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Abstract

Generative adversarial networks (GANs) are increasingly attracting attention in
the computer vision, natural language processing, speech synthesis and similar
domains. Arguably the most striking results have been in the area of image syn-
thesis. However, evaluating the performance of GANs is still an open and chal-
lenging problem. Existing evaluation metrics primarily measure the dissimilarity
between real and generated images using automated statistical methods. They
often require large sample sizes for evaluation and do not directly reflect human
perception of image quality.

In this work, we describe an evaluation metric we call Neuroscore, for eval-
uating the performance of GANs, that more directly reflects psychoperceptual
image quality through the utilization of brain signals. Our results show that Neu-
roscore has superior performance to the current evaluation metrics in that: (1) It
is more consistent with human judgment; (2) The evaluation process needs much
smaller numbers of samples; and (3) It is able to rank the quality of images on a
per GAN basis.

A convolutional neural network (CNN) based neuro-AI interface is proposed
to predict Neuroscore from GAN-generated images directly without the need for
neural responses. Importantly, we show that including neural responses during the
training phase of the network can significantly improve the prediction capability
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of the proposed model. Materials related to this work are provided at https://
github.com/villawang/Neuro-AI-Interface.

Keywords: Neuroscore, Generative adversarial networks, Neuro-AI interface,
Brain-computer interface.

1. Introduction

There is a growing interest in studying generative adversarial networks (GANs)
in the deep learning community [1, 2]. Specifically, GANs have been widely ap-
plied to various domains such as computer vision [3], natural language process-
ing [4], speech synthesis [5] and time series synthesis [6]. Compared with other
deep generative models (e.g. variational autoencoders (VAEs)), GANs are favored
for effectively handling sharp estimated density functions, efficiently generating
desired samples and eliminating deterministic bias. Due to these properties GANs
have successfully contributed to plausible image generation [3], image to image
translation [7], image super-resolution [8], image completion [9] etc.

However, three main challenges currently in research into GANs could be: (1)
Mode collapse – the model cannot learn the distribution of the full dataset well,
which leads to poor generalization ability; (2) Difficult to train – it is non-trivial
for the discriminator and generator in a GAN to achieve Nash equilibrium [10]
during training; (3) Hard to evaluate – the evaluation of GANs can be consid-
ered as an effort to measure the dissimilarity between the real distribution pr

and the generated distribution pg. Unfortunately, the accurate estimation of pr

is intractable. Thus, it is challenging to have a good estimation of the corre-
spondence between pr and pg. Challenges (1) and (2) are more concerned with
computational aspects where much research has been carried out to mitigate these
issues [11, 12, 13]. Challenge (3) is similarly fundamental, however limited lit-
erature is available and most of the current metrics only focus on measuring the
dissimilarity between training and generated images. A more meaningful GAN
evaluation metric that is consistent with human perceptions is paramount in help-
ing researchers to further refine and design better GANs.

Although some evaluation metrics, e.g., Inception Score (IS), Kernel Max-
imum Mean Discrepancy (MMD) and Fréchet Inception Distance (FID), have
already been proposed [12, 10, 14], they have a number of limitations. Firstly,
these metrics do not agree with human perceptual judgments and human rankings
of GAN models. A small artifact in images can have a large effect on the deci-
sion made by a machine learning system [15], whilst the intrinsic image content
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does not change. In this aspect, we consider human perception to be more ro-
bust to adversarial images samples when compared to a machine learning system.
Secondly, these metrics require large sample sizes for evaluation [16, 12] and ac-
quiring large-scale samples for evaluation sometimes is not realistic in real-world
applications since generating them may be time-consuming. Finally, the existing
metrics are not able to rank individual GAN-generated images by their quality
i.e., metrics are generated on a collection of images rather than on a single image
basis. The within-GAN variances are crucial because they can provide an insight
into the variability of that GAN.

The current literature demonstrates that a CNN is able to predict neural re-
sponses in the inferior temporal cortex in an image recognition task [17, 18] via
invasive BCI techniques [19]. The ways in which a CNN can be used to predict a
neural response with a non-invasive BCI aspect is still an open question. Figure 1
illustrates a schematic of different mesoscopic and macroscopic neural measure-
ment techniques using invasive and non-invasive approaches. In this schematic,
only EEG (Electroencephalography) is non-invasively measured from the human
scalp [20]. Other types of neural dynamics such as ECoG and LFP are measured
invasively, which requires electrodes to be implanted. Compared to invasively
measured neural dynamics, EEG pros are that it is a simple measurement, a non-
painful experience during recording, easier to get ethics approval for and more
easily generalized to real-world applications. However, EEG suffers challenges
such as low signal quality (i.e., low SNR), low spatial resolution (interesting neu-
ral activities can span all of the scalp and are thus difficult to localise), all of which
makes predicting EEG responses challenging.

