution. Note that, for small λ, or equivalently for

arge �, we relax the fairness constraint and we just care about

inimizing the error. Contrarily, for large λ, or equivalently for

mall �, we strongly enforce the fairness constraint giving less im-

ortance to the accuracy of the model. This tension is a classical

esult in fairness which shows that, in many cases, it is not pos-

ible to simultaneously achieve accuracy and fairness [62] . Con-

equently, as we will see later, λ (or equivalently �), cannot be

rbitrarily set if we want to maintain certain generalization prop-

rties of the algorithm. In [45,60] it is proved that, if the empirical

ounterpart of the above mentioned problem without the fairness

onstraint is consistent, it is also consistent the following fair em-

irical risk minimization problem 

 

 

∗ : arg min 

h ∈H 

̂ R 

� 
d (h ) + λ̂ F d (h ) . (24) 

hen, following the ideas in [84,89] we propose to use the follow-

ng probability density function for Q d 

 d (h ) = Z Q d 1 , e 
−γ [ ̂  R � 

d 
(h )+ λ̂ F d (h ) ] , (25) 

here 

 

−1 
Q d 

= 

∫ 
H 

1 , e −γ [ ̂  R � 
d 
(h )+ λ̂ F d (h ) ] dh, (26) 

nd consequently the following probability density function for P 

 (h ) = Z P 1 , e 
−γ [ R � d (h )+ λF (h ) ] , (27) 

here 

 

−1 
P = 

∫ 
H 

1 , e −γ [ R � d (h )+ λF (h ) ] dh. (28) 

asically our posterior distribution weights more the optimal so-

ution of the Problem (24) and exponentially less the other ones

ased on their distance, in terms of cost function, from the opti-

al one. The distribution of these weights is regulated by γ . The

arger is γ the more weight is associated to functions characterized
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Table 3 

Summary of the results of Section 3 . 

Posterior of Eq. (27) and Prior of Eq. (25) 

γ → 0 uniform probability over all functions, γ → ∞ probability one of the risk minimizer 

λ = 0 no fairness constraint, λ = ∞ strong fairness constraint 

Theory PB AS DP 

Algorithm/RC and BC RC and BC RLA 

Classifier Eqs. (27) and (25) Eq. (27) Eq. (27) 

Property Accurate Fair Accurate Fair Accurate Fair Private 

Bounds Risk and Fairness Theorem 3 Theorem 6 Theorem 9 

Convergence Risk O 

(√ 

ln ( min (n 1 , + ,n 2 , + )) 
min (n 1 , + ,n 2 , + ) 

)
O 

(√ 

1 
min (n 1 , + ,n 2 , + ) 

)
O 

(√ 

1 
n 

)
Convergence Fairness O 

(√ 

ln ( min (n 1 , + ,n 2 , + )) 
min (n 1 , + ,n 2 , + ) 

)
O 

(√ 

1 
min (n 1 , + ,n 2 , + ) 

)
O 

(√ 

1 
min (n 1 , + ,n 2 , + ) 

)
γ max speed O ( 

√ 

min [ n 1 , + , n 2 , + ] ) Slower than O ( 
√ 

min [ n 1 , + , n 2 , + ] ) O ( 
√ 

min [ n 1 , + , n 2 , + ] ) 

Fairness and Risk γ λ≤ γ λ< γ λ≤
Tension O ( 

√ 

min [ n 1 , + , n 2 , + ] ) O ( 
√ 

min [ n 1 , + , n 2 , + ] ) O ( 
√ 

min [ n 1 , + , n 2 , + ] ) 
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by small error. As a consequence, our desiderata would be to have

γ as large as possible but this, as we will see later, will not be al-

lowed if we want to maintain certain generalization properties of

the algorithm. 

Note that, the proposed algorithm does not necessarily require

the knowledge of the sensitive attribute at test time [45,60,82] and

this is a very important property of our method (in order to satisfy

practical and/or legal requirements). 

Note also that, from a computational point of view, the pro-

posed model of Eq. (25) has the same applicability and computa-

tional efficiency of the one proposed in [84,89] . In fact, in order to

sample h ∈ H according to this particular Q d , there are two main

cases. In the first case the cardinality of H is finite and reason-

ably small to compute exactly q d (h ) . In the second case H contains

too many functions (or even an infinite number), and consequently

we have to resort to a subsampling of H via Monte Carlo estima-

tion 

4 in order to make the problem treatable and then compute

q d (h ) . Note that this last approach may produce numerical prob-

lems when γ is large, but, as we will see later, γ is never too big

in order to keep the algorithm consistent, stable, and privacy pre-

serving. 

