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Abstract 

 Recently, deep neural networks have achieved impressive performance in terms of both 

reconstruction accuracy and efficiency for single image super-resolution (SISR). However, the 

network model of these methods is a fully convolutional neural network, which is limit to exploit the 

differentiated contextual information over the global region of the input image because of the weight 

sharing in convolution height and width extent. In this paper, we discuss a new SISR architecture 

where features are extracted in the low-resolution (LR) space, and then we use a fully connected layer 

which learns an array of differentiated upsampling weights to reconstruct the desired high-resolution 

(HR) image from the final obtained LR features. By doing so, we effectively exploit the differentiated 

contextual information over the whole input image region, whilst maintaining the low computational 

complexity for the overall SR operations. In addition, we introduce an edge difference constraint into 

our loss function to preserve edges and texture structures. Extensive experiments validate that our 

SISR method outperforms the existing state-of-the-art methods. 
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edge difference constraint. 

1 Introduction 

Single image super-resolution (SISR), which aims at recovering the visually pleasing high-

resolution (HR) image from a single low-resolution (LR) image generated by the low-cost imaging 

system and the limited environment condition, has gained increasing research attention for decades in 

computer vision. Since the obtained HR images often preserve important details and critical 

information for later image processing, analysis and interpretation, SISR is widely applied to various 

field such as video surveillance [2], medical imaging [3], face recognition [4], satellite imaging [5] 

and etc. 

SISR problem usually assumes the observed LR image to be a non-invertible low-pass filtered, 

downsampled and noisy version of HR image. Due to the loss of high-frequency information during 

the degradation of HR images, SISR is a highly ill-posed problem. To handle the ill-posed nature in 

SR reconstruction, a variety of methods has been developed in computer vision community. Early 

methods include interpolation and reconstruction-based method. Interpolation methods such as bicubic 

interpolation [6], edge-guided interpolation [7] and nearest neighbor interpolation [8], usually perform 

well in smooth areas, while they generate ringing and jagged artifacts in high frequency image regions. 

Although reconstruction-based methods are effective to preserve sharp edges and suppress ringing 

artifacts by introducing appropriate image prior knowledge such as edge-directed priors [9], gradient 

profile priors [10], Bayesian priors [11], and nonlocal self-similarity priors [12], they fails to add 

sufficient novel high frequency details to the reconstructed HR images with complex scenes. 
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Currently, learning methods are widely applied to learn the mapping between LR and HR image 

spaces from millions of co-occurrence LR-HR example image pair, including local linear regression 

[13], sparse dictionary learning [14], random forest [15], and deep neural network [16, 21]. Among 

them, the deep neural network (DNN) has drawn considerable attention due to its simple architecture 

and excellent performance. However, DNN-based SR methods also exhibit limitations in architecture 

optimality. First, the network model of these methods is a fully convolutional neural network, which 

is limit to exploit the differentiated contextual information over global image region. Although some 

methods [18, 19, 22, 23, 24, 33] have improved reconstruction quality by stacking more convolution 

layers to exploit contextual information over larger image region, they also increases the computation 

cost and memory usage. Thus, these methods still exhibit limitations in terms of balancing the 

reconstruction accuracy and efficiency. In addition, these methods use convolution as reconstruction 

layer to obtain the final HR image, which is limit to utilize the extracted feature information 

differentially to reconstruct the desired HR images due to the weight sharing of convolution height and 

width extent. Second, most existing SR algorithms optimize the network models with L2 loss and 

thus inevitably generate blurry edges and textures in the reconstructed HR images. Several algorithms 

[22, 23, 24] have focused on improving the loss function to achieve the impressive measures and make 

the reconstructed HR images close to human visual perception on natural images. However, the 

blurring problem of sharp edges and texture structures still exist in reconstructed HR images. 

To address these drawbacks, we propose a new image SR architecture based on the deep neural 

networks. Our network takes an LR image as input and trains a cascade of convolutional blocks 

inspired by deep Residual Networks used for ImageNet classification [25] to extract features in the LR 

space. Then, we use a fully connected layer which learns an array of upsampling weights to predict 
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residual image (the differences between the upsampled image by bicubic interpolation and the ground 

truth HR image) from the extracted LR features. Finally, the desired HR image is obtained by adding 

the predicted residual image to the upsampled image using bicubic interpolation. In addition, 

considering that L2 loss function used for most SR methods always leads to the blurring of image 

details and generates ringing artifacts, we introduce an edge difference constraint into the loss function 

of our proposed network to preserve edges and texture structures. 

Overall, the contributions of this paper are mainly in three aspects: 

(1) The proposed network extracts directly feature from LR images and jointly optimizes a fully 

connected upsampling layer to predict residuals image. Since the upsampling layer for our network 

can utilize all feature information differently to predict each pixel of the HR images, our network is 

able to differentially exploit context information over the global region of the input image with shallow 

convolution layers. As a result, our model has a large capacity to learn complicated mappings and 

effectively reduces the undesired visual artifacts. 

