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Abstract

The widespread popularization of vehicles has facilitated all people’s life during

the last decades. However, the emergence of a large number of vehicles poses

the critical but challenging problem of vehicle re-identification (reID). Till now,

for most vehicle reID algorithms, both the training and testing processes are

conducted on the same annotated datasets under supervision. However, even

a well-trained model will still cause fateful performance drop due to the severe

domain bias between the trained dataset and the real-world scenes.

To address this problem, this paper proposes a domain adaptation frame-

work for vehicle reID (DAVR), which narrows the cross-domain bias by fully

exploiting the labeled data from the source domain to adapt the target domain.

DAVR develops an image-to-image translation network named Dual-branch Ad-

versarial Network (DAN), which could promote the images from the source do-

main (well-labeled) to learn the style of target domain (unlabeled) without any

annotation and preserve identity information from source domain. Then the

generated images are employed to train the vehicle reID model by a proposed

attention-based feature learning model with more reasonable styles. Through

the proposed framework, the well-trained reID model has better domain adap-

tation ability for various scenes in real-world situations. Comprehensive experi-

mental results have demonstrated that our proposed DAVR can achieve excellent
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performances on both VehicleID dataset and VeRi-776 dataset.

Keywords: Domain adaptation, Dual-branch adversarial network,

Vehicle re-identification

1. Introduction

Recently, video surveillance for traffic control and security is playing a grow-

ing influence on current public transportation systems. During the last decade,

vehicle-related researches have attracted more interest and made great progress

in computer vision community, such as vehicle detection [1][2], segmentation

[3][4] and classification [5][6]. Different with the tasks above, vehicle reID aims

to precisely match a certain vehicle across scenes captured from multiple non-

overlapping cameras, which plays a crucial role in constructing the smart cities

[7]. Meanwhile, vehicle reID can be automatically carried out with less time

consuming and manual labor. Therefore, vehicle reID is of vital significance for

intelligent transport and arouses attentions from researchers all over the world.

Even though some progress has been made for vehicle reID, how to de-

sign an excellent algorithm to adapt domain bias between different scenes still

matters the whole system. The fatal reason is that vehicle reID always faces

heterogeneous real-world scenes which contain intensive changes in illuminations

and backgrounds. Therefore, the same vehicle captured in various scenes may

present different visual appearances, which poses great challenges for the task

of vehicle reID. What’s more, for one domain, it could not contain all cases in

real scenario, which makes different domains have their own unique style and

causes the bias between domains. Usually, as shown in Fig.1, domains differ

form each other regarding lightings, viewpoints and backgrounds, even the res-

olution. It is observed that, when the well-trained reID model is tested on other

domain without fine-tuning, there is always a severe performance drop due to

the domain bias. However, most existing works on reID follow the supervised

learning paradigm which always trains the reID model using the images in the

target domain first to adapt the style of the target domain [8][9][10][11][12][13].
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Figure 1: Illustration of the domain bias between different domains. For every group, the

images of left side are from VeRi-776 while the ones of right side are from VehicleID.

Hence, most of these supervised learning methods can not be utilized in the real

scenario directly. Furthermore, since most images in video surveillance are not

labeled and annotating large-scale datasets is prohibitively expensive, research

efforts [14][15] are desired to narrow-down or eliminate the domain bias.

Different with the supervised reID task which has been explored by var-

ious works [16][17], there are a few studies on reID about the cross-domain

adaptation. And only several methods exploit unlabeled target data for unsu-

pervised person reID modelling [18][19][20][21]. However, some of them need

extra information about source domain while training, such as attribute labels

and spatio-temporal labels, which do not exist on some datasets. And there are

only several methods exploiting unsupervised learning without any labels, such

as SPGAN [18] and PTGAN [22]. SPGAN is designed for person reID that inte-

grates a SiaNet with CycleGAN [23] and it does not need any additional labels

during training. However, though SPGAN is effective on the person transfer

task, it causes deformation and color distortion in vehicle transfer task in our

experiment. PTGAN is composed of PSPNet [24] and CycleGAN to learn the

style of target domain and maintain the identity information of source domain.

In order to keep the identity information, PSPNet is utilized to segment the

person images first. It needs pre-trained segmention model for PSPNet, which
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increases the complexity of the training stage.

