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Abstract

There is emerging interest in performing regression between distributions. In
contrast to prediction on single instances, these machine learning methods can be
useful for population-based studies or on problems that are inherently statistical in
nature. The recently proposed distribution regression network (DRN) (Kou et al.,
2018) has shown superior performance for the distribution-to-distribution regres-
sion task compared to conventional neural networks. However, in Kou et al. (2018)
and some other works on distribution regression, there is a lack of comprehensive
comparative study on both theoretical basis and generalization abilities of the meth-
ods. We derive some mathematical properties of DRN and qualitatively compare
it to conventional neural networks. We also perform comprehensive experiments
to study the generalizability of distribution regression models, by studying their
robustness to limited training data, data sampling noise and task difficulty. DRN
consistently outperforms conventional neural networks, requiring fewer training
data and maintaining robust performance with noise. Furthermore, the theoretical
properties of DRN can be used to provide some explanation on the ability of DRN
to achieve better generalization performance than conventional neural networks.

1 Introduction

There has been emerging interest in perform regression on complex inputs such as probability
distributions. Performing prediction on distributions has many important applications. Many real-
world systems are driven by stochastic processes. For instance, the Fokker-Planck equation (Risken,
1996) has been used to model a time-varying distribution, with applications such as astrophysics
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(Noble & Wheatland, 2011), biological physics (Guérin et al., 2011) and weather forecasting (Palmer,
2000). Extrapolating a time-varying distribution has also been used to train a classifier where the data
distribution drifts over time (Lampert, 2015).

A recently proposed distribution regression model, distribution regression network (DRN) (Kou et al.,
2018), outperforms conventional neural networks by proposing a novel representation of encoding
an entire distribution in a single network node. On the datasets used by Kou et al. (2018), DRN
achieves better accuracies with 500 times fewer parameters compared to the multilayer perceptron
(MLP) and one-dimensional convolutional neural network (CNN). However, in Kou et al. (2018) and
other distribution regression methods (Oliva et al., 2013, 2015), there is a lack of comprehensive
comparative study on both theoretical basis and generalization abilities of the methods.

In this work, we derive some mathematical properties of DRN and qualitatively compare it to conven-
tional neural networks. We also performed comprehensive experiments to study the generalizability
of distribution regression models, by studying their robustness to limited training data, data sampling
noise and task difficulty. DRN consistently outperforms conventional neural networks, requiring
two to five times fewer training data to achieve similar generalization performance. With increasing
data sampling noise, DRN’s performance remains robust whereas the neural network models saw
more drastic decrease in test accuracy. Furthermore, the theoretical properties of DRN can be used to
provide insights on the ability of DRN to achieve better generalization performance than conventional
neural networks.

2 Related work

Various machine learning methods have been proposed for distribution data, ranging from distribution-
to-real regression (Póczos et al., 2013; Oliva et al., 2014) to distribution-to-distribution regres-
sion (Oliva et al., 2015, 2013). The Triple-Basis Estimator (3BE) has been proposed for function-to-
function regression. It uses basis representations of functions and learns a mapping from Random
Kitchen Sink basis features (Oliva et al., 2015). 3BE shows improved accuracies for distribution re-
gression compared to an instance-based learning method (Oliva et al., 2013). More recently, Kou et al.
(2018) proposed the distribution regression network which extends the neural network representation
such that an entire distribution is encoded in a single node. With this compact representation, DRN
showed better accuracies while using much fewer parameters than conventional neural networks and
3BE (Oliva et al., 2015).

For predicting the future state of a time-varying distribution, Lampert (2015) proposed Extrapolating
the Distribution Dynamics (EDD) which predicts the future state of a time-varying distribution
given samples from previous time steps. EDD uses the reproducing kernel Hilbert space (RKHS)
embedding of distributions and learns a linear mapping to model how the distribution evolves between
adjacent time steps. EDD is shown to work for a few variants of synthetic data, but the performance
deteriorates for tasks where the dynamics is non-linear.

3 Distribution Regression Network

For the distribution regression task, the dataset consists of M data points D =
{(X1

1 , · · · , XK
1 , Y1), · · · , (X1

M , · · · , XK
M , YM )} where Xk

i and Yi are univariate continuous dis-
tributions with compact support. The regression task is to learn the function f which maps the input
distributions to output distribution: Yi = f(X1

i , · · · , XK
i ) on unseen test data.

Kou et al. (2018) proposed the distribution regression network (DRN) for the task of distribution-
to-distribution regression. We give a brief description of DRN following the notations of Kou et al.
(2018). Figure 1a shows that DRN consists of multiple fully-connected layers connecting the data
input to the output in a feedforward manner, where each connection has a real-valued weight. The
novelty of DRN is that each node in the network encodes a univariate probability distribution. The
distribution at each node is computed using the distributions of the incoming nodes, the weights
and the bias parameters. Let P (l)

k represent the probability density function (pdf) of the kth node in
the lth layer where P (l)

k (s
(l)
k ) is the density of the distribution when the node variable is s(l)

k . The
unnormalized distribution P̃ (l)

k is computed by marginalizing over the product of the unnormalized
conditional probability and the incoming probabilities.
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Figure 1: (a) DRN performs distribution regression by encoding each node with an entire distribution.
Using multiple hidden layers, the DRN network shown has an output up with up to 9th order
transformation. (b) Visualization of the weight matrices for DRN, MLP and CNN where q = 10. For
DRN, we show different values of weight, along with the propagation behaviors.