If the Q d and P defined respectively in Eqs. (25) and (27) are

exploited we can prove the following theorem. 

Theorem 2. Given the prior P and the posterior Q d defined in

Eqs. (27) and (25) , we can state that 

P D { KL [ Q D || P ] ≥ KL 2 (δ, n, n 1 , + , n 2 , + ) } ≤ 6 δ, (29)

where 

KL 2 (δ, n, n 1 , + , n 2 , + ) = a 2 + 2 a 
√ 

b + b, 

a = γ
(√ 

1 
2 n 

+ λ
(√ 

1 
2 n 1 , + 

+ 

√ 

1 
2 n 2 , + 

))
, 

b = 2 γ

(√ 

1 
2 n 

ln 

(
2 
√ 

n 
δ

)
+ λ

(√ 

1 
2 n 1 , + 

ln 

(
2 
√ 

n 1 , + 
δ

)
+ 

√ 

1 

2 n 2 , + 
ln 

(
2 

√ 

n 2 , + 
δ

)) ) 

. (30)

The proof is reported in Section B.2 . 

By plugging the results of Theorem 2 into Theorems 10 and 1 it

is possible to obtain a fully empirical bound on the risk and the

fairness of the RC where the prior P and the posterior Q d are de-

fined respectively in Eqs. (27) and (25) . 
4 And, in this case, a further problem would be to control the additional estima- 

tion gap, but this is in practice often negligible and out of the scope of this paper. 

T  

r  

T

heorem 3. Given the prior P and the posterior Q d defined in

qs. (27) and (25) , we can simultaneously bound the risk and the fair-

ess of the corresponding RC 

 D 

{ ∣∣̂ R � D (G Q D ) −R � (G Q D ) 
∣∣≥√ 

1 

2 n 

[
KL 2 (δ, n, n 1 , + , n 2 , + ) + ln 

(
2 
√ 

n 

δ

)]} 

≤7 δ, 

(31)

 D 

{ ∣∣̂ F D (G Q D ) −F (G Q D ) 
∣∣≥√ 

1 

2 n 1 , + 

[
KL 2 (δ, n, n 1 , + , n 2 , + ) + ln 

(
2 
√ 

n 1 , + 
δ

)]

+ 

√ 

1 

2 n 2 , + 

[
KL 2 (δ, n, n 1 , + , n 2 , + ) + ln 

(
2 
√ 

n 2 , + 
δ

)]} 

≤8 δ, (32)

sing the same notation of Theorem 2 . 

The prove is not reported since it comes trivially from the ap-

lication of the union bound [116] . 

The final rate of the bound is

 ( 
√ 

ln ( min (n 1 , + , n 2 , + )) / min (n 1 , + , n 2 , + ) ) , which is optimal in

he general case [84,117] (see the state-of-the-art bound of

heorem 11 ) since we are simultaneously controlling the risk

nd the fairness based on three empirical estimators ̂ R � 
d 
(G Q d 

) ,̂ 

 

� 
d 1 , + 

(G Q d 
) , and 

̂ R � 
d 2 , + 

(G Q d 
) which exploit respectively n , n 1 , + , and

 2 , + samples (note also that n ≥ max (n 1 , + , n 2 , + ) ). In order to

nsure the consistency of the bound, γ can increase at maximum

ith a rate which is O ( 
√ 

min (n 1 , + , n 2 , + )) ) , that is again similar

o what has been obtained in [84,117] since we are exploiting

he estimators mentioned above. Since larger γ means more

eight to function close to the ̂ f ∗ and the less to the others, we

ould like that γ is as large as possible so the maximum rate

f increase of γ is a very important parameter. Instead, for what

oncerns λ, it is important to note that this parameter regulates

he trade-off between accuracy and fairness, and for this reason

t is usually considered constant and depends on the particular

pplication. 

The RC generalization abilities can be also studied, both in

erms of its risk and its fairness, using the AS theory, analogously

o what has been done in Section A.1.2 . Theorem 13 allows to

ound the risk of a distribution stable algorithm. The following

heorem allows to bound the fairness of a distribution stable al-

orithm. 

heorem 4. If the criteria exploited for choosing a symmetric poste-

ior distribution satisfy the Distribution Stability property described in

heorem 13 , then we can state that 
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W

γ
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P

 D 

⎧ ⎨ ⎩ 

∣∣̂ F D (G Q D ) − F (G Q D ) 
∣∣

≥ 4 β� 
Q + 

(
4 n 1 , + β� 

Q + 1 
)√ 

ln 
(

1 
δ

)
2 n 1 , + 

+ 

(
4 n 2 , + β� 

Q + 1 
)√ 

ln 
(

1 
δ

)
2 n 2 , + 

⎫ ⎬ ⎭ 

≤ 4 δ. 