(2) Similar to [21], the computation time and memory usage for our networks are sufficiently 

reduced since our network extracts features directly from LR images and upscales the resolution to 

HR space in the last layer of the network. However, our networks improve accuracy by exploiting 

global context information, as illustrated in Fig.1. In addition, since all convolution layers can be 

shared by the networks of the different upscaling factors, our method could facilitate fast training and 

testing across the different upscaling factors. 

(3) We propose a new loss function with an edge difference constraint to optimize the proposed 

networks for the reconstructed HR images with sharp edges and finer texture details. 
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2 Related work 

Numerous methods have been proposed to solve single image SR problem. In this section, we 

focus our discussion on SR methods that based son deep neural networks. 

2.1 Deep neural network for SR 

In general, the observed LR images are a degraded product of HR images, which can be generally 

formulated as, 

𝒚 = 𝑫𝑯𝒙 + 𝒗                                                                           (1) 

where 𝒙  and 𝒚  represent the original HR and observed LR image respectively, D is the 

downsampling operator, H is the blurring filter, and v represents the additive noise. In view of the 

above, it is a typical multi-output regression problem to reconstruct a HR image 𝒙 from the observed 

LR image. Inspired by the promising performance of deep neural networks in classification and 

regression tasks, Dong et al. [16] propose a new SR architecture, namely Super-Resolution 

Convolutional Neural Network (SRCNN). In SRCNN, the mapping 𝐹 used for reconstructing the 

desired HR image 𝒙 consists of three convolution layers and is trained by minimizing the following 

function, 

L(Θ) =
1

𝑁
෍‖𝐹(𝒚௜; Θ) − 𝒙௜‖ଶ

ே

௜ୀଵ

                                                          (2) 

where Θ = {𝑾ଵ, 𝑾ଶ, 𝑾ଷ, 𝑩ଵ, 𝑩ଶ, 𝑩ଷ}  is the filter and bias of convolution layers in 

SRCNN, 𝒙௜  and 𝒚௜  represent the HR and LR image patch respectively and 𝑁 is the number of 

training samples in each batch. 

Since the model of SRCNN is shallow network (only including patch extraction/representation, 

non-linear mapping and reconstruction layer), the prediction of HR image relies on context of small 
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image regions. To exploit more contextual information in a large image region, Kim et al. [18] propose 

a deep convolutional neural network (CNN) for image SR problem (VDSR) by cascading small 

convolution layer many times. Although VDSR significantly improves the reconstruction accuracy, 

the computation time and memory usage also increase with the depth of network. To reduce the 

computational cost, Dong et al. [21] use a transposed convolution (also named as deconvolution in 

some of the literature) to upscale the features to HR image space in the last layer of network model. 

Lai et al. [22] adopt a similar idea and propose a deeper convolutional network within Laplacian 

pyramid framework (LapSRN) to progressively reconstruct HR images. By doing so, LapSRN 

improves accuracy without increasing computational burden. However, those kinds of approaches 

have one limitation: the prediction of each pixel of the desired HR images relies on the context 

information in a local region of the input images since the model of these method consists of 

convolutional layers only. In order to exploit context information over the larger region and improve 

the reconstruction quality, we need to cascade more convolution layers in the networks, which means 

to increase computational cost and memory usage. In this paper, we discuss a new SR architecture to 

resolve the dilemma between the reconstruction accuracy and efficiency. The proposed networks not 

only improve the quality of reconstructed HR images by exploiting the contextual information over 

the global region of the input image but also reduce the computational cost by using the simplified 

residual blocks to extract features in the LR space. 

2.2 Loss function 

As in most image restoration tasks, mean squared error (MSE) or L2 loss is also widely used to 

optimize the network model of image SR. Since L2 loss is the major performance measure (PNSR) for 

those problem, the trained models usually have impressive performance in terms of objective measure. 



Y. Tang et al. 

7 
 

However, there is a blurring problem of texture details and edge structures in reconstructed HR images. 

Several studies have focused on the loss functions to better train network models and restore finer 

texture details and sharp edges. Inspired by the report that training with L2 loss cannot guarantee better 

performance compared to other loss functions in terms of PSNR and SSIM [26], Lim et al. [24] use 

L1 loss to optimize their network models for achieving improved performance. Lai et al. [22] propose 

a robust Charbonnier loss for the deep convolutional network within Laplacian pyramid framework 

(LapSRN). At each pyramid level, LapSRN has corresponding loss function to reduce the difference 

between output reconstructed images and the label image 𝒙௦ downsampled from ground truth HR 

image with bicubic interpolation. Accordingly, the overall loss of LapSRN is defined as 

L(Θ) =
1

𝑁
෍ ෍ 𝜌 ቀ൫𝐹൫𝒚௜; Θ൯ + 𝒚௦

௜ ൯ − 𝒙௦
௜ ቁ

௅

௦

ே

௜ୀଵ

                                          (3) 

where 𝜌(∙) is the Charbonnier penalty function, 𝐿 is the number of pyramid level, and 𝒚௦ is 

the upsampled image from the input LR image 𝒚 in the pyramid level 𝑠. Due to the deep supervision 

of multi-loss structure and the robustness of Charbonnier penalty function, Charbonnier loss improves 

the stability of networks training and the reconstruction quality. Ledig et al. [23] propose a perceptual 

loss function which consists of an adversarial loss and a content loss to reconstruct plausible-looking 

natural HR images with high perceptual quality. 