P̃
(l)
k

(
s

(l)
k

)
=

∫
s(l−1)

Q̃(s
(l)
k |s(l−1))P

(l−1)
1

(
s

(l−1)
1

)
· · ·P (l−1)

n

(
s(l−1)
n

)
ds(l−1), (1)

where the shorthand s(l−1) = s
(l−1)
1 · · · s(l−1)

n is used for the incoming node variables and
Q̃(s

(l)
k |s(l−1)) = exp[−E(s

(l)
k |s

(l−1)
1 , · · · , s(l−1)

n )]. The unnormalized conditional probability has
the form of the Boltzmann distribution, where E is the energy for a given set of node variables,

E
(
s

(l)
k |s(l−1)

)
=

n∑
i

w
(l)
ki

(
s

(l)
k − s

(l−1)
i

∆

)2

+ b
(l)
q,k

(
s

(l)
k − λ

(l)
q,k

∆

)2

+ b
(l)
a,k

∣∣∣∣∣s
(l)
k − λ

(l)
a,k

∆

∣∣∣∣∣ , (2)

where w(l)
ki is the weight connecting the ith node in layer l − 1 to the kth node in layer l. b(l)q,k and

b
(l)
a,k are the quadratic and absolute bias terms acting on positions λ(l)

q,k and λ(l)
a,k respectively. ∆ is the

support length of the distribution. After obtaining the unnormalized probability, the distribution from
Eq. (1) is normalized. Forward propagation is performed layer-wise to obtain the output prediction.
The DRN propagation model, with the Boltzmann distribution, is motivated by work on spin models
in statistical physics (Katsura, 1962; Lee et al., 2002). The distribution regression task is general and
in this paper we extend it to the task of forward prediction on a time-varying distribution: Given a
series of distributions with T equally-spaced time steps, X(1), X(2), · · · , X(T ), we want to predict
X(T+k), i.e. the distribution at k time steps later. The input at each time step may consist of more
than one distribution. To use DRN for the time series distribution regression, the input distributions
for all time steps are concatenated at the input layer. The DRN framework is flexible and can be
extended to architectures beyond feedforward networks. Since we are addressing the task of time
series distribution regression, we also implemented a recurrent extension of DRN, which we call
recurrent distribution regression network (RDRN). The extension is straightforward and we provide
details of the architecture in the supplementary material.

Following Kou et al. (2018), the cost function for the prediction task is measured by the Jensen-
Shannon divergence (Lin, 1991) between the label and predicted distributions. We adopt the same
parameter initialization method as Kou et al. (2018), where the network weights and bias are randomly
initialized following a uniform distribution and the bias positions are uniformly sampled from the
support length of the data distribution. The integrals in Eq. (1) are performed numerically. Each
continuous distribution density function is discretized into q bins, resulting in a discrete probability
mass function (i.e. a q-dimensional vector that sums to one).

4 Properties of DRN

DRN is able to perform transformations such as peak spreading and peak splitting, as discussed in
detail in Kou et al. (2018). In this section, we provide further theoretical analysis on the functional
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form of DRN propagation which gives more insight to DRN’s generalization abilities. By expressing
the integral in Eq. (1) with summation and the distribution at each node as a discretized q-length
vector, we can express the output at a node in vector form, p̃0 = B0 ◦ (Tw1 · p1) ◦ (Tw2 · p2) ◦
· · · ◦ (Twn · pn) = B0 ◦

∏̆n

i=1Twi · pi, where
∏̆

is a symbol for Hadamard products and upon
normalization, p0 = p̃0/|p̃0|. ◦ is the element wise Hadamard product operator and · is the matrix
multiplication operator. B0 is a vector representing the bias term whose components are given

by (B0)i = exp

(
−bq

(
si−λq

∆

)2

− ba
∣∣ si−λa

∆

∣∣). Twi is a symmetric q by q transformation matrix

corresponding to the connections in DRN with elements (Twi)qr = exp

(
−wi

(
sq−sr

∆

)2
)

. With the

Boltzmann distribution, under positive weight w, the matrix Twi acts as a Gaussian filter on the input
distribution, where w controls the spread, as shown in Figure 1b. In the following, we present some
propositions concerning DRN, where their corresponding proofs are in the supplementary material.
Proposition 1. A node connecting to a target node with zero weight w = 0 has no effect on the
activation of the target node.

Similar to conventional neural networks, this is a mechanism for which DRN can learn to ignore
spurious nodes by setting their weights to zero or near zero.
Proposition 2. For a node connecting to a target node with sufficiently large positive weight w →∞,
the transformation matrix Tw → I .

The consequence is that the identity mapping from one node to another can be realized.
Proposition 3. Output of DRN is invariant to normalization of all hidden layers of DRN.

As an extension to Proposition 3, it can be shown that the output of DRN is invariant to scaling of the
hidden layers. Therefore arbitrary scaling can be applied in the layers to control numerical stability.
These normalization can be done dynamically during the computation. In this paper, we found that
normalization of all layers is sufficient to provide the required numerical stability and precision for
all our datasets.
Definition 1. A node in DRN is said to be an order n node when it is connected with non-zero weights
from n incoming nodes in the previous layer.

Lemma 1. For an order n node, components of p̃0 (which we denote as p̃0i), follow a power law of
nth order cross terms of the components of connecting nodes.

p̃0i = (B0)i
∑
j1

· · ·
∑
jn

[(Tw1)i,j1 · · · (Twn)i,jn ]︸ ︷︷ ︸
coefficients

[(p1)j1 · · · (pn)jn ]︸ ︷︷ ︸
cross terms

(3)

Writing in short hand notation, J (1) = (j1, · · · jn) where the superscript indicates J is the in-
dices over the first layer. Write

∑
j1
· · ·∑jn

=
∑
J(1) and consolidate the coefficients into a

tensor, ci,J(1)(w,B) = (B0)i(Tw1
)i,j1 · · · (Twn)i,jn , and the cross terms into a tensor, PJ(1) =

(p1)j1 · · · (pn)jn , where w = (w1, · · ·wn). Eq. (3) can be written compactly as,

p0 =
∑
J(1)

cJ(1)(w,B)PJ(1)/
∑
Ĵ(1)

zĴ(1)(w,B)PĴ(1) (4)

where p0 = (p01, p02, · · · p0q), cJ(1) = (c1,J(1) , · · · cq,J(1)), and zĴ(1)(w,B) =
∑
i ci,J(1)(w,B).

Using Proposition 3, we consider unnormalized hidden layers. The activations for the αth node of
the first hidden layer h(1)

α and second hidden layer h(2)
α are, h(1)

α =
∑
J

(1)
α
c
J

(1)
α
P
J

(1)
α

,

h
(2)
α =

∑
J

(2)
α
c
J

(2)
α
H
J

(2)
α

and H
J

(2)
β

=
∏n1

β=1

∑
J

(1)
β

c
jβ ,J

(1)
β

P
J

(1)
β

. Detailed derivations of the above

equations are given in the supplementary material. Each of the P
J

(1)
β

consists of cross terms of the

input distributions to order n0 (n0 is the number of input nodes). H
J

(2)
α

is a product of n1 terms of
P
J

(1)
β

’s, hence H
J

(2)
α

will be cross terms of the input distributions to order n1 × n0. For a network
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of L hidden layers with number of nodes, n1, n2, · · ·nL, the output consist of multiplications of the
components of input distributions to the power of n0 × n1 · · · × nL. In this way, DRN can fit high
order functions exponentially quickly by adding hidden layers. For instance, the network in Figure 1a
obtains a 9th order transformation by using two hidden layers of only 3 nodes each.