(33) 

The proof is not reported since analogous to the one of

ection B.1 . 

Furthermore, if we use the criteria described in Eq. (25) for

efining Q d it is possible to also show the following result. 

heorem 5. The criteria described in Eq. (25) for defining Q d shows

he Distribution Stability property, in fact 

� 
Q ≤

2 γ

n 

+ 

2 λγ

min [ n 1 , + , n 2 , + ] 
. (34) 

The proof is reported in Section B.3 . 

Note that, the result of Theorem 5 reduces to the one of

112] (see Appendix A ) when no fairness constraint is active

namely λ = 0 ), while the stability decreases when λ > 0. This

henomenon is somehow expected since the larger is λ the more

mportance the constraint has over the final model. 

Since Theorem 5 states that the criteria described in

q. (25) for defining Q d shows the Distribution Stability property,

t is possible to obtain a fully empirical bound on the risk and the

airness of the corresponding RC. 

heorem 6. The risk and the fairness of the RC which uses as Q d the

robability density function defined in Eq. (25) can be bounded as

ollows 

 D 

⎧ ⎨ ⎩ 

∣∣R � (G Q D ) − ̂ R � D (G Q D ) 
∣∣

≥ 4 γ

n 
+ 

4 λγ

min [ n 1 , + , n 2 , + ] 
+ 

(
8 γ + 

8 nλγ

min [ n 1 , + , n 2 , + ] 
+ 1 

)√ 

ln 
(

1 
δ

)
2 n 

} 

≤ 2 δ,

(35) 

 D 

⎧ ⎨ ⎩ 

∣∣̂ F D (G Q D ) − F (G Q D ) 
∣∣

≥ 8 γ

n 
+ 

8 λγ

min [ n 1 , + , n 2 , + ] 
+ 

(
8 n 1 , + γ

n 
+ 

8 n 1 , + λγ

min [ n 1 , + , n 2 , + ] 
+ 1 

)√ 

ln 
(

1 
δ

)
2 n 1 , + 

+ 

(
8 n 2 , + γ

n 
+ 

8 n 2 , + λγ

min [ n 1 , + , n 2 , + ] 
β� 
Q + 1 

)√ 

ln 
(

1 
δ

)
2 n 2 , + 

⎫ ⎬ ⎭ 

≤ 4 δ. (36) 

The proof consists in simply plugging the result of Theorem 5 in

heorems 13 and 4 . 

The final rate of the bound is O ( 
√ 

1 / min (n 1 , + , n 2 , + ) ) , which is

ptimal in the general case since we are simultaneously control-

ing the risk and the fairness based on three empirical estimators

hich exploit, respectively, n , n 1 , + , and n 2 , + samples and better

han the one obtained with the PB theory. In order to ensure the

onsistency of the bound, γ can increase with a rate slower than

 ( 
√ 

min (n 1 , + , n 2 , + )) ) , which is a worse result than the one ob-

ained with the PB theory since we would like γ as large as possi-

le. 

.2. Fair and private randomized learning algorithms 

In this section we will show that the posterior distribution de-

ned in Eq. (25) can be exploited to derive a RLA which simulta-
eously possesses accuracy, fairness, and privacy properties thanks

o the use of the DP theory. 

Theorem 15 allows to bound the risk of an ε-DP RLA, while the

ollowing results allow to bound its fairness. 

heorem 7. Let A be an ε-DP, then for any t > 0 and for 

≤
√ 

t 2 − ln (2) 

3 max [ n 1 , + , n 2 , + ] 
, (37) 

e can state that 

 A , D 

{∣∣F � (A ( D )) − ̂ F � D (A ( D )) 
∣∣ ≥ t 

}
≤ 6 

√ 

2 1 , e − min [ n 1 , + ,n 2 , + ] t 2 . 

(38) 

The proof is not reported since analogous to the one of

ection B.1 . 

At this point, analogously to what has been done in Section A.2 ,

et us suppose that our RLA works in this particular way. A selects

ne single h ∈ H according to a distribution which depended on

he data Q d . If we exploit Eq. (25) for defining Q d we can state the

ollowing result. 

heorem 8. Let us consider as A a RLA which, given a dataset d,

elects a function h ∈ H according to the Q d defined in Eq. (25) . Then

 is ( 2 γ /n + 2 γ λ/ min [ n 1 , + , n 2 , + ] ) -DP. 