With the success achieved by deep neural networks (DNNs) in areas including
computer vision and natural language processing, the operation and functionality
of DNNs and its connection with the human brain has been extensively studied
and investigated in the literature [22, 23, 24, 25, 26, 27, 18, 28, 29]. In this re-
search area, the convolutional neural network (CNN) is widely studied and com-
pared with the visual system in the human brain because both are hierarchical
systems and the processing steps are similar. For example in an object recogni-
tion task, both CNNs and humans recognize an object by progressively extracting
higher-level representations of the visual input through a hierarchy where succes-
sive layers operate on the inputs of the proceeding layers e.g., certain patterns
of basic shapes, edges and colors as input can be determined at higher levels of
the hierarchy to be a particular complex object composed of the inputs. Work
reported in [18] outlines a CNN approach to delving even more deeply into un-
derstanding the development and organization of sensory cortical processing. It
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Figure 1: Schematic of different types of recorded neural signals (illustrated in (a)) via
invasive and non-invasive measurements (illustrated in (b)). Figure from [21].

has recently been demonstrated that a CNN is able to reflect the spatio-temporal
neural dynamics in the human brain visual processing area [22, 26, 25]. Despite
much work carried out to reveal the similarity between CNNs and brain systems,
research on interactions between CNNs and neural dynamics is limited.

In [17] the authors demonstrate that a CNN matched with neural data recorded
from the inferior temporal cortex of a human subject [30] has high performance in
an object recognition task. Given the evidence above that a CNN is able to predict
neural responses in the brain, we explore the use of CNNs to predict P300 [31, 32]
amplitudes in this paper. This type of model can then produce (synthetic) EEG
feedback for different types of GANs.

By applying advanced statistical and machine learning techniques to non-
invasive EEG, better source localization and reconstruction becomes possible.
Our previous work [33, 34] demonstrated the effectiveness of using spatial fil-
tering approaches for reconstructing P300 source ERP signals. Remaining low
SNR issues can be further remedied by averaging EEG trials. Based on this evi-
dence, we explore the use of DNNs to predict a metric we call Neuroscore [35],
when neural information is available via EEG.

In this work, we describe a metric called Neuroscore to evaluate the perfor-
mance of GANs, which is derived from a neurophysiological response recorded
via non-invasive electroencephalography (EEG). We demonstrate and validate a
neural-AI interface (as seen in Figure 2), which uses neural responses as supervi-
sory information to train a CNN. The trained CNN model is then able to predict
Neuroscore for images without requiring the corresponding neural responses. We
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test this framework via three models: Shallow convolutional neural network, Mo-
bilenet V2 [36] and Inception V3 [37].

AI System

……

Make decision

Neural response

Stimulus

Brain-computer Interfaces

Feature extraction

Neural transfer

Neuro-AI Interface

Figure 2: Schematic of a neuro-AI interface. Stimuli (image stimuli used in this work)
are simultaneously presented to an AI system and to participants. Participants’ neural
responses are transferred to the AI system as supervised information for assisting the AI
system to make decision.

In outline, Neuroscore is calculated via measurement of the P300, an event-
related potential (ERP) present in EEG, via a rapid serial visual presentation
(RSVP) paradigm. The P300 and RSVP paradigm are mature techniques in the
brain-computer interface (BCI) community and have been applied in a wide vari-
ety of tasks such as image search [38], information retrieval [39], and others. The
unique benefit of Neuroscore is that it more directly reflects human perceptual
judgment of images, which is intuitively more reliable compared to conventional
metrics in the literature [14]. In summary, our contributions are two-fold:

• We combine human perception research with GANs and deep learning re-
search. This represents a new avenue of investigation in the development of
better GANs technologies.
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• We propose a type of neuro-AI interface and training strategy to generalize
the use of Neuroscore, which can be directly used for GAN evaluations
without recording EEG. This enables our Neuroscore to be more widely
applied to real-world scenarios, with a new measure we name synthetic-
Neuroscore.

2. Related Work

Three well-known metrics are compared with Neuroscore in this paper.

2.1. Inception Score (IS)
Inception Score is the most widely used metric in the literature [12, 16, 14]. It

uses a pre-trained Inception network [37] as an image classification modelM to
compute

IS = exp
(
Ex∼pg

[
KL

(
pM

(
y|x

)
||pM(y)

)])
where pM(y|x) is the label distribution of x that is predicted by the modelM and
pM(y) is the marginal probability of pM(y|x) over the probability pg. A larger
inception score will have pM(y|x) close to a point mass and pM(y) close to uni-
form, which indicates that the Inception network is very confident that the image
belongs to a particular ImageNet category [40] where all categories are equally
represented. This suggests the generative model has both high quality and diver-
sity.