Proposition 4. For a node of order n, in the limit of small weights |wα| � 1 for α = 1, · · ·n, the
output activions, p0 can be approximated as a fraction of two linear combinations of the activations
in the input nodes.

The consequence of proposition 4 is that by adjusting the weights and by expanding the matrix
Twα to orders linear in wα, DRN can approximate the output distribution to be a fraction of linear
combinations of the input distributions in the form,

p0i ≈
B0i +

∑
αB0i ◦ (E(wα) · pα)i∑

j [B0j +
∑
α′ B0j ◦ (E(wα′) · pα′)j ]

(5)

E is a matrix linear in wα. Indeed, the matrix Twα can be approximated by expanding to K orders in
wα with accuracy of expansion depending on the magnitudes of wα. If expansion is up to second
order in wα then the output is a fraction of quadratic expressions. If the expansion in wα is up to
K order then the resulting output is a fraction of polynomials of K order. At this point we wish to
mention DRN’s analogy to the well known Padé approximant (Baker et al., 1996). Padé approximant
is a method of function approximation using fraction of polynomials.

We compare the linear transformations of DRN with MLP and CNN for the case of transforming an
input distribution to an (unnormalized) output distribution using one network layer. MLP consists of
a linear transformation with a weight matrix followed by addition of a bias vector and elementwise
transformation with an activation function. The linear transformation can be expressed as p̃MLP

1 =
Wp0 + b, where p0 is a q-length vector, and p̃MLP

1 is the corresponding unnormalized output
distribution, W is a dense weight matrix with q × q parameters and b has q values. For CNN,
the one-dimensional convolutional filter acts on the input distribution with the weight matrix Wc

arising from a convolutional filter. We compare the linear transformations with the illustration in
Figure 1b. DRN’s weight matrix is highly regularized, where the single free parameter w controls the
propagation behavior. In contrast, MLP has a dense weight with q× q parameters. The weight matrix
in CNN is more regularized than in MLP but uses more free parameters than DRN. As a result of
DRN’s compact representation of the distribution and regularized weight matrix, interpretation of the
network by analyzing the weights becomes easier for DRN.

For non linear transformation, MLP uses a non-linear activation function and with the single hidden
layer, MLP can fit a wide range of non-linear functions with sufficient number of hidden nodes
(LeCun et al., 2015). The non-linear transformation in CNN is similar to MLP, except that the
convolutional filters act as a regularized transformation. Without the hidden layer, MLP and CNN
behave like logistic regression and they can only fit functions with linear level-sets. In contrast, DRN
has no activation function, it achieves nonlinear transformations by using the Hadamard product as
explained in Definition 1. As a consequence of the Hadamard product, with no hidden layers, DRN
can fit functions with non-linear level-sets.

In this section we have provided theoretical analysis on DRN’s propagation and showed how the
varied propagation behaviors can be controlled by just a few network parameters in contrast to
MLP and CNN. In the subsequent experiments, we show that DRN consistently uses fewer model
parameters than tranditional neural networks and 3BE while achieving better test accuracies. We
further investigate the generalization capablities by varying the number of training data and number
of samples drawn from the distributions.

5 Experiments

We conducted experiments with DRN and RDRN on four datasets which involve prediction of
time-varying distributions. We also compare with conventional neural network architectures and
other distribution regression methods. The benchmark methods are multilayer perceptron (MLP),
recurrent neural network (RNN) and Triple-Basis Estimator (3BE) (Oliva et al., 2015). For the third
dataset, we also compare with Extrapolating the Distribution Dynamics (EDD) (Lampert, 2015) as
the data involves only a single trajectory of distribution. Among these methods, RDRN, RNN and
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(a)
Shifting Gaussian Climate Model
(20 training data) (100 training data)

Test L2(10
−2) Np Test L2(10

−2) Np

DRN 4.90(0.46) 224 12.27(0.34) 44
RDRN 4.55(0.42) 59 11.98(0.13) 59
MLP 10.32(0.41) 1303 13.52(0.25) 22700
RNN 17.50(0.89) 2210 13.29(0.59) 12650
3BE 22.30(1.89) 6e+5 14.18(1.29) 2.2e+5

(b)

Figure 2: (a) Regression results for the shifting Gaussian and climate model datasets. Np: number of
model parameters. The number in the parentheses is the standard error over repeated runs. (b) Shifting
Gaussian dataset: The test performance at small training sizes. Best viewed incolor.

EDD are designed to take in the inputs sequentially over time while for the rest the inputs from all T
time steps are concatenated. Each distribution is discretized into q bins.

5.1 Shifting Gaussian

For the first experiment, we adapted the shifting Gaussian experiment from Lampert (2015) but
made it more challenging. Although this is a synthetic data set, this is the most challenging of all
our datasets as it involves complex shifts in the distribution peaks. It is used to empirically study
how DRN performs better even with fewer number of parameters as compared to the benchmark
methods. Our shifting Gaussian means varies sinusoidally over time. Given a few consecutive input
distributions taken from time steps spaced ∆t = 0.2 apart, we predict the next time step distribution.
Because of the sinusoidal variation, it is apparent that we require more than one time step of past
distributions to predict the future distribution. The specific details of the data construction is in
supplementary material. We found that for all methods, a history length of 3 time steps is optimal.
Following Oliva et al. (2014) the regression performance is measured by the L2 loss, where lower L2

loss is favorable.

The plots in Figure 2b show the test L2 loss as the number of training data varies. Across the varying
training sizes, DRN and RDRN outperform the other methods, except at training size of 50, where
3BE’s test performance catches up. As training size decreases, MLP, RNN and 3BE show larger
decrease in test performance. DRN performs better than RDRN, except at the smallest training size of
20 where there is no significant difference. The table in Figure 2a shows the regression results for the
training size of 20, and we note DRN and RDRN use much fewer parameters than the other methods.
Overall, DRN and RDRN require at least two times fewer training data than the other methods for
similar test accuracies.