The proof of this result is reported in B.4 

Note that, the result of Theorem 5 reduces to the one of

112] (see Appendix A ) when no fairness constraint is active

namely λ = 0 ), while the privacy decreases when λ > 0. This is

n expected phenomenon, in fact, the larger is λ the more impor-

ance the constraint has over the final model, and consequently the

ess is the ability of the algorithm to protect the single observation

iven the further data-dependent constraint. 

Thanks to the result of Theorem 8 we can state that the RLA

hich selects a function h ∈ H, given d , according to the Q d de-

ned in Eq. (25) is a privacy preserving RLA. Moreover, exploiting

heorems 15 and 7 we can also bound the risk and the fairness of

he final model. 

heorem 9. Let us consider as A a RLA which, given a dataset d,

elects a function h ∈ H according to the Q d defined in Eq. (25) . Then

 is ( 2 γ /n + 2 γ λ/ min [ n 1 , + , n 2 , + ] ) -DP and by setting 

≤

√ 

1 
n 

[ 
ln 

(
3 
√ 

2 
2 

)
− ln (2) 

3 

] 
2 
n 

+ 

2 λ
min [ n 1 , + ,n 2 , + ] 

(39) 

e can state that 

 A , D 

⎧ ⎪ ⎨ ⎪ ⎩ 

∣∣R 

� (A ( D )) − ̂ R 

� 
D (A ( D )) 

∣∣ ≥
√ 

ln 

(
3 
√ 

2 
δ

)
n 

⎫ ⎪ ⎬ ⎪ ⎭ 

≤ δ. (40) 

hile by setting 

≤

√ 

1 
min [ n 1 , + ,n 2 , + ] 

[ 
ln 

(
6 
√ 

2 
2 

)
− ln (2) 

3 

] 
2 
n 

+ 

2 λ
min [ n 1 , + ,n 2 , + ] 

(41) 

e can state that 

 A , D 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

∣∣F � (A ( D )) − ̂ F � D (A ( D )) 
∣∣ ≥
√ √ √ √ 

ln 

(
6 
√ 

2 
δ

)
min [ n 1 , + + n 2 , + ] 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 

≤ δ. 

(42) 
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5 For showing explicitly the dependency of Q from d and for clarity, we will indi- 

cate Q d . 
The proof consists in simply plugging the result of Theorem 8 in

Theorems 15 and 7 . 

Note that, the bound on γ of Eq. (41) in Theorem 9 clearly

shows the tension between privacy, fairness, and accuracy of the

model. In fact, if we suppose that the model which minimizes the

error also satisfies the fairness constraint, the best option would

be to choose γ , λ = ∞ since, as a consequence, this would re-

sults in the deterministic selection of the best model. Since in real

world this will not happen, we will have to chose the best de-

sired trade-off between accuracy and fairness using λ ∈ (0, ∞ )

but still select γ = ∞ in order to have a deterministic selection

of the model which best fits our fairness and accuracy desires. On

the other hand, if we ignore the fairness constraint (namely λ = 0 )

we cannot select the model which minimizes the error (namely

γ = ∞ ), since γ should be small enough to protect the privacy of

the individuals. Moreover, if we enforce the data-dependent fair-

ness constraints (namely λ > 0), the more we impose this con-

straint (i.e. the larger is λ), the smaller should be γ , in order to

still protect the privacy of the individuals. 

Note that, the final rate of the bounds is O ( 
√ 

1 /n ) for the risk

and O ( 
√ 

1 / min [ n 1 , + , n 2 , + ] ) for the fairness, which is optimal in

the general case since we are simultaneously controlling the risk

and the fairness based on three empirical estimators which ex-

ploit respectively n , n 1 , + , and n 2 , + samples and better than the

ones obtained with the PB and AS theories. In order to ensure the

consistency of the bound γ can increase with a maximum rate

of O ( 
√ 

min [ n 1 , + , n 2 , + ] ) , which is better than the results obtained

with the AS theory and equivalent to the one obtained with the

PB theory since we would like γ as large as possible. Moreover,

the RLA shows, as mentioned above, privacy preserving properties.

In conclusion, we were able to derive a RLA which possesses

interesting privacy preserving properties ensuring generalization,

fairness, and privacy of the final model. 