2.2. Kernel Maximum Mean Discrepancy (MMD)
MMD is a method for comparing two distributions, in which the test statistic

is the largest difference in expectations over functions in the unit ball of a repro-
ducing kernel Hilbert space [41]. MMD is computed as

MMD2(pr, pg) = Exr ,x>r ∼pr
xg,x>g ∼pg

[
k(xr, x>r ) − 2k(xr, xg) + k(xg, x>g )

]
It measures the dissimilarity between pr and pg for some fixed kernel function k,
such as a Gaussian kernel [11]. A lower MMD indicates that pg is closer to pr,
showing the GAN has better performance.
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2.3. Fréchet Inception Distance (FID)
FID uses a feature space extracted from a set of generated image samples by

a specific layer of the Inception network [10]. The feature space is modelled via a
multivariate Gaussian by the mean µ and covariance Σ. FID is computed as

FID(pr, pg) = ||µr − µg||
2
2 + Tr

(
Σr + Σg − 2(ΣrΣg

) 1
2 )

Similar to MMD, lower FID is better, corresponding to more similar real and gen-
erated samples as measured by the distance between their activation distributions.

For Inception Score, the score is calculated through the Inception model [37].
It has been shown that Inception Score is very sensitive to the model parameters
[42]. Even the score produced by the same model trained using different libraries
(e.g., Tensorflow, Keras, PyTorch) differ a lot from each other. It also requires
a large sample size for the accurate estimation for pM(y). FID and MMD both
measure the similarity between training images and generated images based on
the feature space [16], since the pixel representations of images do not naturally
support for meaningful Euclidean distances to be computed [43]. The main con-
cern about these two methods is whether the distributional characteristics of the
feature space exactly reflect the distribution for the images [15].

We list the supported features of Neuroscore and traditional metrics in Table 1.
Neuroscore can not only evaluate image quality as can the other metrics, but also
have 3 unique characteristics, which will be demonstrated in Section 5.

Feature IS MMD FID Neuroscore
Evaluate image quality 3 5 3 3

Consistent with human 5 5 5 3

Small sample size 5 5 5 3

Rank images 5 5 5 3

Table 1: Comparison between Neuroscore and other metrics.

3. Preliminaries

3.1. Generative Adversarial Networks
A generative adversarial network (GAN) has two components, the discrimi-

nator D and the generator G. Given a distribution zzz ∼ pzzz, G defines a probability
distribution pg as the distribution of the samples G(zzz). The objective of a GAN is
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to learn the generator’s distribution pg that approximates the real data distribution
pr. Optimization of a GAN is performed with respect to a joint loss for D and G
as

min
G

max
D

Ex∼pr log[D(x)] + Ez∼pzlog [1 − D(G(z))]

3.2. P300 (or P3) Component and Preprocessing
In neuroscience, the P300 ERP component refers to a voltage change mea-

sured on the scalp which arises from current flow changes in the brain in response
to a target stimulus [31], that can be measured with EEG. It reflects a partici-
pant’s attention, which can be modulated by the specific instruction given to a
participant. It has been shown in previous studies that real face stimuli generate
larger P300/LPP potentials than non-real face stimuli such as cartoon face images
[44, 45, 46]. Furthermore, the P300/LPP increases linearly with face realism, re-
flecting increased activity in visual and parietal cortex for more realistic faces[44].
The P300 response elicited by a target stimulus is typically evident between 300 –
600 ms post stimulus presentation depending on the type of task. EEG is normally
recorded by using multiple channels e.g.. 32 channels, which makes it difficult to
estimate the P300 source amplitude. We use an LDA beamformer [47, 33] to
reconstruct the P300 source signal from the recorded raw EEG epochs.

Briefly, given a target EEG epoch Xi ∈ RC×T and a standard EEG epoch1

Ki ∈ RC×T (C is the number of channels and T is time points in each EEG epoch).
The optimization problem for the LDA beamformer is to find a projection vector
w ∈ RC×1 that solves the optimization problem:

min
w

w>Σw s.t.w>p = 1 (1)

where Σ ∈ RC×C is the EEG epoch covariance matrix (Σ = 1
N

∑N
i=1 XiX>i , N is

number of trials) and p ∈ RC×1 is the spatial pattern difference between target and
standard condition [47]. The closed-form solution is

w = Σ−1p(p>Σ−1p)−1 (2)

The source signal of each single-trial s can be obtained as

s = w>Xi = (p>Σ−1p)−1p>Σ−1Xi (3)

1A target EEG epoch is an EEG trial (time duration 0 – 1 s) which corresponds to a target
stimulus i.e., DCGAN, BEGAN, PROGAN and RFACE images in this study. A standard/non-
target EEG epoch is an EEG trial which corresponds to a non-target images i.e., non-face image
in this work.
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where s ∈ R1×T . Hence, LDA beamformer enables transformation of multi-
channel EEG epochs to single-channel EEG epochs facilitating more robust mea-
surement of the P300 and its amplitude.