To sum up, most existing domain adaptation methods usually need special

annotations or complex training process, which cannot be utilized for vehicle

reID task. Therefore, in this paper, we propose DAVR which employs an end-to-

end image-to-image translation network DAN, meanwhile the generated images

are utilized to train reID model by an proposed feature learning network. In

DAVR, DAN employs different branches to train the content encoder and style

encoder without any annotations to preserve the identity information of images

from source domain and learn style of images from target domain. Besides that,

for adapting the target domain (unlabeled) and having better generalization

ability, an attention-based network (ATTNet) is designed in DAVR to train

the vehicle reID model with the images generated from DAN. In summary, our

contributions can be summarized into three aspects:

1) We propose DAVR to optimize the reID model that is trained by labeled

source domain to adapt the unlabeled target domain, which contains DAN for

generating images and ATTNet for better training reID model utilizing the

generated images.

2) In DAVR, DAN is proposed to generate the images which have the style

of target domain and preserve identity information of source domain. It is an

efficient unsupervised learning model and works by transferring content and

style between different domains separately.

3) To better train reID model with the images generated by DAN, ATTNet

is presented in DAVR, which is based on attention structure and could extract

more distinctive cues while suppressing background for vehicle reID task.

The rest of this paper is organized as follows. In Section 2, we review and

discuss the related works. Section 3 illustrates the proposed method in detail.

Experimental results and comparisons on two vehicle reID datasets are discussed

in Section 4, followed by conclusions in Section 5.
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2. Related Work

In this section, we briefly review the methods of image-image translation,

vehicle reID and cross-domain person reID methods.

2.1. Image-image Translation Methods

Image-image translation aims at constructing a mapping function between

two domains. In recent years, a lot of studies based on generative adversar-

ial networks have shown remarkable performance improvement. Most of them

utilized paired training data to produce impressive image-to-image transition

results. For instance, pix2pix [25] employed a conditional GANs to learn map-

pings from input to output images by combining adversarial loss and L1 loss.

However, it is difficult to acquire the paired training data while easier to col-

lect data without data, consequently unsupervised image translation is more

applicable. For these condition, several methods have been proposed, such as

CycleGAN [23] and DiscoGAN [23]. They preserved key attributes by cycle

consistency loss and transferred style between two domains.

2.2. Vehicle ReID Methods

With the prosperity of deep learning, feature learning by deep networks has

become a common practice in vehicle reID tasks. Zapletal el at. [26] extracted

a full-edged 3D bounding box of vehicles and then utilized color histograms

and histograms of oriented gradients to solve reID problem by a linear regres-

sor. In [27], coupled cluster loss was proposed to minimumize intra distance

to train the vehicle re-identification network. VAMI [28] transformed single-

view feature into a global multiview feature representation to better optimize

the metric learning for training reID model. Spatial-temporal information is

another important clue which should be considered for vehicle reID. For in-

stance, In [29], besides considering the local region features of vehicle images,

the spatial-temporal constrain is modeled by log-normal distribution. [30] intro-

duced a siamese-Cnn+Path-LSTM model to incorporate complex spatio-temoral
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information for regularizing the reID results. PROVID [31] introduced the in-

formation of license plates, visual features and spatial-temporal relations with

a progressive strategy to learn similarity scores between vehicle images. Bai el

at. [32] proposed a group sensitive triplet embedding for CNNs to deal with

intra-class variance in learning representation and the mean-valued triplet loss

was given to alleviate the negative impact of improper triplet sampling during

training stage.

2.3. Cross-domain Person ReID Methods

For the problem of cross-domain reID, the biggest challenge is that it is

difficult to maintain the image identity information when transferring the anno-

tated images from source to target domain in an unsupervised method. Hence,

to overcome this problem, SPGAN [18] was designed to integrate of a siamese

network and a CycleGAN to preserve the self-similarity about an image be-

fore and after translation, and domain-dissimilarity about a translated source

image and a target image. TJ-AIDL [20] introduced simultaneously learned

an attribute-semantic and identity discriminative feature representation space

transferable to any new target domain for reID tasks without the need for col-

lecting new labeled training data from the target domain. PTGAN [22] was

designed for person transfer, which employed the PSPNet and CycleGAN to

generate high quality person images and keep the person identities and style.