4. Discussion and conclusions 

In this paper we addressed the problem of randomized learn-

ing and generalization of fair and private classifiers where, using

randomized learning algorithms and/or randomized classifiers, we

want to simultaneously ensure that sensitive information does not

unfairly influence the outcome of a classifier and to be able to

learn from data while preserving the privacy of individual obser-

vations. We first faced this issue in the PAC-Bayes framework pre-

senting a new approach trading off and bounding risk and fairness

of the randomized classifier by further developing the idea that

the PAC-Bayes prior can be defined based on the data-generating

distribution without the need of knowing it explicitly. In particu-

lar, we defined a prior and a posterior with the purpose of giving

more weight to functions which exhibit good generalization and

fairness properties. Furthermore, we showed that this randomized

classifier possesses interesting stability properties using the algo-

rithmic distribution stability theory. Finally, we also showed that

the newly proposed posterior can be exploited to define a random-

ized accurate and fair algorithm with interesting privacy preserv-

ing properties ensuring generalization, fairness, and privacy of the

final model using the differential privacy theory. 

In this paper we also discussed the advantages and the disad-

vantages of the different approaches exploiting the derived the-

oretical results which still leave open questions about the most

practical and effective way to learn fair and private classifiers us-

ing randomized learning. For this reason, in the future, it would be

interesting to try to translate these theoretical results into practical

algorithms, in order to be able to compare them with other state-

of-the-art approaches that have been developed in the literature. 
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ppendix A. State-of-the-art results 

In order to improve the readability of this appendix, a summary

f the results can be found in Table A.4 . 

.1. Randomized classifiers and generalization 

Thanks to the PB [83,84,86,90,93,118,119] and the AS

90,96–98,120] theories it is possible to bound the risk of a

C selected by a RLA or a DLA. Since the purpose of the paper is

ot to retrieve optimal and rates of convergence as the extension

s trivial and rather technical (see e.g. [83,90,120–122] ) we will

xploit basic bounds which are still rather tight and have optimal

ate in the general case (better rates can be achieved only in the

ucky case of zero empirical error). 

.1.1. Randomized classifiers and PAC-Bayes theory 

The PB theory [83,84,86,90,93,118,119] is surely one of the most

owerful tools for bounding the risk of a RC. In this section, we

ill recall the PB-based risk bounds 5 . 

heorem 10 [84] . For any probability distribution P over H, chosen

efore seeing d we can state that 

 D 

{ 

∃ Q d : 
∣∣̂ R � D (G Q D ) − R � (G Q D ) 

∣∣ ≥√ 

1 

2 n 

[
KL [ Q D || P ] + ln 

(
2 
√ 

n 

δ

)]} 

≤ δ. 

(A.1)

The main problem of the PB theory regards the choice of P and

 d . Q d should fit our observations, but, at the same time, Q d should

e close to P , in order the minimize the KLD. The milestone result

f Catoni [89] , later extended by Lever et al. [84] , Oneto et al. [90] ,

roposes to use a Boltzmann prior distribution P which depends on

he data generating distribution P Z . In particular, let us suppose

hat the density function associated to P is 

 (h ) = Z P 1 , e 
−γ R � (h ) , (A.2)

here γ ∈ [0, ∞ ) and Z P is a normalization term such that 

 

−1 
P = 

∫ 
H 

1 , e −γ R � (h ) dh. (A.3)

asically, this distribution gives more importance to functions that

ossess small risk. If we choose as posterior Q d a distribution

hich gives more importance to functions with small empirical

isk with the following density function 

 d (h ) = Z Q d 1 , e 
−γ̂ R � 

d 
(h ) , (A.4)

here γ ∈ [0, ∞ ) and Z Q d is a normalization term such that 

 

−1 
Q d 

= 

∫ 
H 

1 , e −γ̂ R � 
d 
(h ) dh, (A.5)

t can be proved that this theorem, built on the result of

heorem 10 , holds. 

heorem 11 [84] . Given the prior P and the posterior Q d defined in

qs. (A.2) and (A.4) , we can state that 

 D { KL [ Q D || P ] ≥ KL 1 (γ , δ, n ) } ≤ 2 δ, (A.6)
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Table A4 

Summary of the results of Appendix A . 