4. Methodology

4.1. Data Acquisition and Experiment
We used three GAN models to generate synthetic images of faces: DCGAN [48],

BEGAN [49] and progressive growing of GANs (PROGAN) [50] with sample
outputs shown in Figure 3. Image streams in the experiment contain generated

Figure 3: Face image examples used in the experiments. From left to right: DCGAN,
BEGAN, PROGAN, and real face (RFACE).

images from DCGAN, BEGAN and PROGAN, as well as real face (RFACE)
images and non-face category images. RFACE images were sampled from the
CelebA dataset [51]. Non-face category (standard images) were sampled from
the ImageNet dataset [40], similar to those used in other RSVP experiments such
as [52, 53]. EEG data for 12 participants was gathered. Data collection was car-
ried out with approval from Dublin City University Research Ethics Committee
(REC/2018/115). Each participant completed two types of task which we call the
behavioral experiment (BE) task and the rapid serial visual presentation (RSVP)
task. The sequence of blocks presented in the experiment was: BE → RSVP →
BE → RSVP → BE. The presented images were randomly shuffled (across and
within blocks), meaning the appearance of face images could not be predicted
ahead of time by a participant i.e., they occurred at random times but always in
the same quantity.

The objective of the BE task was to record participants’ responses to each
type of image category while the RSVP task was to record EEG when participants
were viewing the rapid presentation of images. The ultimate goal of this study
was to compare whether the EEG responses in the RSVP task were consistent
with participants’ responses in the BE task.
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An example of the RSVP experimental protocol is shown in Figure 4. The

Figure 4: An example of RSVP experimental protocol used in this work. A rapid image
stream containing targets and standards (non-target) is presented to participants at 4 Hz (4
images per second) presentation rate.

RSVP task contained 26 blocks. Each RSVP block contained 240 images (6 im-
ages for each face category thus 24 face targets in total and 216 non-face images),
thus there were 6,240 images (624 face targets / 5,616 non-face images) available
for each participant. In the RSVP task, image streams were presented to partic-
ipants at a 4 Hz presentation rate. Participants in RSVP blocks were asked to
search for real face (RFACE) images2. This instruction to participants was con-
structed so that they would maintain attention to detect face images (from all GAN
types), and furthermore focus their attention to what they perceived as real face
images [32]. Details of the experiment can be found in [35].

EEG was recorded from participants in both the BE and RSVP tasks along
with timestamp information for image presentation and behavioural responses (via
a photodiode and hardware trigger) to allow for precise epoching of the EEG sig-
nals for each trial [54]. EEG data was acquired using a 32-channel BrainVision

2P300 responses were elicited for all GAN image categories e.g., while DCGAN had almost
perfect behavioral accuracy labelled as being ‘fake’, DCGAN images still elicited a P300.
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actiCHamp at 1,000 Hz sampling frequency, using electrode locations as defined
by the International 10-20 system. To enhance the low signal-to-noise ratio of
the acquired EEG, pre-processing is required. Pre-processing typically involves
re-referencing, filtering the signal (by applying a bandpass filter to remove envi-
ronmental noise or to remove activity in non-relevant frequencies), epoching (ex-
tracting a time epoch typically surrounding the stimulus onset) and trial/channel
rejection (to remove those containing artifacts). In this work, a common average
reference (CAR) was utilized and a bandpass filter (i.e., 0.5-20 Hz) was applied
prior to epoching. EEG data was then downsampled to 250 Hz. Only trials where
behavioral responses occurred between 0 and 1 second after the presentation of
a stimulus were used. Trial rejection was carried out to remove those trials con-
taining noise such as eye-related artifacts (via a peak-to-peak amplitude threshold
across all electrodes).

4.2. Neuroscore
We used a rapid serial visual presentation (RSVP) paradigm [54, 34, 55] to

elicit the P300 ERP. Our experimental procedure is illustrated in our previous
published work [35]. We average the single-trial P300 amplitude (as Neuroscore)
to mitigate the background EEG noise [31], which renders a stable measurement
of the EEG response to a typical type of stimulus. In general, our Neuroscore
is calculated via two steps: (1) Reconstruct the P300 source signal from the raw
EEG; (2) Average the P300 amplitude of each reconstructed single-trial source
signal across trials (see Algorithm 1).

