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Deep Face Recognition with Clustering based
Domain Adaptation

Mei Wang, Weihong Deng

Abstract— Despite great progress in face recognition tasks
achieved by deep convolution neural networks (CNNs), these
models often face challenges in real world tasks where training
images gathered from Internet are different from test images
because of different lighting condition, pose and image quality.
These factors increase domain discrepancy between training
(source domain) and testing (target domain) database and make
the learnt models degenerate in application. Meanwhile, due
to lack of labeled target data, directly fine-tuning the pre-
learnt models becomes intractable and impractical. In this paper,
we propose a new clustering-based domain adaptation method
designed for face recognition task in which the source and target
domain do not share any classes. Our method effectively learns
the discriminative target feature by aligning the feature domain
globally, and, at the meantime, distinguishing the target clusters
locally. Specifically, it first learns a more reliable representation
for clustering by minimizing global domain discrepancy to reduce
domain gaps, and then applies simplified spectral clustering
method to generate pseudo-labels in the domain-invariant feature
space, and finally learns discriminative target representation.
Comprehensive experiments on widely-used GBU, LJB-A/B/C
and RFW databases clearly demonstrate the effectiveness of our
newly proposed approach. State-of-the-art performance of GBU
data set is achieved by only unsupervised adaptation from the
target training data.

Index Terms— Face recognition, Unsupervised domain adap-
tation, Pseudo-label, Face clustering.

I. INTRODUCTION

Benefiting from convolutional neural networks (CNNs) [[],
(211, 31, (4], [5], deep face recognition (FR) has been the most
efficient biometric technique for identity authentication and
has been widely used in enormous areas such as military,
finance, public security as well as our daily life. However,
deep networks which perform perfectly on benchmark datasets
may fail badly on real world applications. This is because the
set of real world images is infinitely large and so it is hard
for any dataset, no matter how big, to be representative of
the complexity of the real world. One persuasive evidence is
presented by P.J. Phillips’ study [6] which conducted a cross
benchmark assessment of VGG model [[7] for face recognition.
The VGG model, trained on over 2.6 million face images of
celebrities from the Web, is a typical FR systems and achieves
98.95% on LFW [8]] and 97.30% on YTF [9]. However, It only
obtains 26%, 52% and 85% on Ugly, Bad and Good partition
of GBU database, even if all of images in GBU are nominally
frontal.
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The main reason is a different distribution between training
data (source domain) and testing data (target domain), referred
to as domain or covariate shift. Visual examples of this domain
shift are shown in Fig. [I] Each dataset in Fig. [I] displays a
unique “signature” and thus one can easily distinguish them
only by these signatures, which proves the existence of signif-
icant discrepancies. The images in CASIA-WebFace [10] are
collected from Internet under unconstrained environment and
most of the figures are celebrities and public taken in ambient
lighting; The GBU [11] contains still frontal facial images
and is taken outdoors or indoors in atriums and hallways with
digital camera; IJB-A [12]] covers large pose variations and
contains many blurry video frames. Sometimes, the images of
GBU and IJB-A datasets may be closer to the ones in real life
which are taken with digital camera under different shooting
environments and contain larger variations.

To alleviate the problems caused by domain shift, the most
popular approach is to fine-tune a pre-trained deep network’s
parameter on testing scenario with the supervision of data
label. This straightforward strategy turns out to be problematic
because it can be expensive or even infeasible to obtain re-
quired amount of labeled data in all possible testing scenarios.
Moreover, more and more concerns on privacy may make the
collection and human-annotation of the application-collected
data become illegal in the future. Fortunately, unsupervised
domain adaptation (UDA) is a promising technique aiming to
address this problem, which learns a good predictive model for
the target (testing) domain using labeled examples from the
source (training) domain but only unlabeled examples from
the target domain. Recently, many deep UDA methods [13]]
try to learn more transferable representations through mapping
both domains into a domain-invariant feature space, and then
directly apply the classifier learned from only source labels
to target domain, which produce boosted accuracy in various
object recognition tasks [14], [15], [L6], [L7], [18], [19], [20],
[211, [22], [23], [241], [25], [26], [27], [128].

In non-deep era, UDA was used for face recognition [29],
[30] in which the distributions of the two datasets are matched
by learning a common shared space. In deep era, there have
been many well-established deep UDA methods [13] for
object classification and other computer vision applications.
However, most of these methods are not applicable for the
face recognition task at all. In particular, face recognition
poses two unique challenges for deep UDA different from
that in object classification. First, popular methods by the
global alignment of source and target domain are no longer
sufficient to acquire the discriminating power for classification
in deep FR. Second, the face identities (classes) of source
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Fig. 1
SEVERAL SAMPLE IMAGES OF THREE FACE DATABASES. FROM LEFT TO RIGHT: (A) CASIA-WEBFACE [10], (8) GBU [I1]] AND (C) IJB-A [12].
COMPARED WITH CASIA-WEBFACE, GBU IS TAKEN OUTDOORS OR INDOORS IN ATRIUMS AND HALLWAYS WITH DIFFERENT LIGHTING CONDITIONS;
1JB-A COVERS LARGE POSE VARIATIONS AND CONTAINS MANY BLURRY VIDEO FRAMES.

and target domain are non-overlapping, so that many skills
developed in deep UDA which are used to further improve
target performance based on sharing classes are inapplicable.
In this sense, designing suitable adaptation method is the key
to apply deep face recognition technique in ubiquitous scenes,
but few research works has been done in this community.

In this paper, we propose a clustering-based domain adap-
tation (CDA) method for unconstrained face recognition. In
order to address non-overlapping identities between domains,
we introduce clustering algorithms into target domain to obtain
pseudo-labels, by which the pre-learned model is adapted
and the enhanced discriminative representations are learned.
Specifically, CDA applies a simplified spectral clustering al-
gorithm which requires neither overlapping classes nor the
number of target classes. It generates pseudo-labels through
a clustering graph where the nodes represent images and
edges signify two images have larger cosine-similarity, and
each connected component with at least three nodes in graph
is saved as a cluster (identity). This scheme for domain
adaptation is fundamentally different from the state-of-the-
art methods which generate target pseudo-labels by maximum
posterior probability of source classifier [31], [24], [32], [33l,
these methods can not be utilized in FR due to non-overlapping
classes of two domains.

To enhance the quality of clustering-based pseudo-labels,
the proposed CDA method applies deep domain confusion
network (DDC) and deep adaptation networks (DAN)
to conduct global domain alignment before clustering,
which optimize the learned representations by minimizing
a measure of domain discrepancy, i.e. maximum mean dis-
crepancy (MMD). The hidden representations of images of
different domain are embedded in a reproducing kernel Hilbert
space, and the mean embeddings of distributions cross do-
mains can be explicitly matched. Through utilizing MMD to
optimize pre-learned model, DDC and DAN both alleviate
the discrepancy between source and target face database and

enhance model performance on target test data. Besides, with
more transferable and generalized feature extracted from DDC
and DAN, the calculated cosine-similarity of any two target
images in our clustering algorithm is more accurate leading to
higher quality of pseudo-labels. Comprehensive experiments
are carried out in the GBU [[L1]], JB-A/B/C [12], [34], and
RFW [36] databases, significant performance gains are reached
which indicates the competency of the proposed approach.

Our contributions can be summarized into three aspects.

1) We present a comprehensive study of scene adaptation
in face recognition task, and empirically validate the necessity
to perform deep domain adaptation. Even the deep models
trained by large-scale training Web-collected data still fail to
generalize well in many realistic scenes, such as those defined
by Ugly data of GBU and the low-quality data of IJB-A
dataset [12]. This is caused by the mismatched distribution of
training and testing data due to different illuminations, image
quality, and shooting angles.