L(Θ) =
1

𝑁
෍ฮ𝜙൫𝐺ఏ(𝒚௜)൯ − 𝜙(𝒙௜)ฮ

ଶ
− log 𝐷ఏ൫𝐺ఏ(𝒚௜)൯

ே

௜ୀଵ

+ ‖∇𝐺ఏ(𝒚௜)‖               (4) 

where 𝜙(∙) is the feature representations, 𝐷ఏ൫𝐺ఏ(𝒚௜)൯ is the estimated probability that the 

reconstructed HR image is a natural image and ∇𝐺ఏ(𝒚௜) is a regularizer based on the total variation 

to encourage spatially coherent solution. Although these researches of loss function have improved the 

quality of reconstructed HR images, the restoration of finer texture details and sharp edges is still a 
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challenging problem. Accordingly, we propose a new loss function with the edge difference constraint 

to reconstruct edges and texture details 

3 Proposed method 

In this section, we detail the methodology of the proposed deep neural network, the loss functions 

with the edge difference constraint, and the training of our network. 

3.1 Network architecture 

As shown in Fig.2, our network can be decomposed into two parts – features extraction and SR 

reconstruction. The part of features extraction takes an observed LR image 𝒚 as input and uses the 

cascaded residual building blocks to extract features in LR space. SR reconstruction part is a fully 

connected layer, which upsamples and aggregates the previous features with an array of trainable 

weights to reconstruct the desired HR images. In the following sections, we first describe the residual 

units of our networks, and then we suggest the single upscaling model that handles a specific SR scale 

and the multi-upscaling strategy that quickly trains models for reconstructing various upscaling of HR 

images. 

Residual units. Deep residual networks [1] have emerged as a family of extremely deep 

architectures showing compelling accuracy and nice convergence behaviors in computer vision, 

machine translation, speech synthesis, speech recognition. Although the deep residual architecture has 

been successfully applied to the image SR problem and exhibited excellent performance [23, 24], we 

further improve the performance by employing a new residual unit which makes training easiness and 

reduces training error. 
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In Fig. 3, we show the residual units of each network from SRResNet [23], EDSR [24], and ours. 

Although all the skip connections and after-addition activation functions for the residual units of these 

networks are the identity mapping for creating a direct path to propagate information - not only within 

a residual unit, but through the entire network, only our residual units adopt a re-arranging the after-

addition activation method to directly propagate information from one unit to any other units in both 

forward and backward passes. SRResNet removes the Rectified Liner Unit (ReLU) to make after-

addition activation into an identity mapping. EDSR improves SRResNet by removing the Batch 

Normalization (BN) layers to enhance the flexibility of the network and reduce GPU memory usage. 

Inspired by [25], our networks recast the after-addition activation as the pre-activation of the next 

residual unit, which means that the activation only affects the residual function (Fig. 3(c)). By re-

arranging the after-addition activation, we not only reduce the difficulty of network optimization 

because of the identity mapping, but improves regularization of the models since we don’t remove 

ReLU layers from our networks. At the same time, we remove BN layers from our networks since they 

consume the same amount of memory as the preceding convolution layers. 

Furthermore, we use the Parametric Rectified Liner Unit (PReLU) to instead of ReLU as the 

activation function of our convolution layer. Since PReLU has a learnable coefficient for the negative 

part of features, it can void the “dead features” cause by zero gradients in ReLU. Accordingly, we can 

make full use of all parameters to obtain the maximum capacity of our networks. 

Single upscaling model. In the convolutional networks, model performance can be enhanced by 

cascading multiple small filters in a deep network structure. Thus, we further improve our residual unit 

(Fig. 3(d)) with bottleneck [25] architecture and use it to construct the feature extraction part of our 

single upscaling model. A bottleneck residual unit consists of a 1 × 1 layer for reducing dimension, 
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a  3 × 3 layer, and a 1 × 1 layer for restoring dimension. As designed in [25], its computational 

complexity is similar to the residual unit including two 3 × 3  convolution layers (Fig. 3(c)). 

However, the model with the bottleneck residual units has improved performance due to the increase 

of network depth. Therefore, we can maximize our model capacity considering the limited 

computational resources. 