The proposed Neuroscore reflects a human’s perceptual response to different
GANs via EEG measurements, thus it is consistent with human perceptual judg-
ment on GANs. Figure 5 demonstrates the performance of Neuroscore calculated
from a human neural response. In Figure 5(a), it can be seen that different image
categories activate different P300 responses. Figure 5(b) illustrates a strong cor-
relation between Neuroscore and human judgment (BE accuracy)3. These results
demonstrate that Neuroscore reflects human judgment perception. More details
can be found in our previous work [35].

3BE accuracy is the recorded accuracy (calculated as the number of correctly labeled images
divided by the total number of images) in the behavioral experiment. Normalized BE accuracy is
calculated by subtracting the average accuracy (across GAN types for that participant) from BE
accuracy.
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Algorithm 1 Calculation of Neuroscore
Input:

• X ∈ RN×C×T is the EEG signal corresponding to the target stimulus,
where N is the number of target trials, C is the number of channels, and
T is the number of time points.

• K ∈ RM×C×T is the EEG signal corresponding to the standard stimulus,
M is number of standard trials, C is number of channels, T is number of
time points. The target and standard EEG trials are already explained in
section 3.2.

Output: Neuroscore
1: Σ = 1

N

∑N
i=1 XiXi

> + 1
M

∑M
i=1 KiKi

>

2: for ti in [400 ms, 600 ms] do
3: p = 1

N

∑N
i=1 Xi,ti −

1
M

∑M
i=1 Ki,t i

4: w = Σ−1p(p>Σ−1p)−1

5: Jti ← w>Σw
6: Wti ← w
7: end for
8: toptimal=argmintiJ
9: woptimal=Wtoptimal

10: tP300=[toptimal - 100 ms, toptimal + 100 ms] . This is time window being
detected for P300.

11: for i = 1 : N do
12: s = w>optimalXi

13: a = max(stp300)
14: Ai ← a
15: end for
16: Neuroscore =

1
N

∑N
i=1 Ai

4.3. Neuro-AI Interface
We propose a neuro-AI interface in order to generalize the use of Neuroscore.

This kind of framework interfaces between neural responses and AI systems (a
CNN is used in this study), which use neural responses as supervised informa-
tion to train a CNN. The trained CNN is then used for generating a synthetic-
Neuroscore given images generated by one of the popular GAN models i.e., av-
erage the outputs of corresponding images. Figure 6. demonstrates the schematic
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(a) Reconstructed source P300 signals for each type of im-
age category by using LDA beamformer across 12 par-
ticipants. P300 component appears in 400 ms – 600
ms. Solid lines are averaged responses across participants
while shadow areas represent the standard deviation.

(b) Correlation between Neuroscore and human judgment (i.e., par-
ticipants’ behavioural accuracy) across participants. Pearson corre-
lation statistics is r(36) = −0.828, p = 4.766 × 10−10.

Figure 5: Performance of real Neuroscore, calculated from participants’ neural responses.

of the neuro-AI interface used in this work4. Flow 1 shows that the image pro-
cessed by a human being’s brain produces a single-trial P300 source signal for
each input image. Flow 2 in Figure. 6 demonstrates a CNN with included EEG
signals during the training stage. The convolutional and pooling layers process the
image similarly as retina has done [58]. It should be noted that a CNN model is
trained by using single images with their corresponding single-trial EEG informa-

4We understand that a human being’s brain system is much more complex than demonstrated
in this work and that information flow in the brain is not one-directional [56, 57]. Our framework
can be further extended to be more biologically plausible.
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Figure 6: A neuro-AI interface and training details with added EEG information. Our
training strategy includes two stages: (1) Learning from image to single-trial P300 source
signal; and (2) Learning from single-trial P300 source signal to single-trial P300 ampli-
tude. loss1 is the L2 distance between the yellow layer and the single-trial P300 source
signal in the 400 – 600 ms corresponding to the single input image. loss2 is the mean
square error between model prediction and the single-trial P300 amplitude. loss1 and
loss2 will be introduced in Section 4.4.

tion (including single-trial P300 signal and single-trial P300 amplitude5. Fully
connected layers (FC) 1 – 3 aim to emulate the brain’s functionality that produces
the EEG signal. The yellow dense layer in the architecture aims to predict the
single-trial P300 source signal at 400 – 600 ms in response to each image input.
In order to help the model make a more accurate prediction for the single-trial
P300 amplitude for the output, the single-trial P300 source signal at 400 – 600 ms
is fed to the yellow dense layer to learn parameters for the previous layers in the
training step. The model was then trained to predict the single-trial P300 source
amplitude (the red point shown in signal-trail P300 source signal of Figure 6).