2) We propose a new clustering-based domain adaptation
method to address a special domain adaptation task for face
recognition where the training (source) and test (target) sub-
jects are non-overlapping. CDA effectively learns the discrim-
inative target feature by aligning the feature domain globally,
and, at the meantime, distinguishing the target clusters locally.
It first jointly applies DDC and DAN to reduce domain gap
and learn domain-invariant representations, and thus provides
more reliable underlying face representation for clustering.
Then, a simplified spectral clustering method is proposed to
generate pseudo-labels in the aligned feature space, and target
discriminative representations are learned.

3) We perform extensive face recognition experiments by
using the Web-collected dataset [10] as source domain, and
GBU [[11]], IIB-A/B/C databases [12], [34], [33] as the target
domains, and experimental results demonstrate the superiority
of the proposed method. In particular, our method outperforms
the state-of-the-art counterparts by a large margin on the



GBU dataset, although it is only based on the unsupervised
adaptation from the target training data. Moreover, we also
utilize our method to perform adaptation across races, and
our CDA obtains promising performance on different races of
RFW dataset [36].

The remainder of this paper is structured as follows. In
the next section, we briefly review related work on deep
FR and deep UDA. Then, we introduce the details of MMD
and pseudo-labels in Section III. In Section IV, we introduce
our clustering based domain adaptation algorithm in detail.
Additionally, experimental results are shown and analyzed in
Section V. Finally, we conclude and discuss future work.

II. RELATED WORK
A. Deep face recognition

In 2014, DeepFace [37] achieved the state-of-the-art accu-
racy on the famous LFW benchmark [8]], approaching human
performance on the unconstrained condition for the first time,
by training a 9-layer model on 4 million facial images. Since
then, research of FR focus has shifted to deep-learning-based
approaches. More powerful loss functions are explored to learn
deep discriminative features and are categorized into Euclidean
distance based loss, angular/cosine margin based loss as well
as softmax loss and its variations [38]. Euclidean distance
based loss reduces intra-variance and enlarges inter-variance
based on Euclidean distance. DeeplD series [39], [40]], [41]
combined the face identification (softmax) and verification
(contrastive loss) supervisory signals to learn a discriminative
representation, and joint Bayesian (JB) was applied to obtain
a robust embedding space. They trained 50 networks using
a private dataset of 202,595 images and 10,117 subjects.
FaceNet [42]] used a triplet loss function aiming to separate the
positive pair from the negative one by a distance margin and
achieves good performance (99.63%) on LFW. VGG model
[7] is a typical application based on VGGNet architectures
[2]. Tt was trained on a large scale dataset of 2.6M images
of 2622 subjects. Wen et al. [43] proposed a center loss to
reduce the intra-class features variations. To separate samples
more strictly and avoid misclassifying the difficult samples,
angular/cosine margin based loss is proposed to make learned
features potentially separable with a larger angular/cosine
distance on a hypersphere manifold, such as Sphereface [44],
L-softmax [45], Cosface [46l, AMS [47] and Arcface [48]]. In
addition to Euclidean distance based loss and angular/cosine
margin based loss, there are also many works taking effort to
normalize feature or weight in softmax loss, e.g. L2-softmax
[49] enforced all the features to have the same L2-norm, so
that similar attention is given to good quality frontal faces and
blurry faces with extreme pose; Ring loss [50] encouraged
norm of samples being value R (a learned parameter) rather
than explicit enforcing through a hard normalization operation.

Although these CNN based methods have achieved ultimate
accuracy in LFW benchmark, they only focus on utilizing
a massive amount of labeled facial images to train a CNN
with strong generalization ability and testing on common
benchmarks with same distribution. When there is domain shift
and it is impossible to obtain labeled data in testing scenarios,

the CNN pre-trained on the source data may not generalize
well to target data.

B. Deep unsupervised domain adaptation

Mimicking the human vision system, domain adaptation is
a particular case of transfer learning (TL) that utilizes labeled
data in one or more relevant source domains to execute new
tasks in a target domain [13]]. Basically, the main challenge
in domain adaptation is the domain shift between the source
domain and the target domain. To address this issue, in close-
set DA where the images of the source and target domain
are from the same set of categories, many UDA approaches
are proposed and explore domain-invariant feature spaces by
minimizing some measures of domain discrepancy such as
statistic loss [14], [15]], [16], [51], [17], [18]], adversarial loss
[210], [22], [23], [24], [25], [26]. MMD is a commonly-used
statistic loss for UDA. The DDC proposed by Tzeng et al. [[14]
is optimized for classification loss in the source domain, while
domain difference is minimized by one adaptation layer with
the MMD metric. Long et al. [[15] proposed DAN that matches
the shift in marginal distributions across domains by adding
multiple adaptation layers and exploring multiple kernels.
Adversarial loss makes the distribution of both domains similar
enough through domain classifier such that the network is
fooled and can be directly used in the target domain. The
domain-adversarial neural network (DANN) [22] integrated
a gradient reversal layer (GRL) to train a feature extractor
by maximizing the domain classifier loss and simultaneously
minimizing the label predictor loss.

Besides, [31[], [24], [32], [33]], [S2] utilize the pseudo-labels
to compensate the lack of categorical information and learn
discriminative representations in the target domain. In [31],
the idea of tri-training [53] was incorporated into domain
adaptation. Two different networks assign pseudo-labels to
unlabeled samples, another network is trained by these pseudo-
labels to obtain target discriminative representations. Zhang
et al. [24] iteratively selected pseudo-labeled target samples
based on the classifier from the previous training epoch and
re-trained the model by using the enlarged training set.

However, the assumption of close-set DA may not hold in
real world application, and the source and target domain may
not always share label space. Currently, open-set DA [54],
530, [S6l, [S7], [S8] is proposed to address this problem.
In open-set DA, different domains only share partial classes
and further contain their specific classes. Therefore, the key
issue of open-set DA is to separate samples into shared and
specific classes and align domains in shared label space. Cao
et al. introduced a selective adversarial network (SAN) [54] to
promote positive transfer by matching the data distributions in
the shared label space via splitting the domain discriminator
into many class-wise domain discriminators. Separate to Adapt
(STA) [57] adopted a coarse-to-fine weighting mechanism to
progressively separate the samples of unknown and known
classes, and used instance-level weights to reject samples of
unknown classes in adversarial domain adaptation. Zhang et
al. [55] proposed a two domain classifier strategy to identify
the importance score of source samples. Satio et al. [58]]



proposed a new adversarial learning method in which the
feature generator can decrease or increase the probability for
specific classes in order to align shared classes or reject
specific classes. However, in face recognition, there is no
shared class between source and target domain, which is a
more complex and realistic setting compared to open-set DA.
Domain shift in face recognition can not be addressed through
simply aligning domains in shared label space.

C. Unsupervised domain adaptation for face recognition

In shallow face recognition, many UDA methods [59], [30],
[29], [60], [61] were utilized to match the distributions of
training and testing datasets. Yang et al. [59] developed a
domain-shared group-sparse dictionary learning model to learn
domain-shared representations with aligned joint distributions.
Kan et al. [30] directly converted the source domain data to
the target domain in the image space with the help of sparse
reconstruction coefficients learnt in the common subspace.
Zong et al. [62]] learned a domain regenerator to regenerate
the source and target samples by subspace learning and MMD,
such that they can abide by the same or similar feature distri-
butions. Ni et al. [29]] sampled several intermediate domains
between the source and target domains, and represented each
intermediate domain using a dictionary, then they applied
invariant sparse codes across these domains to provide a shared
feature representation which can be utilized for cross domain
recognition. In deep learning era, deeper networks and larger
unconstrained images are used to improve the performance of
face recognition systems. However, deep FR is still affected by
domain shift. Due to the unique challenges of deep FR, very
few studies have focused on UDA for deep FR. Luo et al. [63]]
integrated the maximum mean discrepancies (MMD) estimator
to CNN to decrease domain discrepancy. Sohn et al. [64]]
proposed an UDA method for video FR using large-scale unla-
beled videos and labeled still images. They synthesized video
frames from images by a set of transformations and utilized
images, synthesized images, and unlabeled videos for domain
adversarial training. A bi-shifting auto-encoder network (BAE)
[65] is proposed to enforce the shifted source domain and
target domain to share similar distribution, in which each
sample of one domain can be sparsely reconstructed by several
local neighbors from the other domain. Due to lack of labeled
target data, these deep methods only align the feature domain
globally, but ignoring the demand of discriminative ability on
target domain. It is insufficient for deep FR, which is a fine-
grained classification problem. We suggest that pseudo-labels
are suitable to address this problem. However, pseudo-label
based methods for object classification can not be used in FR
because they all assume that there are shared classes between
source and target domains and generate target pseudo-labels
by maximum posterior probability of source classifier. In this
paper, we propose a new clustering-based domain adaptation
method to address this unique challenge.