Posterior of Eq. (A.2) and Prior of Eq. (A.4) 

γ → 0 uniform probability over all functions, γ → ∞ probability one of the risk minimizer 

Theory PB AS DP 

Algorithm/classifier RC and BC RC and BC RLA 

Eqs. (A.2) and (A.4) Eq. (A.4) Eq. (A.4) 

Property Accurate Accurate Accurate Private 

Bounds Risk and Fairness Theorem 11 Theorem 14 Theorem 16 

Convergence Risk O 

(√ 

ln (n ) 
n 

)
O 

(√ 

1 
n 

)
O 

(√ 

1 
n 

)
γ max speed O ( 

√ 

n ) Slower than O ( 
√ 

n ) O ( 
√ 

n ) 
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here 

L 1 (γ , δ, n ) 
. = 

γ 2 

n 

+ γ

√ 

2 

n 

ln 

(
2 

√ 

n 

δ

)
. (A.7) 

onsequently, we have that 

 D 

{ ∣∣̂ R 

� 
D (G Q D ) − R 

� (G Q D ) 
∣∣≥√ 

1 

2 n 

[
KL 1 (γ , δ, n ) + ln 

(
2 

√ 

n 

δ

)]} 

≤3 δ.

(A.8) 

Finally, let us also recall that it is possible to bound the risk of

he BC in terms of the risk of the RC. 

heorem 12 [83,86] . It is possible to state that 

 

� (B Q d ) ≤ 2 R 

� (G Q d ) . (A.9) 

.1.2. Randomized classifiers and algorithmic distribution stability 

heory 

In this section we recall how the AS theory can be exploited for

ounding the risk of a RC. We will assume in this section, anal-

gously to [90,96] , that the Q d does not depend on the order of

he elements in the training set (i.e. it is symmetric), that all func-

ions are measurable and that all sets are countable. Under these

ssumptions we can recall the following risk bound. 

heorem 13 [90] . If the criteria exploited for choosing a symmet-

ic posterior distribution Q d and Q 
d \ i satisfy the Distribution Stability

roperty 

1 , e h ∼Q d 
{ � ( h, ·) } − 1 , e h ∼Q 

d \ i { � ( h, ·) } ∣∣∞ 

≤ β� 
Q , ∀ d ∈ D, ∀ i ∈ { 1 , . . . , n } , (A.10) 

here β� 
Q is a constant that goes to zero at least as O (1/ n ), then we

an state that 

 D 

{ ∣∣R 

� (G Q D ) − ̂ R 

� 
d (G Q D ) 

∣∣ ≥ 2 β� 
Q + 

(
4 nβ� 

Q + 1 

)√ 

ln 

(
1 
δ

)
2 n 

} 

≤ 2 δ. 

(A.11) 

Furthermore, if we use the criteria described in Eq. (A.4) for

efining Q d is is possible to also recall the following result. 

heorem 14 [90] . The criteria described in Eq. (A.4) for defining Q d 
hows the Distribution Stability property, in fact 

� 
Q ≤

2 γ

n 

. (A.12) 

onsequently if we exploit Eq. (A.4) for defining Q d we can state that 

 D 

{ ∣∣R 

� (G Q D ) − ̂ R 

� 
d (G Q D ) 

∣∣ ≥ 4 γ

n 

+ ( 8 γ + 1 ) 

√ 

ln 

(
1 
δ

)
2 n 

} 

≤ 2 δ. 
(A.13) 
.2. Randomized learning algorithms and generalization: differential 

rivacy theory 

Thanks to the DP [15,107,111,112] theory it is possible to bound

he true risk of both a DC or a RC chosen by a RLA. Analogously

o what stated in A.1 , we will not focus on optimal constants and

ates (see e.g. [112] for the technical details on this) and moreover,

s stated in Section 2 , we will deal just with the case of RLA which

elects DC since the optimal way of bounding the generalization

bility of RC selected with RLA is again the PB or the AS theories. 

In order to recall the DP-based bound of the risk of a function

elected by a RLA we first have to recall the notion of DP. 

efinitions 1 [15,112] . A RLA A is ε-DP if and only if 

 A 

{ A (d) = h } ≤ 1 , e εP A 

{ A ( ˙ d ) = h } , ∀ h ∈ F, ∀ d ∈ D, (A.14) 

here 1 , e is the Nepero’s number and ε ≥ 0 is a constant. 

Basically, this definition states that the smaller (large ε) is the

bility to understand if a sample in the dataset has been changed

ased on h the more private is the RLA, namely the RLA is able to

reserve the privacy of the individual samples in the dataset. 