From the above, we could see that only a few studies focus on the problem

of cross-domain person reID. And little works consider the domain adaptation

about the vehicle reID. We have discussed the reason that the method of cross-

domain adaptation about the person reID could not be utilized in the vehicle

reID task in the previous section. Hence, in this paper, we propose a novel

framework to adapt the cross domain bias for vehicle reID.
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Figure 2: The overview of DAVR. DAVR develops an image-to-image translation module to

generate images with the style of target domain and then the generated images could be

trained by an attention-based feature learning module.

3. Method

3.1. Overview

Our ultimate goal is to perform vehicle reID model in an unknown target

domain which is not labeled directly. Hence, as shown in Fig.2, DAVR is pro-

posed which contains DAN for generating images and ATTNet for training reID

model. Through DAN, it could obtain images which have the style of target do-

main and preserve the identity information of source domain. And then the style

transferred images are employed to train the vehicle reID model by ATTNet.

In this section, we introduce our method from two aspects: an image-to-

image translation network to learn transfer mappings for different datasets in

Section 3.2 and an attention based multi-task feature learning network for better

feature representation learning in section 3.3.

3.2. DAN

DAN is designed in DAVR to both transfer the style between source domain

and target domain and preserve the identity information of images from source

domain. As illustrated in Fig.3, DAN consists of generators G,F , and domain

discriminators DS , DT for both domains. For each generator in DAN, it is

composed of three components including content encoder Ec, style encoder Es
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Figure 3: The structure of DAN. DAN contains two mapping functions: G : X→Y and

F : Y→X, and associated adversarial discriminators DT and DS . Lstyle represents style loss

which is employed to further regularize the mappings (best viewed in color).

and decoder De. Ec is designed to preserve the identity information from images

of source domain through the proposed attention model, which could extract

the foreground while suppressing background. And to learn the style of target

domain, the Es with the style loss is added to the translation network. At last,

the decoder De embeds the output of Ec and Es to generate the translated

image. Take domain X as an example, the content encoder Ec
g maps images

onto a domain-invariant content space (Ec
g : x→ Cx) and the style encoder Es

g

maps images onto the domain style space of Y (Es
g : x→ Sy). The generator G

generates images conditioned on both content and style vectors (De : {Cx, Sy →

G(X)}). The discriminator DS aims to discriminate real images and translated

images in the domain X.

3.2.1. Content Encoder for Identity Preserving

As shown in Fig.4, the input image of the generator is defined as I. After 3

strided convolution blocks with stride 1
2 , we could obtain feature maps fshare.

Based on the assumption that two domains share a common latent space, we

share the weights of these 3 convolution blocks between Ec
g and Ec

f . For every

convolution block, it contains a convolutional layer, an instance normalization
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Figure 4: Structure of Generator. Generator is composed of a content encoder network, a

style encoder network and a decoder network (best viewed in color).

layer and a ReLU layer. Then fshare is passed into subsequent network, which

contains 9 residual blocks(ResBlocks) and the proposed attention model. In

order to preserve the identity information from source domain, we remove the

batch normalization layers in the original ResNet structure. And the attention

model is designed to assign higher scores of visual attention to the region of

interest while suppressing background.

As shown in Fig.4, we denote the input feature map of attention model as f .

In this work, a simple feature fusion structure is utilized to generate the f . All

the outputs of the ResBlock are integrated to form f which can be formulated

as f = [fr1, fr2, ..., fr9], where fri is the ith feature map generated by the ith

ResBlock. i ∈ [1, 9] and [·] denotes the concatenation operation. For the feature

vector fi,j ∈ <C of the feature map at the spatial location (i, j), we can calculate

its corresponding attention mask ai,j by

ai,j = Sigmod(FC(fi,j ;Wa)) (1)

where FC is the Fully Connected layer (FC) to learn a mapping function in

the attention module and Wa are the weights of the FC. The final attention

mask α = [ai,j ] is a probability map obtained using a Sigmoid layer. The

scores represent the probability of foreground in the input image. And after

the attention model, a mask a is generated with higher scores for foreground.
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Hence, the attended feature map fc is computed by element-wise product of the

attention mask and the input feature map, which could be described as follows:

fc(i,j) = ai,j ⊗ fi,j (2)

where (i, j) is the spatial location in mask a or feature map fc. And ⊗ is

performed in an element-wise product.