III. PRELIMINARY

In our case, we are given a set of labeled data from the
source domain, and denote them as Dy = {x$,y5},, where

x; is the ¢-th source sample, y; is its category label, and M is
the number of source images. A set of unlabeled data from the
target domain is given as well and is denoted as D; = {z!} ,,
where 2! is the i-th target sample and NV is the number of target
images. The data distributions of two domains are different,
P(XsaY;) 7é P(Xt;}/t)'

A. Maximum mean discrepancy

In the field of UDA, MMD [14]], [15] has been widely
adopted as a standard distribution distance metric to measure
the discrepancy between source and target domains. Given two
distributions s and ¢, the MMD between them is defined as:

La(s,) = sup || Brens[d(x®)] = Bxtnad]||3, (D
ol <1

where E represents the expectation with regard to the dis-
tribution. ¢ represents the function that maps the original
data to a reproducing kernel Hilbert space (RKHS). We have
MMD?(s,t) = 0 when s and t share the same distribution
based on the statistic tests defined by MMD. The kernel
functions which are associated with this mapping, k(x*, zt) =
(p(x®), d(x?)), is defined as the convex combination of m
PSD kernels k,,

where (3, is the coefficient of u-th kernel and the commonly-
used kernel is the Gaussian kernel k, (2%, zt) = W,
Denote by Dy = {2}, and D; = {x!}Y, drawn from the
distributions s and ¢, respectively, an empirical estimate of
MMD is given as:
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The main idea of MMD-based network, i.e. DDC [14] and
DAN [15], is to integrate MMD estimator to the CNN error
so that the domain divergence is minimized. However, the
formulation of MMD in Eq. (3)) is computed in quadratic time
complexity, it is prohibitively time-consuming for deep UDA.
Gretton et al. [66] further suggested an unbiased approxima-
tion to MMD with linear complexity and it is suitable for
gradient computation in a mini-batch manner:
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Through optimizing networks by MMD, the final classifi-
cation decisions are made based on features that are invariant
to the change of domains, i.e., have the same or very similar
distributions in the source and the target domains, thus, the
models trained on source data can generalize to target data.
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Fig. 2
THE OVERALL STRUCTURE OF THE PROPOSED METHOD. LEFT: THE CLUSTERING BASED DOMAIN ADAPTATION NETWORK. SOURCE CLASSIFICATION

LOSS SUPERVISES LEARNING PROCEEDS FOR SOURCE DOMAIN; MMD LOSS AIMS AT MINIMIZING THE DISTRIBUTION DISCREPANCY OF TWO DOMAINS;

TARGET PSEUDO CLASSIFICATION LOSS AIMS TO LEARN DISCRIMINATIVE TARGET REPRESENTATIONS ON PSEUDO-LABELS GENERATED BY CLUSTERING

ALGORITHMS. ONLY USING THE FIRST TWO LOSSES TO OPTIMIZE NETWORKS IS DENOTED AS MMD-BASED NETWORKS. WE FIRST TRAIN A

MMD-BASED NETWORK USING LABELED SOURCE DATA AND UNLABELED TARGET DATA, THEN UTILIZE TARGET PSEUDO CLASSIFICATION LOSS TO

FURTHER ADAPT TARGET CNN AFTER OBTAINING TARGET PSEUDO-LABELS. RIGHT: THE SIMPLIFIED SPECTRAL CLUSTERING ALGORITHM. WITH THE

TARGET REPRESENTATIONS EXTRACTED BY MMD-BASED NETWORK, A CLUSTERING GRAPH IS CONSTRUCTED WHERE THE NODES REPRESENT IMAGES

AND EDGES SIGNIFY TWO IMAGES HAVE LARGER COSINE-SIMILARITY. EACH CONNECTED COMPONENT WITH AT LEAST THREE NODES IS SAVED AS A

CLUSTER (IDENTITY). THEN, WE CAN ANNOTATE THE CLUSTERED NODES WITH PSEUDO LABELS AND ADAPT THE TARGET CNN WITH THEM.

B. Pseudo label

Pseudo-label is an alternative method for deep UDA in
object classification assuming that source and target domain
share the same classes [31], [24], [32], [33], [52]. CNN
is trained supervised with source labeled data and is fine-
tuned with target pseudo-labeled data that can be obtained by
following steps. We denote {p.(z!)|<;} as the output from
the Softmax layer of the source classifier in CNN, where each
pe(z!) is the probability that target sample x! belongs to the
c-th classes, and m,. is the total number of classes. Then, the
pseudo-label of x! can be obtained by choosing the class with
the maximum posterior probability:

®)

yi = argmax pe(x})

After that, the network is fine-tuned on pseudo-labeled target
data with supervision of Softmax loss.

Furthermore, to suppress the negative influence of falsely-
labeled samples, some studies are explored modified strategies
which progressively select reliable pseudo-labels from the
most confident predictions and re-train the model by using
the enlarged training set. It can be formulated as follow:

{

where D}|/"°; denotes the unlabeled target samples D, are
partitioned into m. classes. w; = 1 indicates xf to be
selected in current training process; otherwise, xf is not to
be selected. n is a threshold which constrains the maximum
posterior probability (confidence) of selected samples. 7 can
be a constant, or a variable of the training step [32], [S2], or a
variable of the classification accuracy of the current classifier

measured by the labeled source data [24].

L if pr(e}) >n
0, otherwise

(6)
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IV. CLUSTERING BASED DOMAIN ADAPTATION

Due to the absence of labeled target samples, most deep
DA methods for object classification, such as MMD, only
align source and target domain globally. It is not effective
enough and cannot ensure accuracy on the target domain in FR
tasks where discriminative target representations are required.
When lacking of target categorical information, we suggest
that pseudo-labels [67] are suitable to address this problem,
which encourages a low-density separation between classes in
the target domain. However, adopting UDA in face recognition
is a special domain adaptation task where the training (source)
and test (target) subjects are non-overlapping, which means
that traditional pseudo-labels based UDA methods relying on
shared categories are inapplicable. To address this problem, we
propose to introduce clustering algorithms into UDA. Many
clustering algorithms are feasible for generating pseudo-labels
in our clustering-based domain adaptation (CDA) network, and
we design a simplified spectral clustering algorithm which
is simple but effective for clustering faces in deep feature
space. It clusters faces through connected subgraphs and can
be adopted even if the number of target classes is large but
unknown. The overall architecture of our method is depicted

in Fig. 2]

A. Clustering algorithm

In this section, we formally introduce the detailed steps of
simplified spectral clustering algorithm:

Compute similarity matrix. We feed unlabeled target data
X, into a deep model as input and extract deep features
F(X¢). As we know, the clustering results depend not only on
the choice of clustering algorithm, but also on the quality of
the underlying face representation. Considering domain shift,



the underlying target representation will not be perfect even
using a strong source model. Therefore, the deep model here is
pre-trained on source samples and further optimized by MMD
to improve performance in target domain as much as possible.
Then, with these deep presentations, we construct a N X N
similarity matrix, where N is the number of faces in target
domain and entry at (%, j), i.e. s(,7), is the cosine similarity
between target representations F(z}) and F(2%).