   For original residual networks, the convolution shortcuts [25] are used to reduce the feature map 

size and increase dimensions. Since the convolution shortcut is not an identity mapping, the direct path 

for propagating information is limited to a local region with the same feature map size. Although our 

network can create a direct path for propagating information over the entire network since it takes LR 

images as input and extracts all the features in LR space, we found that stacking the number of residual 

units above a certain level would make the training procedure numerically unstable. We resolve this 

issue by incorporating the convolution layers into the cascaded residual units and constructing local 

paths for propagating information directly. As shown in Fig.2, we use three residual units and one 

convolution layer to form one residual block which has a local propagating path. To void the “dead 

features” in the identity path, we remove the activation (ReLU) of the incorporated convolution layers 

from residual blocks, as illustrated in Fig.2. 

Since the existing HR reconstruction layers (the transposed convolution [21] or sub-pixel 

convolution [24] ) only use the feature information in a very small local region to predict each pixel in 

reconstructed HR images and also share the weights when predicting all the pixels of the reconstructed 

HR images, the reconstruction results usually contain undesired artifacts. To make effective use of the 

extracted features and improve reconstruction accuracy, we propose a fully connected reconstruction 

layer to differentially utilize the extracted feature information over the global region. However, the 
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parameters of our reconstruction layer would be significantly increased since the fully connected layer 

construct the trainable weights between each predicted HR pixel and all the extracted features. We 

resolve the issue by reducing the dimension of the extracted feature map by using the incorporated 

convolution layer in the final residual blocks. 

Our final network models are constructed following. The number of residual blocks and the 

dimension of feature maps in the identity path are set to be 5 and 128, respectively. In residual units, 

we reduce the dimension to 64 for bottleneck architecture. Our final dimension of the extracted feature 

maps will shrink to 8 for reducing the total parameters of our networks and improving the training and 

testing efficiency. 

Different upscaling factors. In reality SR applications, we usually need to reconstruct various 

upscaling factors of HR images. Thus, we expect the proposed method could achieve fast training and 

testing across different upscaling factors. Since all convolution layers on the whole act like a complex 

feature extractor of the LR image, and only the last reconstruction layer contains the information of 

the upscaling factor, we can transfer the convolution filters for fast training and testing. 

In practice, we train a model for an upscaling factor in advance. Then, we only fine-tune the 

reconstruction layer for another upscaling factor and leave the convolution layers unchanged. The fine-

tuning is fast, and the performance is as good as training from scratch (see Section 4.1). During testing, 

we perform the convolution operations once, and upsample an image to different sizes with the 

corresponding reconstruction layer. Furthermore, our method can reconstruct HR images with an 

arbitrary resolution (non-integer upscaling factor) by fine-tuning the fully connected reconstruction 

layer. 
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3.2 Loss function 

For most of DNN-based SR methods, L2 is the most widely used loss function. Thus, the 

optimization objective for these networks is to minimize the following function, 

min
஀

1

𝑁
෍ฮ𝐹൫𝒚௜; Θ൯ − 𝒙௜ฮ

ଶ

ଶ
ே

௜ୀଵ

                                                            (5) 

where 𝒚௜ and 𝒙௜ are 𝑖-th LR and HR image pair in the training data, and 𝐹൫𝒚௜; Θ൯ is the predicted 

HR image using the training network with parameters  Θ . Since L2 loss struggles to handle the 

uncertainty inherent relationship in recovering lost high-frequency details such as small scale 

structures and texture details, it encourages finding pixel-wise averages of plausible solutions which 

are typically overly-smooth and thus have poor perceptual quality [27]. In order to resolve this 

problem, we propose a new loss function for our network. Similar to [28], we proposed loss use the 

following edge difference constraint to preserve edges and texture structures, 

𝑬ௗ = ‖E(𝒙௛) − E(𝒙)‖௣                                                             (6) 

where 𝐸(∙) is the edges and textures extraction operation, 𝒙௛ is reconstructed HR images, and 𝑝 is 

the norm of the edge difference constraint. Considering that the one-dimensional (1-D) processing of 

images can provide effective edge and texture information and handle outliers [28], we use 1-D 

processing as the edges and textures extraction operator. Actually, for a given image 𝒙, the extraction 

of edges and textures information can be formulated as, 

𝐸(𝒙) = ඥ𝐻(𝒙)ଶ + 𝑉(𝒙)ଶ                                                       (7) 

where 𝐻(𝒙) and 𝑉(𝒙) are the horizontal and vertical edge and texture information of the image 𝒙 

respectively. 1-D first use the Gaussian operator to smooth horizon direction, and then the first 

derivative of Gaussian operator is applied along the orthogonal direction for obtaining the vertical 

edges and textures 𝑉(𝒙). By repeating this procedure, we can obtain the corresponding horizon edge 
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and texture information 𝐻(𝒙). Since the smoothing is done along a direction orthogonal to the 

direction of the edge extraction, 1-D processing can effectively handle outliers and extract image edges 