3.2.2. Style Encoder for Learning Style Transfer Mappings

As shown in Fig.4, besides the content branch, there is a branch learning

the style of target domain. In this branch, different with Ec
g and Ec

f , the style

network Es
g and Es

f do not contain the attention model. For instance, Es
g is

composed of 3 convolution blocks, which are the same as the content encoder

network, and 9 residual blocks(ResBlocks). The 3 convolution blocks share

parameters with the content encoder network. To learn the style of the target

domain, Es
g is designed with the style loss to output the style features fs that

has similar distribution with the target domain Y . The style loss could be

formulated as follows:

Lstyle =
1

NM
(T (x)−A(y))2 +

1

NM
(T (y)−A(x))2 (3)

where N is the number of feature maps, M is calculated by width × height,

width and height represent the width and height of images. T (x), T (y), A(y)

and A(x) are the gram matrix of output features Es
g(x), Es

f (y), Es
g(y) and

Es
f (x), respectively.

We calculate the style loss between images from source domain and target

domain to compare differences of style between images. Thus images from

different domains could learn the style from each other.

3.2.3. Decoder Network for Embedding Two Stream Features

For the decoder network, it is composed of 2 deconvolutional layers and a

convolutional layer to output the generated images G(I). As shown in Fig.4, the
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input of the decoder network is the combination of fc and fs which represent

the content features and style features, respectively. In this paper, we employ a

concatenate layer to integrate fc with fs and a global skip connection structure

to make training faster and resulting model generalizes better, which could be

expressed as:

G(I) = tanh(conv(deconv(deconv([fc, fs]) + fe2))) (4)

where [.] represents the concatenate layer. And fe2 represents the feature map

generated by the 2th stride convolution blocks.

3.2.4. Loss Function

We formulate the loss function in DAN as a combination of adversarial loss,

cycle consistency loss, identity loss and style loss. The adversarial loss and style

loss guide the learning of the domain-migration network. The identity loss and

cycle consistency loss preserve the semantic consistency and visual similarity of

intra-class instances across domains. The objective function could be described

as follows:

L = Ladv + λ1Lcyc + λ2Lid + λ3Lstyle (5)

where the style loss Lstyle could be calculated by Eq.(3).

In our paper, DAN applies adversarial losses to both mapping functions. For

the generator F and its discriminator DT , the objective could be expressed as:

LT (F,DT , X, Y ) = Ex∼pdata(x)[DT (x)] + Ey∼pdata(y)[||DT (F (y))− 1||1] (6)

where, X and Y represent the source domain and target domain, respectively.

pdata(x) and pdata(y) denote the sample distributions in the source and target

domain. The objective of generator G and discriminator DS also could be built.

Besides, the DAN requires F (G(x)) ≈ x and G(F (y)) ≈ y when it learns

the mapping of F and G. So the cycle consistency loss is employed in DAN

which could make the network more stable. The cycle consistency loss could be
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Figure 5: The structure of ATTNet.

defined as:

Lcyc(F,G,X, Y ) = Ex∼pdata(x)[||F (G(x))− x||1] + Ey∼pdata(y)[||G(F (y))− y||1]

(7)

DAN utilizes the target domain identity constraint as an auxiliary for image-

image translation. Target domain identity constraint is introduced by [33] to

regularize the generator to be the identity matrix on samples from target do-

main, described as:

Lid(G,F,X, Y ) = Ey∼pdata(y)||F (y)− y||1 + Ex∼pdata(x)||G(x)− x||1 (8)

3.3. ATTNet

The purpose of feature learning module is to obtain discriminative features

that could be utilized for vehicle reID. And in order to make the reID model

adapt to the target domain, it is better to focus on the meaningful parts of

vehicle images and neglect the background when training the feature learning

model. Hence, ATTNet which contains a two-stream reID network with atten-

tion structure is designed in this paper.