Build clustering graphs. We consider two faces belonging
to one identity if their cosine similarity is large. Thus, we
can build a clustering graph G(n,e) according to similarity
matrix, where the node n; represents ¢-th target image and
edge e(n;,n;) signifies these two target images have larger
cosine-similarity:

oL ifs(i,g) >«
e(ni,n;) = { 0, otherwise

where « is the threshold for edges. Then, we simply save
each connected component with at least p nodes as a cluster
(identity) and the remaining images will be treated as scattered
points. We choose a minimum component size p = 3. Because
the connected components with only one or two nodes may be
the ones clustered incorrectly; even if this cluster is correct,
low-shot class would deteriorate the long tail distribution of
data. Furthermore, the threshold « is vital for clustering. If
« 1s set to be lower, more faces of different identities will
be clustered together which contains severe intra-class noise;
otherwise, faces of one identity will split into more scattered
points and be discarded, or they will split into smaller clusters
leading to severe inter-class noise.

Pick up scattered points. Due to large variations, some
images can not be clustered and be treated as scattered
points. We pick up these scattered points by assuming that
all samples of a given identity can be clustered around its
corresponding prototype. The prototypes are computed by the
average representation pf of all target samples in one cluster
k obtained by connected component:
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where D! is the set of all target images in k-th cluster. Then,
for each scattered point xf(sc atter): W€ compute its cosine
similarities with all prototypes, and add it to corresponding
prototype with the largest cosine similarity. To obtain the
samples with high confidence, we constrain that the similarity

scores should above a certain threshold f3:

yf—{

where, s; = cos (F(xf(swtm.)), u’,i)

argmax s, ifmlgmx sk > 0

00, otherwise

9

So, we only cluster images with higher confidence to
alleviate negative influence caused by falsely-labeled samples.
Finally, we can annotate all clustered nodes with pseudo label
y!, and adapt the network with supervision of Softmax loss.

B. Adaptation networks

We extend the VGGNet [2] and RseNet [4] architecture to
our CDA network. As shown in Fig. P the architecture of
our CDA consists of a source and target CNN, with shared
weights. MMD estimators are adopted on higher layers of
network which are called adaptation layers. We simply use
a fork at the top of the network, after the adaptation layer.
The inputs of source CNN are source labeled images while
those of target CNN are target unlabeled data. The goal of
our approach is to minimize the following loss function:

L=Ls(Xeys) + A La(DL, DY) + Lo(Xy,4) - (10)
lel

where the hyperparameter \ is a penalty parameter. D. is
the [-th layer hidden representation for the source and target
examples, and Ly (D!, D!) (Eqn. E]) is the MMD between the
source and target evaluated on the [-th layer representation.
MMD loss makes the distributions of the source and target
similar under the hidden representations. Selecting suitable
adaptation layers can significantly enhance the transfer effi-
ciency. According to the observation of [68], the transfer abil-
ity drops in higher layers with increasing domain discrepancy
and transfer learning method would obtain better performance
when transferring higher layers of the deep neural network.
In CDA, we adopt multi-kernel MMD on the last two layers.
Ls(Xs,ys) denotes source classification loss on the source
data X and the ground truth labels y, which guarantees the
performance of deep network. The third term, i.e. Ly (X¢, 4;),
is our target pseudo classification loss on the target data X,
and the pseudo-labels y;, which learns more discriminative
representations for target domain:

M m.

1 S S
Ls(Xs,ys) = M ZZ Lic = y;]logpc(x7)
P (11)
R 1 . X
Lr(Xt,9:) = N Z Z lie= gillogpe(x;)
1=1 c=1

Here, we utilize Softmax loss (Arcface loss [48]]) as our
classification loss for source and target domain. In source
classification loss Ls(Xs,ys), 1jc = y;] is 1 when ¢ = y7,
otherwise, it is 0; p.(z!) is the probability that source sample
x; belongs to the c-th classes, and m, is the total number of
source classes. The definition of target pseudo classification
loss L (X¢,y:) is similar to that of source classification loss
where 7. is the total number of target clusters and N is the
number of target samples clustered successfully.

C. Clustering based domain adaptation algorithm

The entire procedure of our method is depicted in Algorithm
m In the first stage, the baseline model is trained with our
source data, i.e. CASIA-Webface [10], so that we can use it as
our source CNN. In the second stage, source classification loss
and MMD loss are used to optimize MMD-based networks
(i.e. DDC [14] and DAN [15]). MMD-based network is
conducted by source CNN and weight-shared target CNN and
is trained with the unlabeled target data and labeled source
data so that the deep features are invariant to the change of



domains, i.e., have the same or very similar distributions in the
source and the target domains, and the performance of target
domain is preliminarily improved. In the third stage, we extract
deep features of target samples by MMD-based network, then
adopt our clustering algorithms to generate pseudo-labels.
Benefiting from better performance of MMD-based networks
on target domain, the calculated cosine-similarity of any two
target images in our clustering algorithm is more accurate
leading to higher quality of pseudo-labels. In the forth stage,
we adapt the target CNN on these pseudo-labeled target data
with supervision of target pseudo classification loss. MMD-
based networks address huge domain discrepancy to learn
transferable representations for FR tasks and provide more
reliable underlying face representation for clustering; while
pseudo-labels encourage a low-density separation between
target classes to learn more discriminative representations for
FR tasks.

Algorithm 1 Clustering based domain adaptation algorithms.

Input:
Source domain labeled samples {z$,y? f.”il, and target domain unla-
beled samples {xi}f\f: 1+ Network learning rate y, hyper parameter A, «,
[ and p, network layer parameters ©.

Output:

Network layer parameters ©.

: Stage-1: // Pre-train

2: Train the baseline model on source labeled data;

3: Stage-2: // MMD-adaptation
Adapt the network with MMD loss and source classification loss to learn
domain-invariant representations and provide more reliable underlying
face representation for clustering

—_

4: Repeat:
S5:7=7+1
6: Update the backpropagation error for x;:
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7: Update the network layer parameters O:
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: Until convergence
9: Stage-3: // generate target pseudo labels by clustering algorithm
10: Extract deep features of target unlabeled data and compute similarity
matrix;
11: Build clustering graphs according to Eqn. and save each connected
component with at least p nodes as a cluster;
12: Add scattered points to corresponding clusters according to Eqn. ©s
13: Annotate all clustered nodes with pseudo label yf.
14: Stage-4: // Pseudo-adaptation
Adapt the network with target pseudo-labels using target pseudo classifi-
cation loss to learn more discriminative target representations
15: Repeat:
16: j=75+1
17: Update the network layer parameters O:
. . . OL? . .
Qi+l = @i _“JT(—)? =07 — i (ZN

18: Until convergence
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V. EXPERIMENTS

In this section, we evaluate our CDA method on five face
recognition benchmarks, i.e. GBU [11]], JB-A/B/C [12f], [34],
[35] and RFW [36]. We will begin with introducing the
detailed information and evaluation protocol of the datasets

we utilized, followed by illustrating the training details of our
experiments and presenting results and analyses.

A. Datasets and Evaluation Protocols

CASIA-WebFace: CASIA-WebFace dataset [10] is a large
scale face dataset gathered from Internet. It contains 10,575
subjects and 494,414 images. The large scale of labeled facial
data does great help to train CNNs. In our experiments, we
adopt this dataset as the source domain data for training the
classification network.

GBU: Its full name is The Good, the Bad, and the Ugly
Face Challenge [11]]. This dataset consists of three partitions,
and different partitions contain pairs of images with different
difficulty levels based on the performance of three top per-
formers in the FRVT 2006. The Good partition consists of
images which are easy to match; the Bad one contains pairs
of average difficulty to recognize; the Ugly one contains pairs
considered difficult. Fig. [3| shows three pairs of images of
each person, sampled from the Good (left), Bad (middle), and
Ugly (right) partition. This figure illustrates the variations in
the appearance of a person across frontal images, e.g. different
settings, expression and hairstyle. Each partition consists of a
target set and a query set, and both them contain 1085 images
of 437 distinct people. Following the evaluation protocol of
[L1], we use receiver operating characteristics (ROC) curve
and the verification rate (VR) at a false positive rates (FAR)
of 0.001 for each partition to compare the performances of
different algorithms. In order to ensure that the subjects in
target training set do not appear in target testing set, we utilize
part of images from FRGC [69]] (without label information)
as the target training data, which consists of 19270 still front
faces.