and textures. Thus, the trained network with edge difference constraint can generate sharp edges and 

finer texture details in the reconstructed HR images. By incorporating the edge difference constraint 

into L2 loss, we can obtain the following optimization objective for our network models, 

min
஀

1

𝑁
෍ฮ𝐹൫𝒚௜; Θ൯ − 𝒙௜ฮ

ଶ

ଶ
+ 𝛽 ቛE ቀ𝐹൫𝒚௜; Θ൯ቁ − E൫𝒙௜൯ቛ

௣
       

ே

௜ୀଵ

                         (8) 

where 𝛽 is the weight for the edge difference constraint. Since our network also adopt the residual 

learning, the overall loss function is defined as, 

L(Θ) = ෍ฮ൫𝐹൫𝒚௜; Θ൯ + 𝒙௕
௜ ൯ − 𝒙௜ฮ

ଶ

ଶ
+ 𝛽 ቛE ቀ൫𝐹൫𝒚௜; Θ൯ + 𝒙௕

௜ ൯ቁ − E൫𝒙௜൯ቛ
௣

ே

௜ୀଵ

                   (9) 

here 𝒙௕
௜  is upsampled image from the input LR images 𝒚௜ using bicubic interpolation. Considering 

that the researchers [22, 24] report that training with L1 norm achieve improved performance 

compared with the training with L2, we empirically set 𝑝 to 1 for our edge difference constraint. 

3.3 Training details 

Training dataset: For fair comparison with most state-of-the-art methods, we first use 91 images 

from Yang et al.[14] and 200 images from the training set of BSD500 [18] as the original images to 

train our SR models. In addition, considering that big data can push a deep model to the best 

performance, we also use images from DIV2K [34] datasets to optimize our models and compare with 

the other state-of-the-art SR models trained with the same dataset. We adopt the following ways to 

augment the training images: (1) Scaling: each HR image is downsampled by bicubic interpolation 

with the scaling factor 0.9, 0.8, 0.7, and 0.6. (2) Rotation: each image is rotated with the degree of 90, 

180 and 270. (3) Flipping: each image is flipped with horizontal and vertical. Thus, we obtain 
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5 × 4 × 3 = 60 times image to form the final ground-truth HR image training set {𝑿}. In order to 

prepare the training data, we first downsample the HR training images {𝑿} with the desired upscaling 

factor 𝑛 to form the corresponding LR image {𝒀}. Then, we crop the LR training image into a set of 

LR image patches ൛𝒚௜ൟ
௜ୀଵ

ே
with a stride 𝑘. The corresponding HR image patches ൛𝒙௜ൟ

௜ୀଵ

ே
 are also 

cropped with a stride 𝑛 × 𝑘 from the HR images. Actually, the cropped LR/HR image patch pairs 

൛൫𝒚௜, 𝒙௜൯ൟ
௜ୀଵ

ே
 are the training data for the proposed network. Since all the convolutional layers can be 

shared by the networks of different upscaling factors, it is necessary to employ the LR image patches 

with the same size to all the networks of our method. Thus, for × 2 , × 3 and × 4 networks, the size 

of LR/HR image patches are set to be 32ଶ/64ଶ, 32ଶ/96ଶ and 32ଶ/128ଶ, respectively. 

Training Parameters: For the proposed SR method, we use Caffe package [30] with stochastic 

gradient descent algorithm to train our networks. For training model from scratch, we use a learning 

rate of 0.1 for the convolution layers and 0.01 for the fully connected reconstruction layer. The learning 

rate will be decayed every 10 epochs using a factor of 10. Since we adopt an extremely high learning 

rates (0.1) to accelerate the convergence, the gradient clipping is set to be 1 and then is decreased by a 

factor of 10 every 10 epochs. For weights initialization, all the filters of the convolution and the fully 

connected reconstruction layer are initialized with the method described in [31]. During the fine-tuning 

of another upscaling networks, the learning rate for all layers is set to be 0.001 and decayed by an 

exponential rate of 0.90 each epoch. The training of scratch network uses momentum with a decay of 

0.9, while our fine-tuned models are achieved using RMSProp with decay of 0.9 and ϵ = 1.0. The 

batches of size and weight decay are set to 256 and 0.0001 for all the network training, respectively 
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4 Experimental results and discussions 

In this section, we first analyze the contributions of the different components of the proposed 

network. Then, we compare the proposed method with state-of-the-art SR algorithms on the 

representative image datasets. Finally, we discuss the applications of our models on the real-world 

images.  

In our experiments, we follow the publicly available evaluation framework of Timofte et al.[13]. It 

enables the comparison of the proposed method with many state-of-the-art SR methods in the same 

setting. The framework only applies the SR reconstruction algorithm on the luminance channel and 

directly upscales the chrominance (Cb and Cr) channels to the desired resolution using bicubic 

interpolation. Furthermore, SR performance metrics including the peak signal-to-noise ratio (PSNR) 

and structural similarity (SSIM) are adopted to evaluate the objective quality of reconstructed HR 

images. 