ATTNet which includes identification network and verification network is a

dual-branch structure and shares parameters. As shown in Fig.5, the images

from the generation module are divided into positive and negative samples pairs

as inputs for ATTNet. Images with the same vehicle IDs are positive sample

pairs, otherwise, they are defined as negative sample pairs. For one branch, the
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input image is fed into 5 ResNet Blocks [34] to output the feature maps fr with

the size of 7 × 7 × 2048. Then they are passed into a Global Average Pooling

(GAP) layer to obtain the feature map fg. fg is utilized to generate the mask

M through the proposed attention structure. Given the feature map fg, its

attention map is computed as:

M = Softmax(Conv(fg)) (9)

where the one Conv operator is 1×1 convolution. After obtaining the attention

map M , the attended feature map could be calculated by fm = fg ⊗M . The

operator ⊗ is performed in an element-wise product. Then the attended feature

map fm will be fed into the subsequent structure. However, since several training

images may be spatial misalignment, the obtained attention mask M could

be somewhat imprecise and the attended feature map fm may be disturbed

by noise. This will lead to the fm fail to contain some useful information

in the original images. In order to solve this problem, a shortcut connection

architecture is introduced to embed the input of the attention network directly

to its output with an element-wise sum layer, which could be described as fs =

fg+fm. In this way, both the original feature map and the attended feature map

are combined to form features fs and utilized as the input for the subsequent

structure. After two FC layers, we could obtain the feature fd. At last, a skip

connection structure is utilized to integrate fg and fd by the concatenate layer

to obtain more discriminative features for identification task and verification

task, which could be described as fa = [fd, fg].

4. Experiments

In this section, we make an attempt to give a detailed analysis to demonstrate

the effectiveness of our method. And the proposed DAVR is evaluated utilizing

the mean average precision (mAP) and the Cumulative Match Characteristic

(CMC) curve widely adopted in vehicle reID. First, we compare the generated

images of DAN in DAVR with state-of-the-art methods. Then, the generated
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images are utilized to train the vehicle reID model by different methods to

explore the effectiveness of proposed ATTNet. We conduct various experiments

on two popular vehicle reID datasets: VeRi-776 and VehicleID.

4.1. Datasets and Evaluation Metrics

4.1.1. Datasets.

VeRi-776 [31] is a large-scale urban surveillance vehicle dataset for reID,

which contains over 50,000 images of 776 vehicles with identity annotations,

camera geo-locations, image timestamps, vehicle types and color information.

In this paper, 37,781 images of 576 vehicles are employed as a train set and

11,579 images of 200 vehicles are employed as a test set. A subset of 1,678

images in the test set generates the query set.

VehicleID [27] is a surveillance dataset from the real-world scenario, which

contains 26267 vehicles and 221763 images in total. From the original test-

ing data, four subsets, which contain 800, 1600, 2400 and 3200 vehicles, are

extracted for vehicle search in different scales. During testing, one image is ran-

domly selected from one identity to obtain a gallery set with 800 images, then

the remaining images are all employed as probe images. Three other test sets

are processed in the same way.

4.1.2. Evaluation Metrics.

For the vehicle reID task, we utilize CMC curve and mAP to evaluate the

reID model. For each query, its average precision (AP) is computed from its

precision-recall curve [35]. And mAP is the mean value of average precisions

across all queries.

4.2. Implementation Details

4.2.1. Image-to-image Translation.

For the translation module, we train the model in the tensorflow [36] and the

learning rate is set to 0.0002. It is worthy to note that we do not utilize any label

notation during the learning procedure. The min-batch size of the proposed
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VehicleID images VehicleID images to VeRi-776 style

VeRi-776 images VeRi-776 images to VehicleID style

Figure 6: Sample images of (upper left:) VehicleID dataset, (lower left:) VeRi-776 dataset,

(upper right:) VehicleID images which are translated to VeRi-776 style, and (lower right:)

VeRi-776 translated to VehicleID style.

method is 16 and epoch is set to 6. During the testing procedure, we employ

the Generator G for VeRi-776 → VehicleID translation and the Generator F

for VeRi-776 → VehicleID translation. The translated images are utilized for

training reID models.

4.2.2. Feature Learning.

For the feature learning module, We implement the proposed vehicle reID

model in the Matconvnet [37] framework. We utilize stochastic gradient descent

with a momentum of µ = 0.0005 during the training procedure. The learning

rate of the first 50 epoch is set to 0.1 while the last 5 to 0.01. As the scale of

dataset can be quite large, training data is randomly divided into mini-batches

with a batch size of 16.
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4.3. Evaluation

4.3.1. Comparison of Generated Images with Different Methods

To demonstrate the effectiveness of our proposed style transferring model,

the VehicleID and VeRi-776 are utilized to train the DAN. And CycleGAN and

SPGAN are taken as compared methods. Fig.7 is the comparison results. In

Fig.7(a), images are generated with the identity information from the VeRi-776

and the style of VehicleID. In Fig.7(b), images are generated with the identity

information from the VehicleID and the style of VeRi-776. For each group, the

first row is the original images in VeRi-776. The second and third rows are

generated by CycleGAN and SPGAN, respectively. The last row is generated

by the proposed DAN.