4.4. Training Details
Mobilenet V2, Inception V3 and Shallow network (architecture of Shallow

network refers to Figure 7) were explored in this work, where in flow 2 we use

5Single-trial P300 amplitude refers the maximum value in the 400 ms – 600 ms time window
of a single-trial EEG signal. Details can be referred to our previous work [35].). The averaged
output of a trained model in terms of one image category can be represented as the synthesized
Neuroscore (we refer to it as synthetic-Neuroscore in this paper)
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Figure 7: Shallow network architecture used in this work.

these three network bones such as Conv1-pooling layers. For Mobilenet V2 and
Inception V3, we used ImageNet pre-trained parameters up to the FC 1 (as shown
in Figure 6). Table 2 shows the FC layers details of three networks. Due to
no pretrained parameters in the Shallow net, only three FC layers are contained in
order to avoid overfitting. We trained parameters from FC 1 to FC 4 for Mobilenet
V2 and Inception V3. θ1 is used to denote the parameters from FC 1 to FC 3 and
θ2 indicates the parameters in FC 4. For the Shallow model, parameters up to FC
2 represent θ1 and parameters in FC 3 indicate θ2.

Model FC 1 FC 2 FC 3 FC 4
Shallow net (1024, 512) (512, 50) (50, 1) NA
Mobilenet (1792, 896) (896, 448) (448, 50) (50, 1)
Inception (2048, 1024) (1024, 512) (512, 50) (50, 1)

Table 2: FC layers details of three networks investigated in this study.

We added EEG to the model because we first want to find a function f (χ)→ s
that maps the images space χ to the corresponding single-trial P300 source signal
s. This prior knowledge can help us to predict the single-trial P300 amplitude in
the second learning stage.

We compared the performance of the models with, without EEG signals and
with randomized EEG signals for training. We defined two stage loss function
(loss1 for a single-trial P300 source signal in the 400 – 600 ms time window and
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loss2 for single-trial P300 amplitude) as

loss1(θ1) =
1
N

N∑
i=1

‖Strue
i − Spred

i (θ1)‖22

loss2(θ1, θ2) =
1
N

N∑
i=1

(ytrue
i − ypred

i (θ1, θ2))2

(4)

where Strue
i ∈ R1×T is the single-trial P300 signal in the 400 - 600 ms time window

to the presented image, yi refers to the single-trial P300 amplitude for each image,
and N refers to the batch size. In this case, we trained 20 epochs with batch size
equaling to 256. An Adam optimizer with default hyperparameters was used and
learning rate is 0.001.

The training of the models without using EEG signal is straightforward, mod-
els were trained directly to minimize loss2(θ1, θ2) by feeding images and the cor-
responding single-trial P300 amplitude. In this case, training is an end-to-end
process i.e., from an image to single-trial a P300 amplitude without considering
stage 1. The reason that we do this is to investigate the significance of adding
single-trial P300 signal as supervisory information to the network. Training with
EEG information is explained in Algorithm 2 and visualized in the “Flow 2” of

Algorithm 2 Two training stages with EEG information.
Stage 1: Training parameters θ1.

Input: Images and averaged P300 signal Strue
i .

1: for number of training iterations do
2: Update θ1 by descending its stochastic gradient: ∇θ1

1
N

∑N
i=1‖S

true
i −

Spred
i (θ1)‖22

3: end for
Stage 2: Freezing θ1, training parameters θ2.

Input: Images and single-trial P300 amplitude ytrue
i .

4: for number of training iterations do
5: Update θ2 by descending its stochastic gradient: ∇θ2

1
N

∑N
i=1(ytrue

i −

ypred
i (θ1, θ2))2

6: end for

Figure 6 with two stages. Stage 1 learns parameters θ1 to predict P300 source
signal while stage 2 learns parameters θ2 to predict single-trial P300 amplitude
with θ1 fixed.
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5. Results

5.1. EEG and Model Performance
Individual Participant Performance. Three models have been validated for each
individual participant as shown in Figure 8. It can be seen that all three models

sub

sub

sub

Figure 8: Error of 3 models with and without EEG signals. Error is defined as:∑m
i |Neuroscore(i)

pred − Neuroscore(i)
true|, where m = 3 is the number of GAN categories

used (DCGAN, BEGAN, PROGAN, 12 participants) and Neuroscore is obtained by aver-
aging single-trial P300 amplitudes. A smaller value indicates better performance. Details
of numeric values can be refered to Table3.

trained with EEG outperform the models trained without EEG. In other words,
we show that including EEG/P300 time series signals as supervisory informa-
tion to the yellow dense layer yields an improvement in performance as seen
in Figure 6. with smaller error and standard deviation across almost all individual
subjects. For those cases where the reverse is true (7 from 36 have better or equal
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performance without EEG), this might result from the number of EEG trials for
an individual participant not being sufficient enough for training of deep networks
to learn the mapping function f (χ) from image to EEG.