4.1 Investigation of the network model 

In this section, we perform experiments to analyze the property of the proposed network and confirm 

the contributions of the different components of our networks for the accuracy of SR reconstruction. 

Fully connected reconstruction layer. To demonstrate the effect of our reconstruction layer, we 

remove the fully connected layer and use the transposed convolution as the reconstruction layer of our 

networks. For a fair comparison, the proposed network and transposed convolutional network are both 

optimized using L2 loss function from the same scratch. Fig. 4 shows the convergence curves in terms 

of PSNR on the Set14 for the upscaling factor of 3. The performance of the transposed convolutional 

network (purple curve) is significantly worse than the network with a fully connected layer. In view 
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of the above, the proposed network with a fully connected layer is more capable of reconstructing HR 

images. 

Residual units. For our proposed models, we use a new residual unit to improve the SR accuracy. 

Therefore, we verify the effectiveness of our residual unit in the section. To this end, we remove our 

residual units and use the residual units of EDSR [24] to construct the SR model. For a fair comparison 

and save time, we also use L2 loss function to optimize the SR model from the scratch initialized with 

the same method. As illustrated in Fig. 4, the SR model constructed with the residual of EDSR [24] 

(coffee curve) fluctuates obviously and converges to a worse result slowly. The SR model with our 

residual units (yellow curve) has better convergence stability and accuracy. This is because our residual 

units use the re-arranging of the after-addition activation to reduce the difficulty of networks 

optimization and improve the regularization of our SR models. 

Loss function. In our method, we present a new loss function to preserve edges and texture 

structures. Here we verify the effectiveness of the proposed loss function. For comparison, we use L2 

loss function to optimize our network in the same training parameters and initialization method. As 

illustrated in Fig. 4, the network optimized with L2 loss (yellow curve) converges smoothly, but has 

high training loss. Although our final model (red curve) fluctuates “significantly”, it can obtain the 

improved performance in terms of reconstruction accuracy. This is mainly because that our loss applies 

more effective constraints among the predicted images and ground-truth HR training images. 

Different upscaling factors. In this section, we demonstrate the flexibility of our network for fast 

training and testing across different upscaling factors. In our experiment, we first obtain a well-trained 

model with the upscaling factor of 3, then we train the network for × 2 on the basis of that for × 3. 

During training, we only fine-tune the fully connected reconstruction layer on the training datasets of 
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× 2 since the parameters of all convolution filters in the well-trained model are transferred to the new 

network. For comparison, we also train another network for × 2 but from scratch. The convergence 

curves of these two networks are shown in Fig. 5. Obviously, with the transferred parameters, the 

network converges very fast (only a few epochs) with the same good performance as that training from 

scratch. In the following experiments, we only train the networks from scratch for × 3, and fine-tune 

the corresponding reconstruction layers for × 2 and × 4. 

4.2 Comparisons with the state-of-the-arts methods 

To validate the performance of the proposed method, the image SR experiments of different scaling 

factors (×2, ×3 and ×4) are performed on all the images in the five representative image datasets Set5, 

Set14, BSD100, Urban100 and Manga109 [22]. Among these datasets, Set5, Set14 and BSD100 

consist of natural scenes images; Manga109 and Urban100 include challenging images with details in 

different frequency bands. Then, we compare the proposed method with other state-of-the-art SR 

algorithms: FSRCNN [21], VDSR [18], DRCN [19], DRRN [33], LapSRN [22], MemNet [36], 

EDSR[24], D-DBPN [37] and SRFBN [38]. All the compared results are reproduced by the 

corresponding public codes under the same setting with our experiments. 

We first train our SR models using the images for 291-images dataset and compare with the state-

of-the-art SR methods (FSRCNN [21], VDSR [18], DRRN [33] and LapSRN [22]) that also are trained 

by 291-images. Table 1 shows the average PSNR and SSIM results of reconstructed HR images on the 

five representative image datasets for the different scaling factors(×2, ×3 and ×4). From Table 1, we 

can see that the proposed method achieves the consistent performance on all the datasets. Due to the 

limitations of the training images, the performance of all methods tends to decline with the increase of 

the test images. However, the proposed method still performs better than all the compared methods in 
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both PSNR and SSIM. These experimental results indicate that the proposed method can effectively 

improve the quality of reconstructed HR images.  

Furthermore, we use more images from DIV2K [34] datasets to push our SR models to the best 

performance. The final quantitative results are shown in Table 2. From the Table 2, our SR models 

achieve an improved performance with the increase of training images and have comparable PSNR 

and SSIM results with the comparative SR methods: MemNet [36], EDSR [24], D-DBPN [37] and 

SRFBN [38]. Compared with our SR method, EDSR methods uses much more filters (256 vs. 128) in 

each convolution layer to construct SR models, and D-DBPN and SRFBN employ more training 

images (DIV2K [34] + Flickr2K [24] + ImageNet [36] and DIV2K [34] + Flickr2K [24] vs. DIV2K 

[34]) to optimize their SR models. However, our SR method still can earn competitive results with 

these state-of-the-art SR methods. 

