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Abstract

This paper investigates the synchronization problem of inertial memristive neu-

ral networks (IMNNs) with time-varying delays via event-triggered control (ETC)

scheme and state feedback controller for the first time. First, two types of state

feedback controllers are designed; the first type of controller is added to the

transformational first-order system, and the second type of controller is added

to the original second-order system. Next, based on each feedback controller,

static event-triggered control (SETC) condition and dynamic event-triggered

control (DETC) condition are presented to significantly reduce the update times

of controller and decrease the computing cost. Then, some sufficient conditions

are given such that synchronization of IMNNs with time-varying delays can be

achieved under ETC schemes. Finally, a numerical simulation and some data

analyses are given to verify the validity of the proposed results.
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1. Introduction

As one of the most important dynamical characteristics of complex sys-

tems, synchronization has been widely studied [1-5]. Currently, synchroniza-

tion and neural networks can be applied in many potential areas [6-10], such

as image encryption, biological systems and secure communication. In 2008,5

the memristor prototype was realized by HP lab using TiO2 [11]. Since then,

memristor-based circuits and applications have been investigated extensively in

the academic world [12-16]. Because of the nonvolatility of memristor, memris-

tive neural networks (MNNs) can be built with memristor to emulate synapse.

MNN has broad applications in several fields [17,18], such as logical operations10

and image processing. Therefore, the topics of synchronization of MNNs have

attracted increasing attention [19-27]. For example, Wu et al. researched a

class of memristive recurrent neural networks (NNs) and achieved exponential

synchronization of NNs via Lyapunov functional and differential inclusions [19].

In [20], global exponential synchronization of memristive recurrent NNs with15

time-varying delays was addressed by using Lyapunov functional method and

fuzzy theory. In [21], some sufficient conditions were presented to ensure syn-

chronization of coupled MNNs via impulsive differential inequality and extended

Halanay differential inequality. Li and Cao [22] investigated lay synchroniza-

tion and lag quasi-synchronization of coupled MNNs by utilizing generalized20

Halanay inequality and ω-measure method. In [23], synchronization problem of

fractional-order MNNs was addressed under some sufficient conditions.

It is worth noting that [19-27] focused primarily on the first order deriva-

tive or fractional order derivative of the state variables. Recently, the dynam-

ical characteristic research of MNNs via introducing an inertial term has at-25

tracted great interest [28-37], because the inertial term is considered as a key

tool to generate complicated chaos and bifurcation behavior. In [28], Wang et

al. investigated global stabilization of inertial memristive recurrent NNs with

discrete delays and two types of distributed delays. By using matrix mea-

sure method, stability and pinning synchronization of inertial MNNs (IMNNs)30
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with time delays were studied in [30]. Some sufficient conditions were given

in [31] such that global exponential synchronization of coupled IMNNs can be

achieved via state feedback control method. In addition, by using differen-

t control methods, synchronization of IMNNs can be realized in [32-37]. For

example, finite-time synchronization of IMNNs with time delay was addressed35

via delay-dependent control technique [32]. In [33], fixed-time synchronization

and finite-time synchronization of IMNNs were achieved via state feedback con-

trol method. Similarly, fixed-time and finite-time synchronization of IMNNs

were studied by fixed-time control method and state feedback control method

[34], respectively. In [36], global exponential synchronization of IMNNs was40

investigated via nonlinear control method. Using nonlinear coupling, name-

ly, nonlinear feedback control strategy, global exponential synchronization of

multiple coupled IMNNs with time-varying delays was achieved [37]. Currently,

due to some advantages including reliability and high efficiency, network control

schemes such as state feedback control method and nonlinear control method,45

have been widely researched and applied in several areas [32-39]. However, these

network control schemes used in IMNNs [32-37] are based on continuous-time

feedback controllers, which means that these systems have heavy computing

burden. Seriously, these continuous-time controllers may lead to congestion of

communication channels.50

As two sampling control schemes, time-triggered control [40, 41] and event-

triggered control (ETC) [42-50] can effectively reduce computing cost and com-

munication resources. Nevertheless, when the consecutive sampling-data inter-

val is infinitesimal, there exist wastefulness of computing cost and unnecessary

energy consumption for time-triggered control. Fortunately, ETC can solve the55

problem. Unlike time-triggered control, ETC can significantly reduce update

times of controller and ensure the system performance. Therefore, ETC scheme

used in controlled systems has received increasing attention and some relevan-

t topics have been studied [42-50]. In [45], Zhang et al. discussed stability

of MNNs with communication delays by using event-triggered sampling con-60

trol method. Using event-triggered impulsive control, Zhou and Zeng realized
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quasi-synchronization of MNNs with time-varying delays [46]. In [47], an event-

triggered H∞ state estimation was designed and it guaranteed that delayed

discrete-time stochastic MNNs were exponentially mean-square stable. Guo et

al. presented two types of ETC methods for synchronization of delayed MNNs65

[48]. In [49], an event-triggered communication scheme is proposed to save the

communication resources of nonlinear multiagent systems with unknown and

nonidentical control directions. However, these ETC schemes were only con-

sidered in the first-order system [42-50], and only one type of measured error

was addressed. This means the existing ETC methods cannot be directly used70

in the second-order system such as IMNNs which needs to consider two type-

s of measured errors. To the best of our knowledge, there is little work on

synchronization of IMNNs via ETC scheme.