IJB-A: IJB-A database [12] contains 5,397 images and
2,042 videos of 500 subjects, which are split into 20,412
frames, 11.4 images and 4.2 videos per subject. It is a joint
face detection and FR dataset, in which both face detection
and facial feature point detection are accomplished manually.
The key characteristics of IJB-A are that it contains a mixture
of images and videos in the wild and covers a full range of
pose variations. IJB-A provides 10-split evaluations with two
standard protocols, namely, face verification (1:1 comparison)
and face identification (1:N search). The performance of
verification is reported using the true accept rates (TAR) vs.
false positive rates (FAR) (i.e. ROC curve). The performance
of identification is reported using the Rank-N (i.e. the cumu-
lative match characteristic (CMC) curve) and the true positive
identification rate (TPIR) vs. false positive identification rate
(FPIR). There are ten random training (333 subjects) and
testing (167 subjects) splits which occur at subject level, using
all 500 IJB-A subjects. For each split, we adopt our CDA
method by using its training data (without label information)
as our target training data and using its testing data as our
target testing data. The results are averaged over 10 testing
splits.

1JB-B: The 1JB-B dataset [34] is an extension of IJB-A
[12], having 1,845 subjects with 21.8K still images (including
11,754 face and 10,044 non-face) and 55K frames from 7,



Fig. 3
TWO EXAMPLE IDENTITIES OF THE GOOD, BAD, AND UGLY PARTITION OF
GBU DATABASE. THE TOP TWO ROWS SHOW THREE PAIRS OF IMAGES OF

THE SAME PERSON, SAMPLED FROM THE GOOD (LEFT), BAD (MIDDLE),
AND UGLY (RIGHT) PERFORMANCE CONDITIONS. THE SECOND TWO
ROWS SHOW THE SAME TYPE OF SAMPLE FOR A SECOND PERSON.

011 videos. The dataset is more challenging and diverse than
IJB-A, with protocols designed to test detection, identification,
verification and clustering of faces. Unlike the IJB-A dataset,
it does not contain any training splits. We use images of [JB-A
(without label information) as our target training data and use
images of 1JB-B as our target testing data.

IJB-C: The IJB-C dataset [33]] is a further extension of 1JB-
B, having 3,531 subjects with 31.3K still images and 117.5K
frames from 11,779 videos. In total, there are 23,124 templates
with 19,557 genuine matches and 15,639K impostor matches.
Similar to IJB-B dataset, the protocols are designed to test
detection, identification, verification and clustering of faces.
The dataset also contains end-to-end protocols to evaluate the
algorithm; s ability to perform end-to-end face recognition.
We use images of IJB-A (without label information) as our
target training data and use images of IJB-C as our target
testing data.

RFW: Racial Faces in-the-Wild (RFW) dataset [36] is a
testing database for studying racial bias in face recognition.
Four testing subsets, namely Caucasian, Asian, Indian and
African, are constructed, and each contains about 3000 indi-
viduals with 6000 image pairs for face verification. They can
be used to fairly evaluate and compare the recognition ability
of the algorithm on different races. We use RFW dataset to
validate the effectiveness of our CDA method on transferring
knowledge across races. In order to perform adaptation exper-
iment, we utilize BUPT-Transferface dataset [36] to train our
CDA model and test it on RFW. BUPT-Transferface dataset
is a training dataset with four race subsets and is released

with RFW. One training subset consists of about 500K labeled
images of 10K Caucasians and three other subsets contain
50K unlabeled images of non-Caucasians, respectively. We use
Caucasian as source domain and other races as target domains
in our experiments.

B. Implementation details

For the baseline network, we employ the widely used
VGGNet [2] and ResNet-34 [4] architecture. We finetune
the VGG model [[7] with the guidance of Softmax loss on
the CAISA-Webface, and is called VGG(finetune) model in
our paper; while the ResNet-34 is trained with the guidance
of Arcface loss [48]] on the CAISA-Webface, and is called
Arcface model in our paper.

For data processing of VGG, all the images of different
datasets are aligned to the same reference point using three
facial landmarks (left eye, right eye and center of mouth).
The images are firstly resized to 250 x 250 and are then
randomly cropped to 224 x 224. We also augment the data
by flipping it horizontally with 50% probability. And for
data processing of ResNet, we use five facial landmarks for
similarity transformation, then crop and resize the faces to
112x112. Each pixel ([0, 255]) in RGB images is normalized
by subtracting 127.5 and then being divided by 128.

For training CDA(vgg-soft) model, we select VGG model
[Z] which uses VGGNet [2] and is trained on VGGface dataset
[7] and reports excellent results on LFW and YTF benchmarks.
However, we know nothing about the face aligned method in
VGG model which may cause inconsistent alignment methods
between training data and test data and thus results in a poor
performance. To address this issue, We use the fine-tuning ar-
chitecture similar to [[14]], [15] where CASIA-WebFace dataset
[10] is utilized as source data to fine-tune the VGG model.
The CASIA-WebFace dataset and other target datasets share
the uniform alignment methods as we mentioned before. The
based learning rate is fixed at 10™%. As the last classifier is
trained from scratch, we set its learning rate to be 10 times
that of the lower layers. The batch size is set to 32 and the
network is trained for 2 x 10* iterations.

After fine-tuning the VGG model with our source data, we
utilize the unlabeled target data and labeled source data to
adapt the baseline network by MMD. Our network architecture
is comprised of two basic CNNs which are identical in
structure and shared by parameters. One is for classification
on source data and the other is for representation learning
on target data. We use Softmax loss as source classification
loss and fix the learning rate of all layers to 10~%. The
hyper-parameter A in Eq. [I1] is fixed at 0.5. The2 kernel in
MMD is Gaussian kernel k(z®, z!) = e ll="==" 177 where
~ donates the bandwidth. In our experiments, DAN(vgg-soft)
[15] applies multi-kernel MMD on both fc6 and fc7 layer.
Five Gaussian kernels are utilized by setting bandwidth to
Y - (1,21,22,2324) where 7, is set to the median pairwise
distances [70] on training data. DDC(vgg-soft) adopts
single-kernel MMD on fc7 layer, and it only utilizes one
Gaussian kernel in which bandwidth is set to ,,. To evaluate
the effectiveness of multi-layer and multi-kernel adaptation



more comprehensively, we further make several variants of
MMD-based network, namely single-kernel MMD on both
fc6 and fc7 layer and multi-kernel MMD on fc7 layer.
We denote them as DDC,,;(vgg-soft) and D DC,,,(vgg-soft),
respectively.

For our clustering methods, the hyper-parameter p is set to
be 3. We set the parameter a and 8 in Eq. [7] and Eq. [9] as
0.675 and 0.8 in CASIA—GBU task, and set them as 0.65
and 0.8 in CASIA—1JB-A/IJB-B/IJB-C task. After obtaining
the pseudo-labels, we further fine-tune the target network with
them. We use Softmax loss as target pseudo classification loss.
The learning rate is started from le — 4 and decreased twice
with a factor of 10 when errors plateau. The network is trained
for 2 x 10% iterations. We set the batch size, momentum, and
weight decay as 64, 0.9 and 5e — 4, respectively.