In Fig. 6-8, we show visual comparisons on the images, drawn from B100, Urban100 and 

Manga109, with the upscaling factors of ×4. As shown in Fig. 6-8, our SR model can reconstruct the 

desired HR images more accurately. For the ‘108005’ image from B100 dataset, FSRCNN, VDSR and 

DRCN fail to recover the clear stripes on tiger in the reconstructed HR images. Although DRRN and 

LapSRN provide more clear stripes, the results are much smoother. Our SR models can produce clear 

and sharp SR images which are very close to the ground-truth HR images by using the proposed 

residual units, reconstruction layer and loss function. 

4.3 Super-resolving on real-world images 

In this section, we further validate the super-resolving performance of the proposed method on the 

historical photographs with JPEG compression artifacts. Because neither the ground-truth HR images 

nor the downsampling kernels are available, our experiment can demonstrate the super-resolving 
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performance of the proposed and compared methods on the real-word images. Fig.9-10 show the 

super-resolved historical images of the upscaling factor ×4. As shown in Fig.9-10, the proposed 

method can provide clearer details and sharper edges in the reconstructed HR images than the 

compared methods. 

5 Conclusions 

In this work, we discuss a new SR architecture based on deep neural networks to reconstruct the 

desired HR images. By cascading the improved residual blocks to extract features in LR space and 

jointly optimizing a fully connected reconstruction layer to exploit the differentiated contextual 

information over the global region of the input LR images, the proposed networks can alleviate the 

issues of current SR network models and obtain the visually pleasing HR images with the low 

computational cost. In addition, we propose a new loss function with the edge difference constraint to 

preserve sharp edge and restore finer texture structures. Experimental results on the images, drawn 

from five representative image datasets, demonstrate that the proposed networks perform 

competitively with the existing methods in terms of balancing the reconstruction accuracy and 

efficiency. 
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Fig.1 Average execution time versus PSNR between the proposed and existing methods. The results are evaluated 

on all the images in Set14 with the upscaling factor of 4. Our method provides the best reconstruction results and 

preserves the execution time of SelfExSR, SCN, DRCN, VDSR, and LapSRN. All models are trained on the 291-

image dataset. 
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Fig. 2 The architecture of our proposed SISR network. Our network consists of feature extraction and SR 

reconstruction. 
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Fig. 3 Comparison of residual units in Original, SRResNet, EDSR, and ours. 
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Fig. 4 Convergence analysis on the different components of the proposed network. The results are obtained on all 

the images in Set14 with the upscaling factor of × 3. All models are trained on the 291-image dataset. 

 

Fig. 5 Convergence curves of different training strategies. The results are obtained on Set14 with the upscaling 

factor of × 2. All models are trained on the 291-image dataset. 
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HR/PSNR Bicubic/24.46 FSRCNN/25.80 VDSR/25.94

DRCN/25.94 LapSRN/26.10 DRRN/26.22 Ours/26.41108005 from B100
 

Fig.6 Visual comparison of our method and the compared methods on image “108005” for the upscaling factor of 

× 4. All models are trained on the 291-image dataset. 

 

HR/PSNR Bicubic/23.53 FSRCNN/27.19 VDSR/27.99

Img045 from Urban100 DRCN/28.17 LapSRN/28.29 DRRN/28.52 Ours/28.81
 

 

Fig.7 Visual comparison of our method and the compared methods on image “Img045” for the upscaling factor of 

× 4. All models are trained on the 291-image dataset. 

 

HR/PSNR Bicubic/23.49 FSRCNN/27.15 VDSR/27.95

DRCN/28.13 LapSRN/28.25 DRRN/29.11 Ours/29.45DualJustice  from Manga109
 

Fig.8 Visual comparison of our method and the compared methods on image “DualJustice” for the upscaling factor 
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of × 4. All models are trained on the 291-image dataset. 

Bicubic FSRCNN VDSR

LapSRN DRRN OursGround-truth LR
 

Fig.9 Visual comparison for × 4 upscaling factor on real-world historical images. All models are SR trained on 

the 291-image dataset. All models are trained on the 291-image dataset. 

Bicubic FSRCNN VDSR

LapSRN DRRN OursGround-truth LR
 

Fig.10 Visual comparison for × 4 upscaling factor on real-world historical images. All models are trained on the 

291-image dataset. All models are trained on the 291-image dataset. 
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Table 1 Average PSNR/SSIM for the upscaling factors ×2, ×3 and ×4 on datasets Set5, Set14, B100, Urban100 and 

Manga109. Red color indicates the best performance and blue color indicates the second-best performance. All 

models are trained on the 291-image dataset. 