Inspired by the discussion above, this paper investigates the synchronization

of IMNNs with time-varying delays via ETC scheme for the first time. We75

summarize the main contributions as follows.

1) This paper designs two types of state feedback controllers. The first type

of controller is added to the transformational first-order response system, and

the second type of controller is added to the original second-order response

system.80

2) Based on each state feedback controller, two types of ETC schemes, name-

ly, static event-triggered control (SETC) and dynamic event-triggered control

(DETC) were designed.

3) Some sufficient conditions are presented to guarantee synchronization of

IMNNs with time-vary delays via ETC scheme under two types of state feedback85

controllers.

4) Under ETC schemes, the IMNNs can effectively reduce the update times

of feedback controllers and decrease computing burden. Moreover, compared

with the existing ETC methods [42-50], our control schemes are more flexible.

The rest of the paper is organized as follows. In Section 2, IMNNs with time-90

varying delays are introduced. Two types of controllers and some ETC schemes

are designed to realize synchronization of IMNNs in Section 3. Section 4 presents
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a numerical simulation and some data analyses to verify the effectiveness of the

obtained results. Finally, conclusions are given in Section 5.

2. Preliminaries95

First, we give some notations which will be used later.

Notations: For a given vector a = (a1, a2, . . . , al)
T , ∥a∥1 =

l∑
m=1

|am|. For

a given matrix x = [xmz]l×l, ∥x∥1 = max
1≤z≤l

l∑
m=1

|xmz|, and λ(x) represents all

eigenvalues of matrix x.

We consider IMNNs with time-varying delays as follows.

d2pm(t)
dt2 = −bm

dpm(t)
dt − cmpm(t) +

l∑
z=1

αmz(pm(t))

×fz(pz(t)) +
l∑

z=1
βmz(pm(t))fz(pz(t− τmz(t)))

+Im(t), m = 1, 2, . . . , l,

(1)

where pm(t) is the state of the mth neuron; bm and cm are constants; the100

second order derivative of pm(t) is an inertial term; αmz and βmz represent

memristive connection weights; fz(·) is the activation function. τmz(t) denotes

time-varying delay and satisfies 0 ≤ τmz(t) ≤ τ , where τ is a positive constant;

Im(t) is external input.

We consider the initial conditions of system (1) as pm(s) = Υm(s),

dpm(s)
ds = Θm(s), −τ ≤ s ≤ 0.

We set memristive connection weights as

αmz(pm(t)) =

 α⃗mz, |pm(t)| ≤ χm,

←
αmz, |pm(t)| > χm,

βmz(pm(t)) =

 β⃗mz, |pm(t)| ≤ χm,
←
βmz, |pm(t)| > χm,

where α⃗mz,
←
αmz, β⃗mz and

←
βmz are constants, χm > 0 is the switching jump.105

We denote α̂mz = max{|α⃗mz|, |
←
αmz|}, β̂mz = max{|β⃗mz|, |

←
βmz|}, ∆̂ = [α̂mz]l×l,

Ω̂ = [β̂mz]l×l.
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Let qm(t) = dpm(t)
dt + ωmpm(t), m = 1, 2, . . . , l, where ωm is a constant,

then system (1) can be rewritten as

dpm(t)
dt = −ωmpm(t) + qm(t), m = 1, 2, . . . , l,

dqm(t)
dt = −(bm − ωm)qm(t)− [cm + ωm(ωm − bm)]

×pm(t) +
l∑

z=1
αmz(pm(t))fz(pz(t))

+
l∑

z=1
βmz(pm(t))fz(pz(t− τmz(t))) + Im(t)

∆
= −b̃mqm(t)− c̃mpm(t) +

l∑
z=1

αmz(pm(t))fz(pz(t))

+
l∑

z=1
βmz(pm(t))fz(pz(t− τmz(t))) + Im(t),

(2)

where b̃m = bm − ωm, c̃m = cm + ωm(ωm − bm) and the initial conditions are pm(s) = Υm(s),

qm(s) = Θm(s) + ωmΥm(s), −τ ≤ s ≤ 0.