Original

CycleGAN

SPGAN

DAN

VehicleID images to VeRi-776 style VeRi-776 images to VehicleID style

Figure 7: The effect of the generated images. The first row is original images. The generated

images using CycleGAN, SPGAN lie in the second row and third row respectively. The last

row are generated images by DAN.

From the Fig.7(a), it could be observed that most images generated by Cycle-

GAN are distorted seriously when transferring images from VehicleID to VeRi-

776. And though the SPGAN works better than the CycleGAN, the generated

images also have evident deformation. However, employing the proposed DAN,

not only is the vehicle color and type information completely preserved, but

also the style of the target dataset is learned. As we can see from Fig.7(a),

generated images by DAN have higher resolution and become bright, which

learns from the VeRi-776. In the Fig.7(b), the vehicle information of generated
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images is better preserved when transferring the VeRi-776 to VehicleID than

the VehicleID to VeRi-776. And details in generated images by DAN are also

well-retained. What’s more, generated images become dark and blurred, which

learn from VehicleID by DAN.

Table 1: Performance of various domain adaptation methods over different reID methods on

VeRi-776.

Method mAP(%) Rank1(%) Rank5(%)

Supervised Learning 52.36 83.25 91.60

Direct Transfer 19.06 55.30 67.16

CycleGAN+B 21.45 56.37 67.16

SPGAN+B 23.27 58.05 69.31

DAN+B (Ours) 24.85 58.46 70.86

DAN + ATTNet (DAVR) 26.35 62.21 73.66

4.3.2. Comparison Methods

In this paper, we discuss several methods to compare with our proposed

method in detail. Supervised learning, which proposed by [38], denotes training

and testing on target domain, simultaneously. Direct Transfer means directly

applying the model trained by images from source domain on the target domain.

CycleGAN [23], SPGAN [18] and DAN are employed to translate images from

source domain to target domain, and then the generated images are utilized

to train reID model. “B” represents Baseline [38] method. ATTNet is our

proposed feature learning network.

4.3.3. Comparison with State-of-the-art Methods

To verify the effectiveness of the proposed DAN, we conduct several experi-

ments where training sets are images generated from different image translation

methods. As shown in Table 1 and Table 2, we analyze differences of images

translated by CycleGAN, SPGAN and DAN. Compared with CycleGAN, DAN

leads to 3.40% and 2.09% improvements in mAP and rank-1 on VeRi-776, re-

spectively. On VehicleID, compared with CycleGAN, the gains are 5.05%, 6%,

17



Table 2: Performance of various domain adaptation methods over different reID methods on

VehicleID. The mAP (%) and cumulative matching scores (%) at rank 1, 5 are listed.

Method
Test size = 800 Test size = 1600

mAP Rank1 Rank5 mAP Rank1 Rank5

Supervised Learning 72.40 68.04 88.03 70.11 66.48 84.22

Direct Transfer 40.05 35.00 56.68 34.90 30.42 48.85

CycleGAN+B 44.24 39.39 60.10 37.68 32.97 53.16

SPGAN+B 48.27 42.87 66.55 42.51 37.46 58.97

DAN+B (Ours) 49.53 44.44 66.74 43.90 38.97 59.93

DAN + ATTNet (DAVR) 54.01 49.48 68.66 49.72 45.18 63.99

Method
Test size = 2400 Test size = 3200

mAP Rank1 Rank5 mAP Rank1 Rank5

Supervised Learning 67.97 64.07 77.00 64.30 61.71 74.25

Direct Transfer 31.65 27.28 44.49 29.57 25.41 42.11

CycleGAN+B 33.17 28.44 47.92 30.73 26.38 43.84

SPGAN+B 38.41 33.54 53.68 35.04 30.45 49.13

DAN+B (Ours) 40.07 35.10 56.29 36.86 32.17 51.63

DAN + ATTNet (DAVR) 45.18 40.71 59.02 42.94 38.72 55.87

6.66% and 5.79% in rank-1 of different test sets, respectively. Though SPGAN

has better performance in the stage of image-to-image translation than Cycle-

GAN, it also causes deformation and color distortion in real scenario for vehicle