Given this definition we can state the following DP-based risk

ound. 

heorem 15 [107,112] . Let A be an ε-DP, then for any t > 0 and

or 

≤
√ 

t 2 − ln (2) 

3 n 

, (A.15) 

e can state that 

 A , D 

{∣∣R 

� (A ( D )) − ̂ R 

� 
D (A ( D )) 

∣∣ ≥ t 
}

≤ 3 

√ 

2 1 , e −nt 2 . (A.16) 

Let us now suppose that the RLA works in this particular way.

 selects one single h ∈ H according to a distribution which de-

ended on the data Q d . If we exploit Eq. (A.4) for defining Q d we

an state the following result. 

heorem 16 [112] . Let us consider as A a RLA which, given a dataset

, selects a function h ∈ H according to the Q d defined in Eq. (A.4) .

hen A is 2 γ / n-DP. Consequently if we set 

≤ 1 

2 

√ 

n 

[
ln 

(
3 

√ 

2 

δ

)
− ln (2) 

3 

]
, (A.17) 

e can state that 

 A , D 

⎧ ⎪ ⎨ ⎪ ⎩ 

∣∣R 

� (A ( D )) − ̂ R 

� 
D (A ( D )) 

∣∣ ≥
√ 

ln 

(
3 
√ 

2 
δ

)
n 

⎫ ⎪ ⎬ ⎪ ⎭ 

≤ δ. (A.18) 
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Appendix B. Proofs 

B.1. Proof of Theorem 1 

Proof. In order to prove our statement we have to note that,

thanks to the reverse triangle inequality, we have that ∣∣̂ F d (G Q d ) − F (G Q d ) 
∣∣

= 

∣∣∣∣∣∣̂ R 

� H 
d 1 , + 

(G Q d ) − ̂ R 

� H 
d 2 , + 

(G Q d ) 

∣∣∣− ∣∣∣R 

� H 
d 1 , + 

(G Q d ) − R 

� H 
d 2 , + 

(G Q d ) 

∣∣∣∣∣∣
≤
∣∣∣̂ R 

� H 
d 1 , + 

(G Q d ) −R 

� H 
d 1 , + 

(G Q d ) 

∣∣∣+ 

∣∣∣̂ R 

� H 
d 2 , + 

(G Q d ) − R 

� H 
d 2 , + 

(G Q d ) 

∣∣∣, (B.1)

and by exploiting Theorem 10 and the union bound [116] the state-

ment of the theorem is proved. �

B.2. Proof of Theorem 2 

Proof. The proof consists in noting that: 

KL [ Q || P ] 
= 1 , e h ∼Q d 

γ
(
R 

� (h ) − ̂ R 

� 
d (h ) + λ

(
F (h ) − ̂ F d ( f ) 

))
− ln 

(
Z P 

Z Q d 

)
= γ
(
R 

� (G Q d ) − ̂ R 

� 
d (G Q d ) + λ

(
F (G Q d ) −̂ F d (G Q d ) 

))
− ln 

(∫ 
H 

p (h ) 1 , e −γ R � (h ) −̂ R � 
d 
(h )+ λ( F (h ) −̂ F d (h ) ) dh 

)
≤ γ
(
R 

� (G Q d ) − ̂ R 

� 
d (G Q d ) + λ

(
F (G Q d ) − ̂ F d (G Q d ) 

))
+ γ
(
L � (G P ) −̂ L � (G P ) + λ

(
F (G P ) − ̂ F d (G P ) 

))
, (B.2)

where the last step follows from the Jensen’s inequality [123] . By

exploiting this last result, Theorems 10 and 1 , and the union bound

[116] , we have that the following inequality holds with probability

at least (1 − 6 δ) 

KL [ Q d || P ] 

≤ γ

⎛ ⎜ ⎝ 

√ 

KL [ Q d || P ] + ln 

(
2 
√ 

n 
δ

)
2 n 

+ λ

⎛ ⎜ ⎜ ⎝ 

√ √ √ √ 

KL [ Q d || P ] + ln 

(
2 
√ 

n 1 , + 
δ

)
2 n 1 , + 

+ 

√ √ √ √ 

KL [ Q d || P ] + ln 

(
2 
√ 

n 2 , + 
δ

)
2 n 2 , + 

⎞ ⎟ ⎟ ⎠ 

⎞ ⎟ ⎟ ⎠ 

+ γ

⎛ ⎜ ⎜ ⎝ 

√ 

ln 

(
2 
√ 

n 
δ

)
2 n 

+ λ

⎛ ⎜ ⎜ ⎝ 

√ √ √ √ 

ln 

(
2 
√ 

n 1 , + 
δ

)
2 n 1 , + 

+ 

√ √ √ √ 

ln 

(
2 
√ 

n 2 , + 
δ

)
2 n 2 , + 

⎞ ⎟ ⎟ ⎠ 

⎞ ⎟ ⎟ ⎠ 

. 