5.2 Climate model

In this experiment, we test the ability of the regression methods to model unimodal Gaussian
distributions spreading and drifting over time. We use a climate model which predicts how heat flux
at the sea surface varies (Lin & Koshyk, 1987). The evolution of the heat flux obeys the Ornstein-
Uhlenbeck (OU) process which describes how a unimodal Gaussian distribution spreads and drifts
over time. The regression task is as follows: Given a sequence of distributions spaced equally apart
with some fixed time gap, predict the distribution some fixed time step after the final distribution.
Details of the dataset is in the supplementary material.

The regression results on the test set are shown in the table in Figure 2a. The regression accuracies for
DRN and RDRN are the best, followed by MLP and RNN. With limited training data, the performance
of DRN and RDRN remain very good whereas the other methods saw large decrease in performance
(see Figure 3b). Next, we study how the sampling noise in data affects the regression models’
performance by generating different numbers of samples drawn from distribution. Figure 3c shows
the performance for varying number of samples drawn for a training size of 100. DRN and RDRN
remain robust at large sampling noise whereas the other methods saw larger increase in error.

6



ba = 1.40

bq = �10.05
�a = 0.99

�q = 0.001

ba = 0.04

bq = 10.89
�a = 0.046

�q = �0.0034

257.72 204.30

(a)

(b) Varying number of training
data

(full pdf, without sampling)

(c) Varying number of samples per
distribution

(100 training data)

Figure 3: Climate model dataset: (a) A DRN network with only 2 weight and 8 bias parameters
performs well for the climate model dataset. (b) The accuracies of DRN and RDRN remain high as
number of training data decreases. The black triangle indicated by the arrow gives the performance
obtained by the DRN network in (a). (c) As number of samples decreases, DRN and RDRN remain
robust while the other methods saw larger decrease in accuracy.

CarEvolution (5 training data)
Test NLL Np

DRN 3.9663(2e-5) 28676
RDRN 3.9660(3e-4) 12313
MLP 3.9702(6e-4) 1.2e+7
3BE 3.9781(0.003) 1.2e+7
EDD 4.0405 64

(a)

Stock (200 training data)
Test NLL (1 day) Test NLL (10 days) T Np

DRN -473.93(0.02) -458.08(0.01) 1 9
RDRN -469.47(2.43) -459.14(0.01) 3 37
MLP -471.00(0.04) -457.08(0.98) 3 10300
RNN -467.37(1.33) -457.96(0.20) 3 4210
3BE -464.22(0.16) -379.43(11.8) 1 14000

(b)

Table 1: Regression results for the (a) CarEvolution and (b) stock dataset. NLL: negative log-
likelihood, T : optimal number of input time steps, Np: number of model parameters used. Lower
loss values reflect better regression accuracies.

DRN’s compact representation of distributions allows it to perform transformations with very few
network parameters, as discussed in Section 4. In Figure 3a, we show a DRN network that has good
test accuracy on the climate model dataset. The network consists of just one hidden node in between
the input and output nodes and has only 10 parameters. We observe that the output distribution
follows the expected behavior for the climate model: shifting towards the long-term mean at zero,
with some spread from the input distribution. The DRN network in Figure 3a does this by first
shifting the distribution right, and then left, with additional spread at each step.

5.3 CarEvolution data

For the next experiment, we use the CarEvolution dataset (Rematas et al., 2013) which was used
by Lampert (2015) to evaluate EDD’s ability to track the distribution drift of image datasets. This
is very useful for training classifiers where the data distribution changes over time. The dataset
consists of images of cars manufactured from different years and from each time period, we obtain
a distribution of DeCAF features (Donahue et al., 2014) of the car images in that period. Here we
make the approximation that the DeCAF features are independent. For this dataset, the distributions
can be multimodal and non-Gaussian, as shown in the pdfs in the supplementary material.

The regression task is to predict the next time step distribution of features given the previous T
time step distributions. We found T=2 to work best for all methods. The regression performance
is measured by the negative log-likelihood (NLL) of the test samples following Oliva et al. (2013),
where lower NLL is favorable. The regression results are shown in Table 1a. DRN and RDRN have
the best test performance. RNN had difficulty in optimization possibly due to the high number of
input dimensions, so the results are not presented. EDD has the fewest number of parameters as
it assumes the dynamics of the distribution follows a linear mapping between the RKHS features
of consecutive time steps (i.e. T=1). However, as the results show, the EDD model may be too
restrictive for this dataset. For this dataset, since the number of training data is very small, we do not
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vary the size of the training set. We also do not vary the sample size since each distribution contains
varying number of samples.

5.4 Stock prediction

The next experiment is on stock price distribution prediction which has been studied extensively by
Kou et al. (2018). We adopt a similar experimental setup and extend to multiple time steps. Predicting
future stock returns distributions has significant value in the real-world setting and here we test the
methods’ abilities to perform such a task. Our regression task is as follows: given the past T days’
distribution of returns of constituent companies in FTSE, Dow and Nikkei, predict the distribution of
returns for constituent companies in FTSE k days later. We used 5 years of daily returns and each
distribution is obtained using kernel density estimation with the constituent companies’ returns as
samples. In the supplementary material, we show some samples of the distributions.

(a) 5 days ahead (b) 200 training data (c) 50 training data

Figure 4: Stock dataset: (a) Test negative log-likelihood for varying number of training data, for 5
days ahead prediction. DRN and RDRN’s performance remains robust at low training sizes. 3BE’s
result is not shown as it is out of range. (b, c) Test NLL for varying number of days ahead prediction,
for 50 and 200 training data. 3BE’s NLL is out of range for 2, 5, and 10 days ahead. DRN’s
performance remains robust as number of days increases, especially for limited training size of 50.

We first observe how robust the methods are when training data is limited. Figure 4a shows the
performance for 5 days ahead prediction with varying number of training sizes. DRN and RDRN’s
performance remains robust even as the number of training data decreases from 200 to 50, whereas
MLP, RNN and 3BE have larger decrease in test accuracy. Next, to study how the models perform
with increasing level of task difficulty, we vary number of days ahead to predict. The results are
shown in Figure 4b and 4c for 200 and 50 training data respectively. As expected, as the number of
days ahead increases, the task difficulty increases and all methods see a decrease in accuracy. DRN
remains robust as the number of days ahead increases, especially for the smaller training size of 50.