For training CDA(res-arc) model, we first train a Arcface
model with the guidance of Arcface loss [48] on the CAISA-
Webface. We set the batch size, momentum, and weight decay
as 200, 0.9 and 5e-4, respectively. The learning rate is started
from 0.1 and decreased twice with a factor of 10 when errors
plateau. After that, we utilize the unlabeled target data and
labeled source data to adapt Arcface model by MMD. We use
Arcface loss as source classification loss and fix the learning
rate of all layers to le-3. The hyper-parameter A in Eq. [11]is
fixed at 5. DAN(res-arc) [15] applies multi-kernel MMD on
last two fully-connected layers. For our clustering methods,
we set the parameter o and (3 in Eq. [7] and Eq. 0] as 0.8
and 0.85 in CASIA—GBU task, and set them as 0.7 and
0.85 in CASTIA—1JB-A/1JB-B/1JB-C task. After obtaining the
pseudo-labels, we further fine-tune the target network with
them. We use Softmax loss as target pseudo classification loss.
The learning rate is le-3. We set the batch size, momentum,
and weight decay as 200, 0.9 and 5e-4, respectively. Other
experimental settings are similar to CDA(vgg-soft).

TABLE 1
VR AT FAR OF 0.001 FOR GBU PARTITIONS [11]].

Method [ Ugly Bad Good

LRPCA-face [11] 7.00% 24.00% 64.0%

Fusion [6] 15.00% 80.00% 98.00%
VGG [6] 26.00% 52.00% 85.00%
Arcface' [48] 75.00% 90.32% 96.21 %
VGG(finetune)’ 48.80% 73.55% 95.57%
DDC(vgg-soft)’[T4] | 60.90%  86.68%  98.24%
DDCy(vgg-soft)’ 63.42% 87.08% 98.54%
DDCi(vgg-soft)’ 68.42% 87.68% 98.67%
DAN(vgg-soft)’[I5] | 69.42%  88.87%  98.93%
CDA(vgg-soft) (ours) 73.58% 92.93% 99.18 %
CDA (res-arc) (ours) 83.96 % 94.84 % 97.81%

! Arcface is one of our baseline networks. It uses ResNet-34
architecture and is trained with the guidance of Arcface loss
[48] on the CAISA-Webface.

2 VGG(finetune) is one of our baseline networks. It finetunes
the VGG model [7|] supervised with Softmax on CASIA-
WebFace dataset.

3 DDC, DDC\py, DDCi and DAN represent the variants
of MMD-based network.

C. Experiment Results

CASIA—GBU. In the experiment of GBU dataset [[L1], we
report the verification rate at a FAR of 0.001 and ROC curve
for three partitions, i.e. the Good, the Bad and the Ugly. Fusion
method in [6] denotes the FRVT 2006 fusion algorithm and the
result VGG was reported in [6] by utilizing the VGG model
[7]. The LRPCA-face model is a baseline algorithm in GBU
dataset [11] which is a refined implementation of the standard
PCA-based FR algorithm. The VGG(finetune) represents one
of our baseline networks which finetunes the VGG model
with CASIA-WebFace dataset [[10]; and Arcface is the other
baseline network which uses ResNet-34 architecture and is
trained with the guidance of Arcface loss [48] on the CAISA-
Webface. The exact results are shown in Table [I| and Fig. [}

From the results, we can see several important observations.
(1) For Ugly partition, all the models give the accuracies of
less than 84% and specially an extremely low total accu-
racy of 15% with Fusion model, showing face verification
on Ugly partition is a very challenging task despite of its
frontal faces. Significantly, the performance of deep models
is unsatisfactory as well and VGG only achieves 26% on
Ugly partition, which illustrates the limitation of existing deep
models trained with Web-collected dataset and the necessity
of adopting UDA in FR tasks. (2) Compared with the results
of VGG reported in [6], our baseline model fine-tuned VGG
with CASIA-WebFace [10] obtains much better performance,
which improves the accuracy to 48.80%, 73.55%, 95.57% on
Ugly, Bad and Good partition. The results suggest that the
uniform face aligned algorithm of training and testing data is
the key to ensure performance in the FR problem. (3) MMD-
based networks, i.e. DDC(vgg-soft)[14]], DDC,,,;(vgg-soft),
DDC,,(vgg-soft)and D AN (vgg-soft) [15]], substantially out-
perform VGG(finetune) model on target dataset. This confirms
that incorporating MMD to deep networks and minimizing
the domain discrepancy are really helpful. (4) Single-kernel
MMD models (DDC(vgg-soft) and DDC,,,;(vgg-soft)) ob-
tain a little bit worse results compared with multi-kernel
MMD (D DC,,(vgg-soft) and D AN (vgg-soft)). It is because
multiple kernels with different bandwidths can match both
the low-order moments and high-order moments resulting
in a better alignment of distribution of source and target
domain. (5) The DAN(vgg-soft) obtains the best performances
compared with other MMD-based networks, which superior
to our VGG(finetune) by about 20.62% on the Ugly, 14.13%
on the Bad and 3.1% on the Good. In addition to multi-kernel
adaptation, DAN(vgg-soft) is also benefited from multi-layer
adaptation. In deep networks, representations of different lay-
ers correspond to different levels of abstraction, changing from
low-level primary elements to multifarious facial attributes.
Hence the hidden representations of all the task-specific layers
need to be matched to consolidate the adaptation quality at all
levels. (6) When introducing clustering algorithms and pseudo-
labels into DAN(vgg-soft) models, the performances of our
CDA(vgg-soft) method further improve and obtain the best
performances with 73.58%, 92.93% and 99.18% for Ugly, Bad
and Good set. We can draw conclusions that only aligning
the feature space through MMD is not enough for FR and
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THE ROC CURVES ON (A) GOOD, (B) BAD AND (C) UGLY PARTITION OF GBU DATABASE. BLACK LINES ARE ROC CURVES OF VGG(finetune) MODEL;
GREEN LINES ARE THOSE OF DDC(vgg-soft) MODEL; BLUE LINES ARE THOSE OF DAN(vgg-soft) MODEL; RED LINES ARE THOSE OF OUR CDA(vgg-soft)
MODEL. THE VERIFICATION RATE FOR EACH PARTITION AT A FAR OF 0.001 IS HIGHLIGHTED BY THE VERTICAL LINES AT FAR=0.001.

that further learning target discriminative representations using
pseudo-labels is an effective way to boost the performance.
Moreover, the results quantificationally prove the good quality
of pseudo-labels generated by our clustering method. (7) With-
out adaptation, Arcface [48], which published in CVPR’19
and reported SOTA performance on the LFW and MegaFace
challenges, can not obtain perfect performance on GBU due
to domain gap. Our CDA(res-arc) can outperform Arcface
method and even achieve about 3% gains on Ugly partition.

CASIA—1JB-A. We perform experiments in two settings
on the IIB-A benchmark dataset [12]: the TAR at different
FAR of 0.1, 0.01, and 0.001 for verification; the TPIR at
different FPIR of 0.1, 0.01 and the rank-1, rank-10 accuracy
for identification. Table and Fig. 5] report the results of
face verification and identification. We can observe that the
VGG model does not perform well on IJB-A benchmarks.
Benefiting from the same aligned method of training and
testing data, VGG(finetune) model obtains a little promotion
compared to VGG model, but its performance is still imperfect.
The images and video frames in IJB-A dataset [12]] contains
full pose variation and a wide variation in imaging conditions
and geographic origin. It is challenging for models trained
with VGGface database [7]] or CASIA-Webface databases [10]]
due to large domain gap. For example, video frames in 1JB-
A database are likely to be degraded for motion or out-of-
focus blur, compression noise or scale variations. When we
reduce their domain gap using MMD-based networks, the
improvement becomes more significant. Especially, DAN(vgg-
soft) boosts around 9% TAR @FAR=0.001 for verification, and
around 15% FNIR@FPIR=0.01 for identification compared
with VGG model. It proves that the source networks trained
with frontal and high-definition faces can adapt to recognize
the blur images of large pose variations to a certain extent
through domain adaptation. Similar to the experiments on
GBU, multi-layer MMD also attains higher accuracy than
single-layer MMD in most cases, which confirms the capa-
bility of multi-layers for distribution adaptation. After intro-
ducing clustering algorithms and pseudo-labels into DAN(vgg-

soft), the CDA(vgg-soft) model surpasses other methods and
outperforms DAN(vgg-soft) by about 2-4% on all metrics,
which further demonstrates the advantage of our clustering
algorithms. Further, when compared with the SOTA methods,
i.e. Arcface, our CDA(res-arc) can still obtain better perfor-
mance.