Let system (1) or (2) be the drive IMNNs, then the response system can be

described in two forms, namely, Form (A) and Form (B).110

Form (A):

dp̃m(t)
dt = −ωmp̃m(t) + q̃m(t) + um(t),

dq̃m(t)
dt = −b̃mq̃m(t)− c̃mp̃m(t) +

l∑
z=1

αmz(p̃m(t))

×fz(p̃z(t)) +
l∑

z=1
βmz(p̃m(t))fz(p̃z(t− τmz(t)))

+Im(t) + vm(t),

(3)

where um(t) and vm(t) are controllers.

Form (B):

d2p̃m(t)
dt2 = −bm

dp̃m(t)
dt − cmp̃m(t) +

l∑
z=1

αmz(p̃m(t))

×fz(p̃z(t)) +
l∑

z=1
βmz(p̃m(t))fz(p̃z(t− τmz(t)))

+Im(t) + vm(t), m = 1, 2, . . . , l,

(4)

where vm(t) represents the controller.
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Let q̃m(t) = dp̃m(t)
dt + ωmp̃m(t), m = 1, 2, . . . , l, where ωm is a constant.

Then system (4) can be rewritten as

dp̃m(t)
dt = −ωmp̃m(t) + q̃m(t),

dq̃m(t)
dt = −b̃mq̃m(t)− c̃mp̃m(t) +

l∑
z=1

αmz(p̃m(t))

×fz(p̃z(t)) +
l∑

z=1
βmz(p̃m(t))fz(p̃z(t− τmz(t)))

+Im(t) + vm(t),

(5)

where b̃m = bm − ωm, c̃m = cm + ωm(ωm − bm)

We define errors em(t) = p̃m(t)− pm(t) and rm(t) = q̃m(t)− qm(t).

When the response system is system (3), we can get the errors as

dem(t)
dt = −ωmem(t) + rm(t) + um(t),

drm(t)
dt = −b̃mrm(t)− c̃mem(t)

+
l∑

z=1
αmz(p̃m(t))gz(ez(t))

+
l∑

z=1
(αmz(p̃m(t))− αmz(pm(t))) fz(pz(t))

+
l∑

z=1
βmz(p̃m(t))gz(ez(t− τmz(t)))

+
l∑

z=1
(βmz(p̃m(t))− βmz(pm(t)))

×fz(pz(t− τmz(t))) + vm(t).

(6)

where gz(ez(t)) = fz(p̃z(t)) − fz(pz(t)). Moreover, the vector form of system

(6) can be written as

de(t)
dt = −We(t) + r(t) + u(t),

dr(t)
dt = −B̃r(t)− C̃e(t) + ∆(p̃(t))g(e(t))

+ (∆(p̃(t))−∆(p(t))) f(p(t))

+Ω(p̃(t))g(e(t− τ(t)))

+ (Ω(p̃(t))− Ω(p(t))) f(p(t− τ(t))) + v(t).

(7)

where e(t) = (e1(t), e2(t), . . . , el(t))
T , r(t) = (r1(t),r2(t), . . . , rl(t))

T , W =115

diag{ω1, ω2, . . . , ωl}, u(t) = (u1(t), u2(t), . . . , ul(t))
T , B̃ = diag{b̃1, b̃2, . . . , b̃l},

C̃ = diag{c̃1, c̃2, . . . , c̃l}, g(e(t)) = (g1(e1(t)), g2(e2(t)), . . . , gl(el(t)))
T , f(p(t)) =
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(f1(p1(t)), f2(p2(t)), . . . , fl(pl(t)))
T , ∆(p̃(t)) = [αmz(p̃(t))]l×l, ∆(p(t)) = [αmz(p(t))]l×l,

Ω(p̃(t)) = [βmz(p̃(t))]l×l, Ω(p(t)) = [βmz(p(t))]l×l, v(t) = (v1(t), v2(t), . . . , vl(t))
T .

When the response system is system (5), we can get the errors as

dem(t)
dt = −ωmem(t) + rm(t),

drm(t)
dt = −b̃mrm(t)− c̃mem(t)

+
l∑

z=1
αmz(p̃m(t))gz(ez(t))

+
l∑

z=1
(αmz(p̃m(t))− αmz(pm(t))) fz(pz(t))

+
l∑

z=1
βmz(p̃m(t))gz(ez(t− τmz(t)))

+
l∑

z=1
(βmz(p̃m(t))− βmz(pm(t)))

×fz(pz(t− τmz(t))) + vm(t),

(8)

and the vector form

de(t)
dt = −We(t) + r(t),

dr(t)
dt = −B̃r(t)− C̃e(t) + ∆(p̃(t))g(e(t))

+ (∆(p̃(t))−∆(p(t))) f(p(t))

+Ω(p̃(t))g(e(t− τ(t)))

+ (Ω(p̃(t))− Ω(p(t))) f(p(t− τ(t))) + v(t),

(9)

where v(t) = (v1(t), v2(t), . . . , vl(t))
T .120

We define measured errors as me(t) = e(ti)− e(t) and mr(t) = r(ti)− r(t),

∀t ∈ [ti, ti+1). In ETC strategy, the state-dependent threshold needs to be set.