Table 1b shows the regression results for training size of 200 for 1 and 10 days ahead. For 1 day ahead
performance, DRN outperforms the other methods, followed by MLP then RDRN. Since for this
experiment DRN uses only one previous day of input, this suggests that the 1 day ahead prediction
task does not involve long time dependencies. Predicting 10 days ahead is a more challenging task
which may benefit from having a longer history of stock movements. For a training size of 200,
RDRN is the best method, using 3 days of input history. This suggests that for a prediction task
which involves longer time dependencies, having a recurrent architecture for DRN is beneficial when
training size is sufficiently large.

6 Discussion

In this work, we address a gap in current work on distribution regression models, in that there is a lack
of systematic study on the theoretical basis and generalization abilities of the various methods. The
distribution regression network (DRN) has been shown to achieve higher accuracies than conventional
neural networks (Kou et al., 2018). To address a lack of theoretical comparison of previous works, we
studied the mathematical properties of DRN and conventional neural networks in Section 4, which
gave further insights to the difference in the effects of the network parameters in the various models.
In summary, we analyzed that a single weight parameter in DRN can control the propagation behavior
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in single nodes, ranging from the identity function to peak spreading. The propagation in DRN is
highly regularized in contrast to that in MLP and CNN where there are many more parameters. In
addition, DRN can fit higher order functions exponentially quickly by adding hidden layers while
keeping the network compact.

These mathematical properties of DRN give insights to our experimental findings. We conducted
thorough experimental validation on the generalization performance of DRN, conventional neural
network models and 3BE. DRN achieves superior test accuracies with robust performance at limited
training sizes, noisy data sampling and increasing task difficulty. Furthermore, the number of model
parameters in DRN is much smaller. This can be attributed to the mathematical properties of DRN:
the highly regularized propagation allows it to generalize better than conventional neural networks.

For future work, we look to extend to multivariate distributions, which will be useful in various
applications such as modeling the 3D distribution of dark matter (Ravanbakhsh et al., 2016) and
studying human populations through multi-dimensional census data (Flaxman et al., 2015). Another
possibility is to extend DRN for the general function-to-function regression task.
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A Recurrent extension for DRN
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Figure 5: Recurrent distribution regression network

We introduce the recurrent distribution regression network (RDRN) which is a recurrent extension
of DRN. The input data is a distribution sequence as described in Section 3.1. Figure 5 shows an
example network for RDRN, where the network takes in T time steps of distributions to predict
the distribution at T + k. The hidden state at each time step may consist of multiple distributions.
The arrows represent fully-connected weights. The input-hidden weights U and the hidden-hidden
weights W are shared across the time steps. V represents the weights between the final hidden state
and the output distribution. The bias parameters for the hidden state nodes are also shared across
the time steps. The hidden state distributions at t = 0 represents the ‘memory’ of all past time
steps before the first input and can be initialized with any prior information. In our experiments,
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we initialize the t = 0 hidden states as uniform distributions as we assume no prior information is
known.

We formalize the propagation for the general case where there can be multiple distributions for each
time step in the data input layer and the hidden layer. Let n and m be the number of distributions per
time step in the data layer and hidden layers respectively. Propagation starts from t=1 and performed
through the time steps to obtain the hidden state distributions. X(t)

i (r
(t)
i ) represents the input data

distribution at node i and time step t, when the node variable is r(t)
i . H(t)

k (s
(t)
k ) represents the density

of the pdf of the kth hidden node at time step t when the node variable is s(t)
k . H̃(t)

k (s
(t)
k ) represents

the unnormalized form. The hidden state distributions at each time step is computed from the hidden
state distributions from the previous time step and the input data distribution from the current time
step.

H̃
(t)
k

(
s

(t)
k

)
=

∫
r1(t),··· ,rn(t),s1(t−1),··· ,sm(t−1)

Q̃
(
s

(t)
k |r

(t)
1 , · · · , s(t−1)

1 , · · ·
)

(6)

X
(t)
1

(
r

(t)
1

)
· · ·X(t)

n

(
r(t)
n

)
H

(t−1)
1

(
s

(t−1)
1

)
· · ·H(t−1)

m

(
s(t−1)
m

)
dr

(t)
1 · · · dr(t)

n ds
(t−1)
1 · · · ds(t−1)

m

Q̃(s
(t)
k |r

(t)
1 , · · · , s(t−1)

1 , · · · ) = e
−E

(
s
(t)
k |r

(t)
1 ,··· ,s(t−1)

1 ,···
)

(7)

The energy function is similar to the one in DRN and is given by

E
(
s

(t)
k |r

(t)
1 , · · · , s(t−1)

1 , · · ·
)

=

n∑
i

uki

(
s

(t)
k − r

(t)
i

∆

)2

+

m∑
j

wkj

(
s

(t)
k − s

(t−1)
j

∆

)2

(8)

+ bq,k

(
s

(t)
k − λq,k

∆

)2

+ ba,k

∣∣∣∣∣s(t)
k − λa,k

∆

∣∣∣∣∣ ,
where for each time step, uki is the weight connecting the ith input distribution to the kth hidden
node. Similarly, for the hidden-hidden connections, wkj is the weight connecting the jth hidden node
in the previous time step to the kth hidden node in the current time step. As in DRN, the hidden
node distributions are normalized before propagating to the next time step. At the final time step, the
output distribution is computed from the hidden state distributions, through the weight vector V and
bias parameters at the output node.

B Proofs for propositions for DRN theory

Forward propagation in DRN can be written as a combination of linear transformation and Hadamard
products and then normalized. For a node of order n, its activation p0 is

p̃0 = B0 ◦ (Tw1
· p1) ◦ (Tw2

· p2) ◦ · · · ◦ (Twn · pn) = B0 ◦
∏̆n

i=1
Twi · pi (9)∏̆

is a symbol for Hadamard products and

p0 = p̃0/|p̃0| (10)

◦ is the element wise Hadamard product operator, · is the matrix multiplication operator. B0 is a
vector representing the bias term whose components are given by

(B0)i = exp

(
−bq

(
si − λq

∆

)2

− ba
∣∣∣∣si − λa∆

∣∣∣∣
)

(11)

Twi is a symmetric transformation matrix corresponding to the connections in DRN whose elements
are given by

(Twi)qr = exp

(
−wi

(
sq − sr

∆

)2
)

(12)

11



Proposition 5. A node connecting to a target node with zero weight w = 0 has no effect on the
activation of the target node.