CASIA—1JB-B/C. We perform experiments in two settings
on the IJB-B and IJB-C benchmark dataset [34]], [35]]: the
TAR at different FAR of 0.1, 0.01, and 0.001 for verification;
the rank-1 and rank-10 accuracy for identification. Table [ITI|
reports the results of face verification and identification. We
compare our proposed method with Government-oftf-the-shelf
(GOTS-1 [34]), Bodla et al. [76], VGG [7] and Arcface [48]]
on IJB-B dataset; and compare our method with GOTS-2
[35], FaceNet [42], DR-GAN [77]], Yin et al. [78], VGG
[7] and Arcface [48] on IJB-C dataset. From the results, we
can see that our CDA(res-arc) achieves improvement over the
previous SOTA methods, i.e. Arcface, with TAR of 87.35%
at FAR = 10e-3 on IJB-B; while on IJB-C, it achieves a
Rank1 accuracy of 88.19% in face identification. In our CDA,
MMD-based networks address huge domain discrepancy to
learn transferable representations and provide more reliable
underlying face representation for clustering; while pseudo-
labels further learn more discriminative representations for FR
tasks. Actually, in our experiments, we just utilized limited
number of images in IJB-A as target training data to achieve
such improvement on these two challenging benchmarks. If
more target training data are used to adapt source model, more
significant improvement can be obtained.

Caucasian—Non-Caucasian. Some papers [36]], [79] have
proved that existing face recognition algorithms indeed suffer
from racial bias. Due to the domain gap among different
races, training and testing on different races results in se-
vere performance drop. To validate the effectiveness of our
domain adaptation method, we adopt CDA to transfer knowl-
edge among different races. We use BUPT-Transferface as
training data, and use RFW [36] as testing data. Labeled
Caucasians are utilized as source domain and unlabeled In-



TABLE 11
PERFORMANCE EVALUATION ON THE IJB-A DATASET [12]]. THE RESULTS ARE AVERAGED OVER 10 TESTING SPLITS.

Method IJB-A Verification TAR IJB-A Identification TPIR
FAR=0.001 FAR=0.01 FAR=0.1 FPIR=0.01 FPIR=0.1 Rank-1 Rank-10
Bilinear-CNN [[71]] - - - 14.20% 34.10% 58.80% -
Face-Search [72] - 73.30% - 38.30% 61.30% 82.00% -
Deep-Multipose [[73] - 78.70% - 52.00% 75.00% 84.60% 94.70%
Triplet-Similarity [74]] - 79.00% - 55.60% 75.41% 88.01% 97.38%
Joint Bayesian [75]] - 83.80% - 57.68% 78.97% 90.30% 97.70%
VGG [7] 64.19% 84.02% 96.09% 47.37% 74.30% 91.11% 98.25%
Arcface![48] 74.19% 87.11% 94.87% 65.36% 80.71% 90.68% 96.07%
VGG(finetune)? 67.96% 84.78% 95.80% 56.36% 76.05% 92.61% 98.54%
DDC(vgg-soft) [14] 72.78% 86.80% 96.34% 61.71% 80.02% 92.93% 98.81%
DDC,,(vgg-soft)? 72.97% 87.74% 96.70% 62.82% 81.30% 92.91% 98.62%
DDC,,,(vgg-soft)® 72.53% 87.13% 96.54% 61.58% 82.33% 92.54% 98.52%
D AN (vgg-soft) [15]] 72.88% 87.20% 96.34% 62.81% 81.54% 92.47% 98.33%
CDA (vgg-soft)(ours) 74.76% 89.76% 98.19 % 66.85% 85.32% 94.89 % 99.23 %
CDA(res-arc) (ours) 82.45% 91.11% 96.96% 75.49 % 87.76 % 93.61% 97.62%

I Arcface is one of our baseline networks. It uses ResNet-34 architecture and is trained with the guidance of Arcface loss

[48]] on the CAISA-Webface.

2 VGG(finetune) is one of our baseline networks. It finetunes the VGG model [[7] supervised with Softmax on CASIA-

WebFace dataset.

3 DDC,,; adopts single-kernel MMD on both fc6 and fc7 layer and DDC,,;. adopts multi-kernel MMD on fc7 layer.
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dians/Asians/Africans are utilized as target domains in our
experiments. The results are given in Table [V]and we have the
following observations. (1) The Softmax and Arcface model
which are trained on Caucasians perform well on Caucasian
testing subset, but the accuracy drops on Asian and African
because of domain gap. For example, the accuracy of the
ArcFace model on Caucasian testing subset reaches 94.78%,
but its accuracy dramatically decreases to less than 85.13%
on Asian subset. (2) DDC(res-soft) [14] and DAN(res-soft)
[15] align Caucasian domain and other race domain with help
of MMD. But they are only superior to baseline by about
1-2% which confirms our thought that only aligning domains
globally is not enough for face recognition. (3) When adopting
clustering algorithms and pseudo-labels, our CDA(res-soft)
and CDA(res-arc) model outperform the baseline models,

especially CDA(res-arc) obtains the best performances with
92.08%, 88.80% and 88.12% on Indian, Asian and African
set.

D. Empirical analysis

Feature visualization. To demonstrate the transferability
of the MMD learned features, the visualization comparisons
are conducted at feature level. First, we randomly extract
the deep features of 5000 source and 5000 target images in
task CASIA—GBU (Ugly) with VGG(finetune) model and
DAN(vgg-soft) model, respectively. The features are visualized
using t-distributed stochastic neighbor embedding (t-SNE)
[80], as shown in Fig. [6] Fig. [f[a) shows the representations
without any adapt. As we can see, the distributions are sepa-



TABLE III
PERFORMANCE EVALUATION ON THE 1JB-B [34] AND IJB-C [35]] DATASET.

1JB-B 1JB-C

Method Verification TAR@FAR Identification Verification TAR@FAR Identification

0.001 0.01 0.1 Rank-1 Rank-10| 0.001 0.01 0.1 Rank-1 Rank-10
GOTS-1 [134] 33.00% 60.00% 78.00% | 42.00% 62.00% - - - - -
GOTS-2 [135] - - - - - 32.00% 62.00% 80.00% - -
FaceNet [42] - - - - - 66.00% 82.00% 92.00% - -
DR-GAN [77] - - - - - 66.10% 82.40% - 70.80% 82.80%
VGG [7] 72.00% 86.00% - 78.00% 89.00% | 75.00% 86.00% 95.00% - -
Bodla et al. [76] 83.00% 92.50% - - - - - - - -
Yin et al. [78]] - - - - - 75.60% 89.20% - 77.60% 86.10%
Arcface![48]] 86.11% 93.40% 97.66% |86.43% 93.33% | 88.88% 94.76% 98.10% | 88.05% 93.56%
CDA(res-arc) (ours) | 87.35% 94.55% 98.08% | 86.22% 93.33% | 88.06% 94.85% 98.33% | 88.19% 93.70%

! Arcface here is our baseline network which uses ResNet-34 architecture and is trained with the guidance of Arcface loss

[48] on the CAISA-Webface.

TABLE IV
VERIFICATION ACCURACY (%) ON 6000 PAIRS OF RFW DATASET [36].
“(RES-SOFT)” REPRESENTS THE RESNET-34 METHODS USING SOFTMAX
AS SOURCE CLASSIFICATION LOSS; WHILE “(RES-ARC)” REPRESENTS THE
ONES USING ARCFACE.