Model Error mean (std)

Shallow net
Shallow-EEG 0.151 (±0.245)

Shallow 0.428 (±0.623)

Mobilenet
Mobilenet-EEG 0.155 (±0.235)

Mobilenet 0.437 (±0.589)

Inception
Inception-EEG 0.157 (±0.487)

Inception 0.462 (±0.932)

Table 3: Details of error mean and standard deviation for Figure 8.

Cross Participant Performance. We evaluated the cross participant performance
of our approach by pooling trials across participants to see if the use of pooled
trials produced a smaller error. In this case, the number of EEG trials across
participants is 6012. We split data into training and testing as 2:1 in which there
are 4008 trials for training and 2004 trials for testing. All trials are randomly
shuffled and we repeat this process for 20 times in order to get a more robust
result.

Table 4 shows the error for each model with the EEG signal, with a random-
ized EEG signal within each type of GAN and without an EEG signal. All mod-
els with EEG signals perform better than models without EEG signals, with much
smaller errors and standard deviation.

Adding the EEG signal to the intermediate layer reduces error in all three mod-
els (as the same error is shown in Figure 8), namely 0.151, 0.168 and 0.171 for
Shallow, Mobilenet, and Inception respectively. This indicates that the Inception
model benefits most when adding EEG signal into the training stage. The perfor-
mance of models with the EEG signal is ranked as Inception-EEG followwd by
Mobilenet-EEG, and Shallow-EEG, which indicates that deeper neural networks
may achieve better performance in this task. We used the randomized EEG signal
here as a baseline to determine the efficacy of adding the EEG signal to produce
better Neuroscore output. When randomizing the EEG signal, it shows that the er-
ror for each three model increases significantly. For Mobilenet and Inception, the
error with the randomized EEG signal is even higher than those without the EEG
signal in the training stage, demonstrating that EEG information in the training
stage is crucial to each model.
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Model Error mean(std)

Shallow net
Shallow-EEG 0.209 (±0.102)

Shallow-EEGrandom 0.348 (±0.114)
Shallow 0.360 (±0.183)

Mobilenet
Mobilenet-EEG 0.198 (±0.087)

Mobilenet-EEGrandom 0.404 (±0.162)
Mobilenet 0.366 (±0.261)

Inception
Inception-EEG 0.173 (±0.069)

Inception-EEGrandom 0.392 (±0.057)
Inception 0.344 (±0.149)

Table 4: Errors for 9 models across the 12 participants (“*-EEG” indicates models are
trained with paired EEG, “*-EEGrandom” refers to EEG trials which are randomized in the
loss1 within each type of GAN). Results are averaged by shuffling training/testing sets
20 times.

Figure 9 shows that the models with EEG information have a stronger corre-
lation between synthetic-Neuroscore and Neuroscore. The cluster (blue, orange,
and green circles) for each category of the model trained with EEG (left column)
is more separable than the cluster produced by model without EEG (right col-
umn). This indicates that when with EEG is used in training models Neuroscore
is more accurate and that Neuroscore is able to rank the performances of different
GANs, which cannot be achieved with other metrics [14].

5.2. Neuroscore Aligns with Human Perception
Figure 5(b) shows the correlation between Neuroscore and human judgment

(BE accuracy) according to three GANs: BEGAN, DCGAN, and PROGAN. The
statistical test demonstrates the strong correlation between those two variables.
This indicates that Neuroscore can be used to evaluate GANs as it reflects human
perceptual judgment. A number of previous studies have noted that increasing
task difficulty reduces the amplitude of the P300 [59, 60, 61, 62]. It may be the
case that the larger P300 amplitudes observed for the PROGAN images indicate
that these face images were easier to detect compared to the images from the other
GANs. For example, DCGAN images tended to contain far more visual aberra-
tions and other inherent artefacts that would impede their detection [63]. It has
also been noted in another prior study that increased sensory evidence results in
shorter reaction times and larger component amplitudes in temporal and spatial
regions coinciding with those examined in our work [64]. Another prior study
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Figure 9: Scatter plot of synthetic-Neuroscore (vertical axis) and Neuroscore (horizontal)
for 6 models (Shallow, Mobilenet, Inception with and without EEG signals for training)
across participants, with 20 times repeated shuffling training and testing set. Each circle
represents the cluster for a specific category. Small triangle markers inside each cluster
correspond to each shuffling process. The dot at the center of each cluster is the mean.

explains larger P300 amplitudes for real face images resulting from enhanced per-
ceptual processing [44]. In effect, larger average P300/LPP amplitudes for a par-
ticular GAN type are indicative that its images are perceived as being real faces.