Proof. Without loss of generality, suppose w1 = 0 in Eq. (9), it is easy to show that

Tw1=0 · p1 = e = (1, 1, · · · 1)t (13)

e = (1, 1, · · · 1)t is a vector with all ones. Using the identity, u ◦ e = u for any vector u, the term
Tw1
· p1 drops out from Eq. (9). Therefore p̃0 does not depend on p1.

Similar to conventional neural networks, this is a mechanism for which DRN can learn to ignore
spurious nodes by setting their weights to zero or near zero.
Proposition 6. For a node connecting to a target node with sufficiently large positive weight w →∞,
the transformation matrix approaches the identity matrix: Tw → I .

Proof. Suppose w →∞ in Eq. (9), it is easy to show that

Tw1→∞ · p1 = I · p1 = p1 (14)

The consequence is that the identity mapping from one node to another can be realized.
Lemma 2. Output of DRN is invariant to scaling the input by constant factors.

Proof. Activation of one layer is invariant to scaling of the activation in the previous layer. Using
Eq. (9), performing the transformation pi ← cipi, where ci are scalars, leads to p̃0 ← c1c2 · · · cnp̃0,
subsequent normalization makes p0 invariant to any scaling factors. The effects of scaling in a layer
in the network is immediately eliminated in the next layer by normalization.

Proposition 7. Output of DRN is invariant to normalization of all hidden layers of DRN.

Proof. For the purpose of proving, construct two networks identical in architecture and weights,
forward propagate both networks, one network with nodes in the hidden layer normalized and the
other network with nodes in the hidden layer unnormalized.

Let n0 be the number of input nodes and n1, · · · be the number of hidden nodes in the hidden
layers. Let activation in the input nodes be pi, i = 1, · · ·n0. Let activation of the ith node in the lth
hidden layer be hn(l)

i for the network with normalized hidden nodes and hu(l)
i for the network with

unnormalized hidden nodes.

Performing forward propagation for both networks,

h̃n
(1)

i = B
(1)
i ◦

∏̆n0

j=1
T
w

(1)
j
· pj (15)

hn
(1)
i =

h̃n
(1)

i

|h̃n(1)

i |
(16)

h̃u
(1)

i = B
(1)
i ◦

∏̆n0

j=1
T
w

(1)
j
· pj = h̃n

(1)

i (17)

For the second layer,

h̃n
(2)

i = B
(2)
i ◦

∏̆n1

j=1
T
w

(2)
j
· hn(1)

j (18)

=
B

(2)
i ◦

∏̆n1

j=1Tw(2)
j
· h̃n(1)

j∏n1

j′=1 |h̃n
(1)

j′ |
(19)

=
B

(2)
i ◦

∏̆n1

j=1Tw(2)
j
· h̃n(1)

j

z(1)
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z(1) =
∏n1

j′=1 |h̃n
(1)

j′ | is the normalization scalar that factorizes out of the Hadamard product.

hn
(2)
i =

h̃n
(2)

i

|h̃n(2)

i |
(20)

h̃u
(2)

i = B
(2)
i ◦

∏̆n1

j=1
T
w

(2)
j
· h̃u(1)

j

h̃u
(2)

i = h̃n
(2)

i z(1) (21)

Using Eq. (21), it can be shown that,

h̃u
(l)

i = h̃n
(l)

i

(l−1)∏
j=1

z(j) = h̃n
(l)

i Z
(l−1) (22)

Without loss of generality, assume that the output consists of one node, let pn and pu be the final
normalized output of the networks with normalized hidden layers and unnormalized hidden layers
respectively. Using Eq. (22), we shall proof that pn = pu.

p̃n = (B(L)) ◦
∏̆nL−1

j=1
(T
w

(L)
j
· hn(L−1)

j ) (23)

p̃u = (B(L)) ◦
∏̆nL−1

j=1
(T
w

(L)
j
· h̃u(L−1)

j )

= (B(L)) ◦
∏̆nL−1

j=1
(T
w

(L)
j
· h̃n(L−1)

j )Z(L−1) (24)

Eq. (23) and (24) show that p̃n and p̃u differ by a constant scalar. Therefore, after normalizing,
pn = pu.

Although normalization is theoretically unnecessary, normalization step in Eq. (10) provides numeri-
cal stability and prevents numeric under-flows and over-flows.

Definition 2. A node in DRN is said to be an order n node when it is connected with non-zero weights
from n incoming nodes in the previous layer.

Lemma 3. For an order n node, components of p̃0 (which we denote as p̃0i, where i = 1, · · · , q
and q is the distribution discretization size), follow a power law of nth order cross terms of the
components of connecting nodes.

Proof. By rearranging the cross terms in the Hadamard product, we obtain the nth order cross terms
from the components of the connecting nodes.

p̃0i = (B0)i

∑
j1

(Tw1
)i,j1(p1)j1

 · · ·
∑

jn

(Twn)i,jn(p1)jn


= (B0)i

∑
j1

· · ·
∑
jn

[(Tw1
)i,j1 · · · (Twn)i,jn ]︸ ︷︷ ︸

coefficients

[(p1)j1 · · · (pn)jn ]︸ ︷︷ ︸
cross terms

(25)

Writing in short hand notation, J (1) = (j1, · · · jn) where the superscript indicates J is the in-
dices over the first layer. Write

∑
j1
· · ·∑jn

=
∑
J(1) and consolidate the coefficients into a

tensor, ci,J(1)(w,B) = (B0)i(Tw1
)i,j1 · · · (Twn)i,jn , and the cross terms into a tensor, PJ(1) =

(p1)j1 · · · (pn)jn , where w = (w1, · · ·wn). Eq. (25) can be written compactly as,

p̃0i =
∑
J(1)

ci,J(1)(w,B)PJ(1) (26)
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The normalization factor is,

|p̃0| =
∑
J(1)

∑
i

ci,J(1)(w,B)PJ(1) =
∑
J(1)

zJ(1)PJ(1) (27)

Finally, the normalized output, written in vector notation is,

p0 =

∑
J(1) cJ(1)PJ(1)∑
Ĵ(1) zĴ(1)PĴ(1)

(28)

where p0 = (p01, p02, · · · p0q) and cJ(1) = (c1,J(1) , · · · cq,J(1)).