Methods [ Caucasian  Indian Asian  African
Softmax’ 94.12%  88.33% 84.60% 83.47%

D DC(res-soft) [14] - 90.53% 86.32% 84.95%
DAN (res-soft [15]] - 89.98% 85.53% 84.10%
CDA (res-soft) (ours) - 90.73% 88.88% 87.42%
Arcface 48] 94.78%  90.48% 86.27% 85.13%
DDC(res-arc) [14] - 91.63% 87.55% 86.28%
DAN (res-arc) [15] - 91.78% 87.78% 86.30%
CDA(res-arc) (ours) - 92.08% 88.80% 88.12%

! Softmax and Arcface here are our baseline networks which use
ResNet-34 architecture trained on the CAISA-Webface.

rated between domains, which visually proves that there is do-
main gap between images of CASIA-Webface [10] and GBU
database [11]. Fig. [6{b) shows the result for DAN(vgg-soft)
method where features are aligned to some extent. More source
and target data begin to mix in feature space so that there is not
a clear boundary between them. Therefore, we conclude that
the MMD does help our CDA(vgg-soft) to minimize domain
discrepancy and align feature space between source and target
domain so that the performance of target domain improves.
However, due to the particularity of face data, e.g. a larger
number of identities as well as non-overlapping identities of
source and target domain, misalignment still exists even after
adaptation. It also verifies that MMD-adaptation is not enough
for face recognition.

Parameter Sensitivity. Besides the MMD penalty parame-
ter A, our clustering method involves another vital parameter
« in Eqn. which controls the connection of edges in graph.
Two target nodes will be connected to each other in our graph
only if their cosine-similarity is larger than . To have a closer
look at this parameter, we perform sensitivity analysis for it in
transfer tasks CASIA—GBU (Ugly) by varying the parameter

(a) before adaptation (b) after adaptation
Fig. 6
FEATURE VISUALIZATION. WE CONFIRM THE EFFECTS OF MMD
THROUGH A VISUALIZATION OF THE LEARNED REPRESENTATIONS USING
T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING (T-SNE) [80]. BLUE
POINTS ARE SOURCE SAMPLES AND RED ARE TARGET SAMPLES. (A) ARE
TRAINED WITHOUT ANY ADAPTATION, (B) ARE TRAINED WITH MMD
METHOD. AS WE CAN SEE, COMPARED TO NON-ADAPTED METHOD, MMD
METHOD CAN HELP OUR CDA TO ALIGN THE SOURCE FEATURES AND
TARGET FEATURES TO A CERTAIN EXTENT AND IMPROVE THE
PERFORMANCE OF TARGET DOMAIN.

of interest in {0.6, 0.625, 0.65, 0.675, 0.7}. We generate
different target pseudo-labels according to different parameter
o, then fine-tune the target CNN with them respectively. The
fine-tuning results are shown in Fig. [/] with the results of
DAN(vgg-soft) shown as dashed lines. We observe that the
accuracy first increases and then decreases as « varies and
demonstrates a desirable bell-shaped curve. This justifies our
assumption that the parameter o in Eqn. makes a tradeoff
between intra-noise and inter-noise of generated pseudo-labels.
If « is set to be lower, more faces of different identities will
be clustered together which contains severe intra-class noise;
otherwise, faces of one identity will split into more scattered
points and be discarded, or they will split into smaller clusters
leading to severe inter-class noise.

Examples of clustering. As we know, the results of adap-
tation depend on the quality of pseudo-labels generated by
our clustering algorithms. To visually evaluate our clustering
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method, we show some example clusters on our target training
set of GBU in Fig. Fig. [§] shows “pure” clusters which
contain neither intra-noise nor inter-noise, that is to say, all
images of one identity are grouped into one cluster together
perfectly even if there are variations in expression, lighting,
hairstyle, etc. In Fig. 0] examples of “split” clusters are pre-
sented. Although reliable cluster, e.g. cluster2, is formed with
partial images of one identity, remaining images are treated
as scattered points or are split into another different clusters,
e.g. cluster3, which results in inter-noise. This phenomenon
usually occurs due to large variations. Fig. [I0] shows example
of “impure” cluster in terms of subject identity. Five different
individuals are grouped into one cluster leading to serious
intra-noise. When going deep into this type of clusters, we find
that it usually happens to the identities whose images’ number
is quite large. We give the explanation of this phenomenon
in Fig. A larger number of images per identity increase
the probability of connectivity of different people in our
clustering algorithms. Among massive images of two people,
there happen to be two or more images of different identities
looked like each other and their cosine-similarities are larger
than the parameter a.. Even if two similar images, they will
be connected in our clustering graph so the images of these
people are grouped into one cluster when pseudo-labels are
generated through connected component.

VI. CONCLUSION

In this paper, we focus on the issue of domain discrepancy
between source training data and target testing data in face
recognition scenario. We address it in the viewpoint of un-
supervised domain adaptation. First, considering the special
problems of non-overlapping classes between two domains
in FR, we further propose to introduce clustering algorithms
into UDA to obtain pseudo-labels in the deep feature space,
and design a simplified spectral clustering algorithm which
requires neither overlapping classes between two domains nor
the number of target classes. Second, to minimize domain dis-
crepancy and enhance the quality of clustering-based pseudo-
labels, we introduce deep UDA methods, namely DDC and
DAN. Our CDA method effectively learns the discriminative
target feature by aligning the feature domain globally, and, at

the meantime, distinguishing the target clusters locally. Com-
prehensive experiments are carried out in the GBU and IJB-
A/B/C databases, significant performance gains are reached
which indicates the competency of the proposed approach.
In terms of future work, (1) while the underlying face
representation we employ in clustering method works rea-
sonably well for unconstrained face images, it could still be
improved in a number of ways (e.g., selecting more reliable
source training sets, or improving the transferability of deep
model). (2) While we were able to boost the performance
of target testing data, the quality of pseudo-labels still needs
to be improved. So designing a better clustering method for
UDA is a vital problem to be done in FR task. (3) We
consider to use the “easy-to-hard” scheme which progressively
selects reliable pseudo-labeled target samples from the most
confident predictions or utilize the training skills of noisy data
to alleviate the negative influence of falsely-labeled samples.
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Fig. 8
THREE EXAMPLES OF “PURE” CLUSTERS GENERATED BY CLUSTERING METHOD ON OUR TARGET TRAINING SET OF GBU. IN TOP TWO ROWS, EACH
ROW SHOWS THE IMAGES OF ONE IDENTITY; THE BOTTOM TWO ROWS ARE IMAGES BELONG TO THE THIRD IDENTITY. FOR EACH IDENTITY, ALL IMAGES
IN TRAINING SET ARE GROUPED INTO ONE CLUSTER TOGETHER PERFECTLY.
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Fig. 9
THREE EXAMPLES OF “SPLIT” CLUSTERS GENERATED BY CLUSTERING METHOD ON OUR TARGET TRAINING SET OF GBU. IN TOP TWO ROWS, EACH
ROW SHOWS THE IMAGES OF ONE IDENTITY; THE BOTTOM TWO ROWS ARE IMAGES BELONG TO THE THIRD IDENTITY. FOR THE FIRST IDENTITY,
PARTIAL IMAGES ARE CLUSTERED TOGETHER, LE. clusterl, BUT REMAINING IMAGES ARE TREATED AS SCATTERED POINTS AND ARE DISCARDED. FOR
THE SECOND AND THIRD IDENTITY, THE IMAGES ARE SPLIT INTO SOME SCATTERED POINTS AND TWO CLUSTERS, WHICH LEADS TO INTER-NOISE.
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Fig. 10
ONE EXAMPLE OF “IMPURE” CLUSTER GENERATED BY CLUSTERING METHOD ON OUR TARGET TRAINING SET OF GBU. EACH ROW SHOWS THE IMAGES

OF ONE IDENTITY BUT ALL IMAGES OF THESE FIVE IDENTITIES ARE CLUSTERED TOGETHER INCORRECTLY.
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THE IMAGES OF THESE PEOPLE ARE GROUPED INTO ONE CLUSTER WHEN

WE GENERATE PSEUDO-LABELS THROUGH CONNECTED COMPONENT.
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