Dataset Scale Bicubic FSRCNN  VDSR  LapSRN  DRRN  Proposed 

Set5 

x2 33.66/0.9299 37.00/0.9557 37.53/0.9587 37.52/0.9591 37.74/0.9591 37.89/0.9602 

x3 30.39/0.8677 33.16/0.9132 33.66/0.9213 33.82/0.9227 34.03/0.9244 34.22/0.9267 

x4 28.42/0.8099 30.71/0.8647 31.35/0.8838 31.54/0.8854 31.68/0.8888 31.93/0.8917 

Set14 

x2 30.23/0.8689 32.63/0.9087 32.97/0.9127 33.08/0.9130 33.23/0.9136 33.39/0.9149 

x3 27.54/0.7742 29.43/0.8245 29.77/0.8314 29.79/0.8320 29.96/0.8349 30.18/0.8382 

x4 26.00/0.7026 27.59/0.7540 28.03/0.7678 28.19/0.7720 28.21/0.7721 28.47/0.7799 

B100 

x2 29.55/0.8438 31.50/0.8909 31.89/0.8958 31.78/0.8941 32.05/0.8973 32.17/0.8996 

x3 27.21/0.7397 28.52/0.7900 28.82/0.7976 28.82/0.7973 28.95/0.8004 29.09/0.8083 

x4 25.96/0.6693 26.97/0.7140 27.29/0.7252 27.32/0.7280 27.38/0.7284 27.50/0.7317 

Urban 100 

x2 26.88/0.8406 29.85/0.9011 30.77/0.9141 30.41/0.9093 31.23/0.9188 31.53/0.9236 

x3 24.46/0.7354 26.42/0.8070 27.14/0.8279 27.07/0.8272 27.53/0.8378 27.82/0.8422 

x4 23.14/0.6584 24.60/0.7267 25.18/0.7525 25.21/0.7545 25.44/0.7638 25.71/0.7784 

Manga109 

x2 30.81/0.9347 36.56/0.9704 37.16/0.9738 27.27/0.9731 37.60/0.9736 38.15/0.9756 

x3 26.96/0.8559 31.12/0.9202 32.01/0.9329 32.19/0.9334 32.42/0.9359 32.95/0.9395 

x4 24.91/0.7866 27.89/0.8590 28.88/0.8854 29.09/0.8893 29.18/0.8914 29.74/0.8965 
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Table 2 Average PSNR/SSIM for the upscaling factors ×2, ×3 and ×4 on datasets Set5, Set14, B100, Urban100 and 

Manga109. All models are trained on the images from DIV2K, Flickr and ImageNet datasets. 

Dataset Scale Bicubic MemNet  EDSR D-DBPN SRFBN Proposed 

Set5 

x2 33.66/0.9299 37.78/0.9597 38.11/0.9602 38.09/0.9600 38.11/0.9609 38.10/0.9606 

x3 30.39/0.8677 34.09/0.9248 34.65/0.9280 -/- 34.70/0.9292 34.71/0.9287 

x4 28.42/0.8099 31.74/0.8893 32.46/0.8968 32.47/0.8980 32.47/0.8983 32.40/0.8972 

Set14 

x2 30.23/0.8689 33.28/0.9142 33.92/0.9195 33.85/0.9190 33.82/0.9196 33.86/0.9189 

x3 27.54/0.7742 30.00/0.8350 30.52/0.8462 -/- 30.51/0.8461 30.53/0.8464 

x4 26.00/0.7026 28.26/0.7723 28.80/0.7876 28.82/0.7860 28.81/0.7868 28.79/0.7867 

B100 

x2 29.55/0.8438 32.08/0.8978 32.32/0.9013 32.27/0.9000 32.29/0.9010 32.27/0.9016 

x3 27.21/0.7397 28.96/0.8001 29.25/0.8093 -/- 29.24/0.8084 29.29/0.8095 

x4 25.96/0.6693 27.40/0.7281 27.71/0.7420 27.72/0.7400 27.72/0.7409 27.80/0.7417 

Urban 100 

x2 26.88/0.8406 31.31/0.9195 32.93/0.9351 32.55/0.9324 32.62/0.9328 32.83/0.9336 

x3 24.46/0.7354 27.56/0.8376 28.80/0.8653 -/- 28.73/0.8641 28.82/0.8658 

x4 23.14/0.6584 25.50/0.7630 26.64/0.8033 26.38/0.7946 26.60/0.8015 26.61/0.8024 

Manga109 

x2 30.81/0.9347 37.72/0.9740 39.10/0.9773 38.89/0.9774 39.08/0.9779 39.15/0.9786 

x3 26.96/0.8559 32.51/0.9369 34.17/0.9467 -/- 34.18/0.9481 34.27/0.9485 

x4 24.91/0.7866 29.42/0.8942 31.02/0.9148 30.91/0.9137 31.15/0.9160 31.14/0.9155 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