For a network with hidden layers, let h(l)
1 , · · ·h(l)

nl be the activation in the lth hidden layer. By
Proposition 7, we only consider unnormalized hidden layers. The activation on the first hidden layer
can be written using Eq. (28) without the normalization factor. Using J (1)

α to denote the indices
connecting to h(1)

α ,
h(1)
α =

∑
J

(1)
α

c
J

(1)
α

(w(1)
α , B(1)

α )P
J

(1)
α

(29)

For the nodes in the second hidden layer, h(2)
α ,

h(2)
α =

∑
J

(2)
α

c
J

(2)
α

(w(2)
α , B(2)

α )H
J

(2)
α

(30)

H
J

(2)
α

= (h
(1)
1 )j1(h

(1)
2 )j2 · · · (h(1)

n1
)jn1

=

∑
J

(1)
1

c
j1,J

(1)
1
P
J

(1)
1

 · · ·
∑
J

(1)
n1

c
jn1 ,J

(1)
n1

P
J

(1)
n1


=

n1∏
β=1

∑
J

(1)
β

c
jβ ,J

(1)
β

P
J

(1)
β

 (31)

Each of the P
J

(1)
β

consists of cross terms of the input distributions to order n0 (n0 is the number

of input nodes). H
J

(2)
α

is a product of n1 PJ(1)
β

’s, hence H
J

(2)
α

will be cross terms of the input

distributions to order n1 × n0.

For a network of L hidden layers with number of nodes, n1, n2, · · ·nL, the output consist of multipli-
cations of the components of input distributions to the power of n0 × n1 · · · × nL. In this way, DRN
can fit high order functions exponentially quickly by adding hidden layers.
Proposition 8. For a node of order n, in the limit of small weights |wα| � 1 for α = 1, · · ·n, the
output activions, p0 can be approximated as a fraction of two linear combinations of the activations
in the input nodes.

Proof. In the limit of small weights, one can expand Twα and keep the terms linear in wα. Then Twα
is of the form

Twα = E + Ewα +O(w2
α) (32)

where E is a matrix with all ones in its elements, O(w2
α) is a matrix with elements of the order of w2

α
and Ewα is a matrix linear in wα given by,

Ewα =

 0 −wα/∆2 −4wα/∆
2 · · ·

−wα/∆2 0 −wα/∆2 · · ·
...

 (33)

Using Eq.(9) and dropping higher order terms,

p̃0 ≈ B0 ◦ ((E + E(w1)) · p1) ◦ ((E + E(w2)) · p2) ◦ · · · ◦ ((E + E(wn)) · pn)
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Expanding and using the distributive property of Hadamard product (Million, 2007), then dropping
higher order terms in wi again,

p̃0i ≈ B0i +
∑
α

B0i ◦ (E(wα) · pα)i (34)

Upon normalization,

p0i ≈
B0i +

∑
αB0i ◦ (E(wα) · pα)i∑

j [B0j +
∑
α′ B0j ◦ (E(wα′) · pα′)j ]

(35)

The consequence of proposition 8 is that by adjusting the weights, DRN can approximate the
unnormalized output distribution to be a fraction of linear combinations of the input distribution.

Indeed, the matrix Twα can be approximated by expanding to K orders in wα with accuracy of
expansion depending on the magnitudes of wα. If expansion is up to second order in wα then the
output is a fraction of quadratic expressions. If the expansion in wα is up toK order then the resulting
output is a fraction of polynomials of K order. At this point we wish to mention DRN’s analogy to
the well known Padé approximant (Baker et al., 1996). Padé approximant is a method of function
approximation using fraction of polynomials.

C Experimental details

C.1 Shifting Gaussian

We track a Gaussian distribution whose mean varies in the range [0.2, 0.8] sinusoidally over time
while the variance is kept constant at 0.1 (see Figure 6). Given a few consecutive input distributions
taken from time steps spaced ∆t = 0.2 apart, we predict the next time step distribution. For each
data we randomly sample the first time step from [0, 2π]. The distributions are truncated with support
of [0, 1] and discretized with q=100 bins. We found that for all methods, a history length of 3 time
steps is optimal. Following Oliva et al. (2014) the regression performance is measured by the L2 loss,
where lower L2 loss is favorable. Table 2 shows the detailed network architectures used, for training
size of 20. q = 100 was used for the discretization of the distributions.

C.2 Climate Model

With the long-term mean set at zero, the pdf has a mean of µ(t) = y exp(−θt) and variance of
σ2(t) = D(1− e−2θt)/θ. t represents time, y is the initial point mass position, and D and θ are the
diffusion and drift coefficients respectively. The diffusion and drift coefficients are determined from
real data measurements Oort & Rasmusson (1971): D = 0.0013, θ = 2.86, and each unit of time
corresponds to 55 days (Lin & Koshyk, 1987). To create a distribution sequence, we first sample
y ∈ [0.02, 0.09]. For each y, we generate 6 Gaussian distributions at t0 − 4δ, t0 − 3δ, ..., t0 and
t0 + 0.02, with δ = 0.001 and t0 sampled uniformly from [0.01, 0.05]. The Gaussian distributions
are truncated with support of [−0.01, 0.1]. The regression task is as follows: Given the distributions
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Comparison of models tuned for best validation set result (Shifting Gaussian dataset, 20 training data)
Test L2(10

−2) T Model description Np Cost function
DRN 4.90(0.46) 3 3 - 2x10 - 1 224 JS divergence

RDRN 4.55(0.42) 3 T = 3, m = 5 59 JS divergence
MLP 10.32(0.41) 3 300 - 1x3 - 100 1303 MSE
RNN 17.50(0.89) 3 T = 3, m = 10 2210 MSE
3BE 22.30(1.89) 3 30 basis functions, 20k RKS features 6e+5 L2 loss

Table 2: Regression resutls for the shifting Gaussian dataset, with descriptions of the models. L2

denotes the L2 loss, T is the optimal number of input time steps and Np is the number of model
parameters used, MSE represents the mean squared error. A discretization of q = 100 is used for the
distributions. For RDRN and RNN, m is the number of nodes in the hidden state of each time step.
For DRN and MLP (feedforward networks), the architecture is denoted as such: Eg. 3 - 2x10 - 1: 3
input nodes, with 2 fully-connected hidden layers each with 10 nodes, and 1 output node.

at t0 − 4δ, t0 − 3δ, ..., t0, predict the distribution at t0 + 0.02. With different sampled values for y
and t0, we created 100 training and 1000 test data. Table 3 shows the detailed network architectures
used, for training size of 100. q = 100 was used for the discretization of the distributions.