reID task (as Fig.7). Hence, compared with SPGAN, DAN has 1.34% and 0.41%

improvements in mAP and rank-1 on VeRi-776. And for different sizes of test

sets on VehicleID, DAN has 1.57%, 1.51%, 1.56% and 1.72% improvements in

rank-1, respectively. All of these could demonstrate that the structure of DAN

is more stable and could generate suitable samples for training in the target do-

main. Examples of translated images by DAN are shown in Fig.6. Besides that,

compared with other methods, DAVR could obtain the better performance on

both VeRi-776 and VehicleID.
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4.3.4. Comparison Between Supervised Learning and Direct Transfer

Comparing the supervised learning method with the direct transfer method,

it can be clearly observed that a large performance drop when directly utilizing

a source-trained model on the target domain. For instance, as shown in Table 1,

the baseline model is trained and tested on VeRi-776 achieves 52.36% in mAP,

while dropping to 19.06% when trained on VehicleID and tested on VeRi-776.

From Table 2, it is obvious that a similar drop can be observed when VehicleID

is employed as the target domain. When the reID model is trained on VeRi-

776 and tested on VehicleID, there are 32.35%, 35.21%, 36.32% and 34.73%

descreases in mAP on different sizes of test sets on VehicleID for the baseline

model. The reason behind the performance drop is the bias of data distributions

in different domains. This also illustrates that the supervised learning methods

trained on source domain can not be utilized on target domain directly.

Table 3: Comparison of different reID models on VeRi-776.

Methods mAP(%) Rank1(%) Rank5(%)

Direct Transfer + B 19.06 55.30 67.16

CycleGAN + B 21.45 56.37 67.16

SPGAN + B 23.27 58.05 69.31

DAN + B 24.85 58.46 70.86

Direct Transfer + ATTNet 23.41 59.54 70.56

CycleGAN + ATTNet 24.39 61.03 71.99

SPGAN + ATTNet 25.01 61.97 71.99

DAN + ATTNet (DAVR) 26.35 62.21 73.66

4.3.5. The Impact of DAN

Firstly, we utilize DAN to translate labeled images from the source domain

to the target domain, and then train the baseline reID model with translated

images in a supervised way. As shown in Table 1, when trained on VehicleID

and tested on VeRi-776 by baseline method, mAP improves from 19.06% to

24.85%. As shown in Table 2, when the reID model is trained on VeRi-776

training set utilizing the baseline method and tested on VehicleID different
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Figure 8: The CMC results of different methods on VeRi-776.

testing sets, rank-1 accuracy improves from 35% to 44.44%, 30.42% to 38.97%,

27.28% to 35.10% and 25.41% to 32.17%, respectively. Through such an image-

level domain adaptation method, effective domain adaptation baselines can be

learned. This illustrates methods of image-image translation have learned the

important style information from the target domain, which could narrow-down

the domain gap to a certain degree.

4.3.6. The Impact of ATTNet

To further improve re-ID performance on target dataset, we propose AT-

TNet. Fig.8 and Fig.9 are CMC results on VeRi-776 and VehicleID with differ-

ent methods. As shown in Fig.8 and Fig.9, compared to the reID models which

are trained by baseline reID model, methods utilizing ATTNet have better per-

formance. For instance, from the Table 3 and Table 4, it could be observed that,

compared with Direct Transfer+Baseline, Direct Transfer+ATTNet has

an 4.35% increase in mAP when the reID model is trained on VehicleID and

tested on VeRi-776. It also has 8.26%, 9.05%, 8.67%, and 7.99% improvements

in rank-1 of different test sets when the model is trained on VeRi-776 and

tested on VehicleID. Besides that, it is obvious that compared with the baseline
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(a) Test size=800
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(b) Test size=1600
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(c) Test size=2400
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(d) Test size=3200

Figure 9: The CMC curves of different methods on VehicleID. (a) The results tested on the

set with 800 vehicles. (b) The results tested on the set with 1600 vehicles. (c) The results

tested on the set with 2400 vehicles. (d) The results tested on the set with 3200 vehicles.
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Table 4: Comparison of different reID models on VehicleID. The mAP (%) and cumulative

matching scores (%) at rank 1, 5 are listed.