(B.3)

The statement of the theorem is obtained by solving with respect

to KL [ Q d || P ] . �

B.3. Proof of Theorem 5 

Proof. Let us note that the probability density function associated

to Q d is 

 d (h ) = 

1 , e 
−γ
[ 

1 
| d| 
∑ 

z∈ d � (h,z)+ λ
∣∣∣ 1 

| d 1 , + | 
∑ 

z∈ d 1 , + � H (h,z) − 1 
| d 2 , + | 

∑ 

z∈ d 2 , + � H (h,z) 

∣∣∣] 
∫ 
H 1 , e 

−γ
[ 

1 
| d| 
∑ 

z∈ d � (h,z)+ λ
∣∣∣ 1 

| d 1 , + | 
∑ 

z∈ d 1 , + � H (h,z) − 1 
| d 2 , + | 

∑ 

z∈ d 2 , + � H (h,z) 

∣∣∣] 
dh 

,

(B.4)
hile the one associated to Q 
d \ i is 

 d \ i (h ) = 

1 , e 
−γ

[
1 
| d| 
∑ 

z∈ d \ i � (h,z)+ λ
∣∣∣∣ 1 

| d 1 , + | 
∑ 

z∈ d \ i 
1 , + 

� H (h,z) − 1 
| d 2 , + | 

∑ 

z∈ d \ i 
2 , + 

� H (h,z) 

∣∣∣∣]

∫ 
H 1 , e 

−γ

[
1 
| d| 
∑ 

z∈ d \ i � (h,z)+ λ
∣∣∣∣ 1 

| d 1 , + | 
∑ 

z∈ d \ i 
1 , + 

� H (h,z) − 1 
| d 2 , + | 

∑ 

z∈ d \ i 
2 , + 

� H (h,z) 

∣∣∣∣]
dh 

.

(B.5)

onsequently: 

� 
Q = 

∣∣1 , e h ∼Q d 
{ � ( h, ·) } − 1 , e h ∼Q 

d \ i { � ( h, ·) } ∣∣∞ 

(B.6)

≤ 2 γ

n 

+ 

2 λγ

min [ n 1 , + , n 2 , + ] 
. (B.7)

he last upper bound is retrieved, with few technical steps, by

ubstituting Eqs. (B.4) and (B.5) in Eq. (B.6) and then by

dding and subtracting the missing term, therefore the statement

s proved. �

.4. Proof of Theorem 8 

roof. In order to prove the statement of the theorem let us note

hat 

 A 

{ A (d) = f } 

= 

1 , e 
−γ
[ 

1 
| d| 
∑ 

z∈ d � (h,z)+ λ
∣∣∣ 1 

| d 1 , + | 
∑ 

z∈ d 1 , + � H (h,z) − 1 
| d 2 , + | 

∑ 

z∈ d 2 , + � H (h,z) 

∣∣∣] 
∫ 
H 

1 , e 
−γ
[ 

1 
| d| 
∑ 

z∈ d � (h,z)+ λ
∣∣∣ 1 

| d 1 , + | 
∑ 

z∈ d 1 , + � H (h,z) − 1 
| d 2 , + | 

∑ 

z∈ d 2 , + � H (h,z) 

∣∣∣] 
dh 

, 

(B.8)

 A 

{ A ( ˙ d ) = f } 

= 

1 , e 
−γ

[
1 

| d i | 
∑ 

z∈ d i � (h,z)+ λ
∣∣∣∣ 1 

| d i 
1 , + | 

∑ 

z∈ d i 
1 , + 

� H (h,z) − 1 

| d i 
2 , + | 

∑ 

z∈ d i 
2 , + 

� H (h,z) 

∣∣∣∣]

∫ 
H 

1 , e 
−γ

[
1 

| d i | 
∑ 

z∈ d i � (h,z)+ λ
∣∣∣∣ 1 

| d i 
1 , + | 

∑ 

z∈ d i 
1 , + 

� H (h,z) − 1 

| d i 
2 , + | 

∑ 

z∈ d i 
2 , + 

� H (h,z) 

∣∣∣∣]
dh 

.

(B.9)

here i may assume any value in { 1 , . . . , n } . Then let us exploit

efinition 1 

 , e ε = 

P { A (s ) = f } 
P { A ( ̇ s ) = f } (B.10)

≤ 1 , e 
2 γ
n + 2 γ λ

min [ n 1 , + ,n 2 , + ] (B.11)

he last upper bound is retrieved, with few technical steps, by sub-

tituting Eqs. (B.8) and (B.9) in Eq. (B.10) . �
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