Comparison of models tuned for best validation set result (Climate model dataset, 100 training data)
Test L2(10

−2) T Model description Np Cost function
DRN 12.27(0.34) 3 3 - 1x5 - 1 44 JS divergence

RDRN 11.98(0.13) 5 T = 5, m = 5 59 JS divergence
MLP 13.52(0.25) 3 300 - 2x50 - 100 22700 MSE
RNN 13.29(0.59) 5 T = 5, m = 50 12650 MSE
3BE 14.18(1.29) 5 11 basis functions, 20k RKS features 2.2e+5 L2 loss

Table 3: Regression results for the climate model dataset, with descriptions of the models. L2 denotes
the L2 loss, T is the optimal number of input time steps and Np is the number of model parameters
used, MSE represents the mean squared error. A discretization of q = 100 is used for the distributions.
For RDRN and RNN, m is the number of nodes in the hidden state of each time step. For DRN and
MLP (feedforward networks), the architecture is denoted as such: Eg. 3 - 2x10 - 1: 3 input nodes,
with 2 fully-connected hidden layers each with 10 nodes, and 1 output node.

C.3 CarEvolution data

The dataset consists of 1086 images of cars manufactured from the years 1972 to 2013. We split
the data into intervals of 5 years (i.e. 1970-1975, 1975-1980, · · · , 2010-2015) where each interval
has an average of 120 images. This gives 9 time intervals and for each interval, we create the
data distribution from the DeCAF (fc6) features (Donahue et al., 2014) of the car images using
kernel density estimation. The DeCAF features have 4096 dimensions. Performing accurate density
estimation in very high dimensions is challenging due to the curse of dimensionality (Gu et al.,
2013). Here we make the approximation that the DeCAF features are independent, such that the joint
probability is a product of the individual dimension probabilities. The first 7 intervals were used
for the train set while the last 3 intervals were used for the test set, giving 5 training and 1 test data.
Table 4 shows the detailed network architectures used for the CarEvolution dataset, for training size
of 5. q = 100 was used for the discretization of the distributions. Figure 7 shows some samples of
the distributions formed from the CarEvolution dataset. The distributions’ shapes are much more
varied than simple Gaussian distributions.

C.4 Stock prediction

We used 5 years of daily returns from 2011 to 2015 and performed exponential window averaging on
the price series (Murphy, 1999). We also used a sliding-window training scheme (Kaastra & Boyd,
1996) to account for changing market conditions (details are in C.4). The daily stock returns are
the logarithmic returns. We used a sliding window scheme where a new window is created and the
model retained after every 300 days (the size of the test set). For each window, the previous 500
and 100 days were used for training and validation sets respectively. Table 5 shows the detailed
network architectures used. q = 100 was used for the discretization of the distributions. The RDRN
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Comparison of models tuned for best validation set result (CarEvolution dataset, 5 training data)
Test NLL T Model description Np Cost function

DRN 3.9663(2e-5) 2 (4096x2) - 1x1 - 4096 28676 JS divergence
RDRN 3.9660(3e-4) 2 T = 2, m = 3 12313 JS divergence
MLP 3.9702(6e-4) 2 (4096x2x100) - 3x10 - (4096x100) 1.2e+7 MSE
3BE 3.9781(0.003) 2 15 basis functions, 200 RKS features 1.2e+7 L2 loss
EDD 4.0405 1 8x8 kernel matrix for 8 training data 64 MSE

Table 4: Regression results for the CarEvolution dataset, with descriptions of the models. NLL
denotes the negative log-likelihood, T is the optimal number of input time steps and Np is the number
of model parameters used, MSE represents the mean squared error. A discretization of q = 100 is
used for the distributions. For RDRN and RNN, m is the number of nodes in the hidden state of each
time step. For DRN and MLP (feedforward networks), the architecture is denoted as such: Eg. 3 -
2x10 - 1: 3 input nodes, with 2 fully-connected hidden layers each with 10 nodes, and 1 output node.

Figure 7: Samples of the DeCAF features (Donahue et al., 2014) distributions for the CarEvolution
dataset, showing varied distribution shapes.

architecture used is shown in Figure 8, where the data input consists past 3 days of distribution returns
and one layer of hidden states with 3 nodes per time step is used. Figure 9 shows some samples of
the distributions formed from the stock dataset. The distribution shapes are much more varied than
simple Gaussian distributions.

Comparison of models tuned for best validation set result (Stock dataset, 200 training data)
Test NLL

1 day 10 days T Model description Np Cost function
DRN -473.93(0.02) -458.08(0.01) 1 No hidden layer 9 JS divergence

RDRN -469.47(2.43) -459.14(0.01) 3 T = 3, m = 3 37 JS divergence
MLP -471.00(0.04) -457.08(0.98) 3 (3x3x100) - 3x10 - 100 10300 MSE
RNN -467.37(1.33) -457.96(0.20) 3 T = 3, m = 10 4210 MSE
3BE -464.22(0.16) -379.43(11.8) 1 14 basis functions, 1k RKS features 14000 L2 loss

Table 5: Regression results for the stock dataset, with descriptions of the models. NLL denotes the
negative log-likelihood, T is the optimal number of input time steps and Np is the number of model
parameters used, MSE represents the mean squared error. A discretization of q = 100 is used for the
distributions. For RDRN and RNN, m is the number of nodes in the hidden state of each time step.
For DRN and MLP (feedforward networks), the architecture is denoted as such: Eg. 3 - 2x10 - 1: 3
input nodes, with 2 fully-connected hidden layers each with 10 nodes, and 1 output node.
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Figure 8: RDRN network for the stock dataset: past 3 days of distribution of returns of constituent
companies in FTSE, DOW and Nikkei were used as inputs, to predict the future distribution of returns
for constituent companies in FTSE. One layer of hidden states is used, with 3 nodes per hidden state.

(a) FTSE

(b) DOW

(c) Nikkei

Figure 9: Samples of the data distributions formed from (a) FTSE, (b) DOW and (c) Nikkei constitu-
tent companies’ log returns.
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