We have already demonstrated that the Neuroscore derived from raw EEG is
consistent with human perception [35]. We will now demonstrate the same prop-
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erty of synthetic-Neuroscore predicted from the neuro-AI interface. We compare
the synthetic-Neuroscore with three widely used evaluation metrics. The ultimate
goal of GANs is to generate images that are indistinguishable from real images by
human beings. Therefore, consistency between an evaluation metric and human
perception is a critical requirement for the metric to be considered good. Table 5
shows the comparison between synthetic-Neuroscore and three traditional scores.
To be consistent with all the scores (smaller score indicates better GAN), we used
1/IS and 1/synthetic-Neuroscore for comparisons in Table 5. It can be seen that
people rank the GAN performance as PROGAN > BEGAN > DCGAN. All three
synthetic-Neuroscores produced by the three models with EEG are consistent with
human judgment while the other three conventional scores are not (they all indi-
cate that DCGAN outperforms BEGAN).

Metrics DCGAN BEGAN PROGAN
1/IS 0.44 0.57 0.42

MMD 0.22 0.29 0.12
FID 63.29 83.38 34.10

Proposed Methods
1/Shallow-EEG 1.60 1.39 1.14

1/Mobilenet-EEG 1.71 1.29 1.20
1/Inception-EEG 1.51 1.34 1.24

Human (BE accuracy) 0.995 0.824 0.705

Table 5: Three conventional scores: Inception Score (IS), Maximum Mean Discrepancy
(MMD), Fréchet Inception Distance (FID), and synthetic-Neuroscore produced by three
models with EEG for each GAN category. A lower score indicates better performance
of the GAN. Neuroscore is consistent with human judgments. Bold text indicates the
consistency with human judgment (BE) accuracy.

5.3. Synthetic-Neuroscore Needs Far Fewer Samples
The number of samples needed for evaluation of a GAN is crucial in real-

world applications considering computational efficiency and efforts needed for
labeling and annotation. Traditional metrics need a large sample size to capture
the underlying statistical properties of the real and generated images [12, 16]. In
practice, we should prefer a metric that is robust when dealing with small sample
sizes i.e., where small sample sizes can produce good estimates. Figure 10(b)
shows that synthetic-Neuroscore converges stably at around 20 presentations of
a specific image (for signal-enhancement purposes), which is far fewer than the
thousands of images required by traditional methods [14, 16]. This is due to the
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fact that the LDA-beamformed single-trial P300 amplitude becomes stable when
as few as dozens of EEG trials corresponding to one category are available [20].

Figure 10: Synthetic-Neuroscore for different evaluated sample sizes for each type of
GAN. 200 repeated measurements have been made by randomly shuffling image samples.

5.4. Synthetic-Neuroscore Can Rank Images
Another property of using synthetic-Neuroscore is the ability to indicate the

quality of an individual image. Traditional evaluation metrics are unable to score
each individual image for two reasons. Firstly they need large-scale samples
for evaluation and secondly most methods (e.g., MMD and FID) evaluate GANs
based on the dissimilarity between real images and generated images so they are
not able to score the generated images individually. For our proposed method,
the score of each single image can also be evaluated as a synthetic single-trial
P300 amplitude measurement. We demonstrate in Figure 11 how the predicted
single-trial P300 amplitude conveys perceptual quality at the level of individ-
ual images. This property provides synthetic-Neuroscore with a novel capabil-
ity for tracking variations in image output quality within a typical GAN. Al-
though synthetic-Neuroscore and IS are both generated from deep neural net-
works, synthetic-Neuroscore is more suitable than IS for evaluating GANs as it is
a direct reflection of human perception and fewer sample images are required for
evaluation. This has benefits in terms of improved explanation of output than that
offered by IS. For example low ranked images can be selected at evaluation time
to illustrate cases where the GAN under evaluation is performing poorly.
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Figure 11: P300 for each single image predicted by the proposed neuro-AI interface in
our paper. Higher predicted P300 indicates better image quality.

6. Conclusions

In this paper, we outline a metric for evaluating the quality of the outputs
from GANs called Neuroscore. Furthermore, we describe a neuro-AI interface
to calculate a synthetic-Neuroscore for evaluating GAN performance that only
requires EEG signals as supervisory information during model training. Three
deep network architectures are explored and our results demonstrate that including
neural responses during the training phase of the neuro-AI interface improves its
accuracy even though neural measurements are absent when evaluating on a test
set. This means that human subjects are not actually needed to evaluate the output
from a test GAN, their neural responses are needed only when training the model
that produces a synthetic-Neuroscore.

We compared our synthetic-Neuroscore measure to three traditional evaluation
metrics and demonstrated the unique advantages of synthetic-Neuroscore, that it
is consistent with human perception, that it requires far fewer image samples for
calculation and that it can rank individual images in terms of quality, within a
specific GAN.

In this work, we demonstrated the use of CNNs to synthesize the neural re-
sponse. More complicated neural architectures such as mixture of CNNs and re-
current neural networks can be investigated in future work when more EEG data
is available.
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