Methods
Test size = 800(%) Test size = 1600(%)

mAP Rank1 Rank5 mAP Rank1 Rank5

Direct Transfer + B 40.05 35.00 56.68 34.90 30.42 48.85

CycleGAN + B 44.24 39.39 60.10 37.68 32.97 53.16

SPGAN + B 48.27 42.87 66.55 42.51 37.46 58.97

DAN + B 49.53 44.44 66.74 43.90 38.97 59.93

Direct Transfer + ATTNet 47.97 43.26 62.93 43.94 39.47 58.51

CycleGAN + ATTNet 46.96 42.68 60.72 43.27 38.88 57.44

SPGAN + ATTNet 52.72 48.25 67.20 48.01 43.44 63.04

DAN + ATTNet (DAVR) 54.01 49.48 68.66 49.72 45.18 63.99

Methods
Test size = 2400(%) Test size = 3200(%)

mAP Rank1 Rank5 mAP Rank1 Rank5

Direct Transfer + B 31.65 27.28 44.49 29.57 25.41 42.11

CycleGAN + B 33.17 28.44 47.92 30.73 26.38 43.84

SPGAN + B 38.41 33.54 53.68 35.04 30.45 49.13

DAN + B 40.07 35.10 56.29 36.86 32.17 51.63

Direct Transfer + ATTNet 40.42 35.95 54.34 37.60 33.40 50.55

CycleGAN + ATTNet 39.39 35.09 53.05 37.05 33.07 49.38

SPGAN + ATTNet 44.17 39.51 59.05 41.05 36.75 54.63

DAN + ATTNet (DAVR) 45.18 40.71 59.02 42.94 38.72 55.87

methods, the reID models utilizing the ATTNet have significant improvement

for every image translation method. This demonstrates that the reID models

which are trained by the proposed ATTNet can better adapt to cross-domain

task than the baseline method.

4.4. Visualization of Results

To further illustrate the effectiveness of the proposed framework in this pa-

per, some results are visualized. As shown in Fig.10, we utilize the t-SNE [39]

to visualize the features extracted by different methods. In Fig.10(a), the reID

model is trained on the VehicleID and tested on VeRi-776 with original images

by the baseline method [38]. In Fig.10(b), the reID model is trained using the
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ATTNet with images generated by DAN on the VehicleID and tested on VeRi-

776. In Fig10(c), the reID model is trained on the VeRi-776 with original images

by the baseline method and tested on VehicleID. In Fig.10(d), the reID model

is trained using the ATTNet with generated images by DAN on the VeRi-776

and tested on VehicleID. In our experiments, the number of tested vehicle is

200, 800 on VeRi-776 and VehicleID, respectively. From the visualization, we

could find that there is a significant improvement compared with the baseline

method.

Examples of vehicle reID results on VeRi-776 and VehicleID by our ap-

proach DAVR are shown in Fig.11. Both in Fig.11(a) and Fig.11(b), the left

column shows query images while the images of right-hand side are retrieval re-

sults obtained by proposed method. The number on the left-top means Vehicle

ID/Camera ID for VeRi-776 and Vehicle ID for VehicleID. The same Vehicle ID

represents the same vehicle. The Camera ID is the camera number that images

are captured. From Fig.11, we could see that our proposed domain adapta-

tion method in this paper achieves good performance. Specially, in Fig.11(a),

the retrieval results contain different viewpoints and illumination, which could

demonstrate that the proposed method has robustness on different conditions.

5. Conclusion

In this paper, we propose DAVR, which includes the image-to-image transla-

tion and feature learning module for domain adaptation. The DAN is designed

to generate the vehicle images, which both preserves the label information of

source domain and learns the style of target domain. And then the ATTNet is

proposed to train the reID model with generated images. It can be observed

from the results that both translation module and feature learning module can

achieve good results. And it is obvious that the existing datasets usually only

contain several kinds of vehicle images in each camera, which sets a limit for

reID task in new domain. Hence, in our future studies, we would aim to utilize

the GAN to generate the various viewpoints of vehicle images to expand the
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Figure 10: Visualization of feature distribution by t-SNE. Different colors represent different

vehicle IDs.
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(a) VeRi-776

(b) VehicleID

Figure 11: The retrieval results on the VehicleID and VeRi-776. (a) The results on VeRi-776.

(b) The results on VehicleID.
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dataset and improve the performance of reID model.
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