When the measured errors exceed the threshold, the control will be updated

under a new triggering event. It is worth noting that limt→t+i
me(t) = me(ti) =

0, limt→t+i
mr(t) = mr(ti) = 0, limt→t−i

me(t) = limt→t−i
e(ti−1) − e(t) ̸= 0 and125

limt→t−i
mr(t) = limt→t−i

r(ti−1) − r(t) ̸= 0. Therefore, me(t) and mr(t) are

discontinuous at t = ti.

Because time-varying delay τmz(t) satisfies 0 ≤ τmz(t) ≤ τ , and t ∈ [ti, ti+1),

then we can acquire t− τmz(t) ∈ [ti − τ, ti+1), where τ is a positive constant. It

is worth nothing that the term t− τmz(t) does not affect event-triggered control130

conditions introduced in the Section 3.

8



Definition 1. If

lim
t→∞

∥p̃(t)− p(t)∥1 = 0,

and

lim
t→∞

∥q̃(t)− q(t)∥1 = 0,

then IMNNs systems (2) and (3) (or (5)) can achieve asymptotical synchro-

nization, where p̃(t) = (p̃1(t), p̃2(t), . . . , p̃l(t))
T , p(t) = (p1(t), p2(t), . . . , pl(t))

T ,

q̃(t) = (q̃1(t), q̃2(t), . . . , q̃l(t))
T , q(t) = (q1(t), q2(t), . . . , ql(t))

T .

Lemma 1. For the equation χ̇(t) = −(1+ d)χ(t) with d > 0 and initial value135

χ(0) ≥ 0, the solution χ(t) satisfies χ(t) ≥ 0.

Remark 1. In the literature, when the synchronization of drive-response

inertial NNs systems was studied, the response system was usually considered

in two forms, that is Form (A) and Form (B). For example, references [33-35]

adopted Form (A), and references [30-32, 36] adopted Form (B). Without loss of140

generality, this paper investigates the synchronization of drive-response IMNNs

under the two forms.

3. Synchronization of Inertial Memristive Neural Networks

Because the response system is considered as Form (A) and Form (B), the

corresponding controllers in Form (A) and Form (B) are different. Therefore, we145

will discuss two types of controllers in this section. The first type of controller

is added to the transformational first-order response system (3), and the second

type of controller is added to the original second-order response system (4).

3.1. The First Type of Controller

We consider the first type of state feedback controller in the Form (A) as

follows  u(t) = −He(ti),

v(t) = −Λr(ti)− Γsgn(r(ti)), t ∈ [ti, ti+1),
(10)

where H = diag(h1, h2, . . . , hl)
T and Λ = diag(Λ1,Λ2, . . . ,Λl)

T are positive150

definite matrices; Γ = diag(Γ1,Γ2, . . . ,Γl)
T ; sgn() represents sign function; and

ti is a release instant.
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Assumption 1. Time-varying delay τmz(t) satisfies

τ̇mz(t) ≤ θ < 1,

where θ is a positive constant.

Assumption 2. Activation function fz is bounded and satisfies Lipschitz

condition, namely, |fz(U1)| ≤ Nz and |fz(U1)− fz(U2)| ≤ Mz |U1 − U2| for any155

U1, U2 ∈ ℜ, where Mz > 0 and Nz > 0 are constants, z = 1, 2, . . . , l.

(1) Static Event-Triggered Control

Theorem 1. IMNNs systems (2) and (3) can be synchronized under as-

sumptions 1 and 2 with the first type of state feedback controller (10) and the

following SETC conditions

∥me(t)∥1 ≤ ξ1
µ1∥e(t)∥1

max {λ(H)}
, (11)

∥mr(t)∥1 ≤ ξ2
(µ2∥r(t)∥1 +ϖ)

max {λ(Λ)}
, (12)

for t ∈ [ti, ti+1), if

min {λ(H)} > −min{λ(W )}+max
{
|λ(C̃)|

}
+Mmax

1−θ

∥∥∥Ω̂∥∥∥
1
+Mmax

∥∥∥∆̂∥∥∥
1

(13)

min {λ(Λ)} > 1−min{λ(B̃)} (14)

 Γm > κm, if sgn(rm(t))sgn(rm(ti)) > 0,

Γm ≤ −κm, otherwise,
(15)

and

κm >
l∑

z=1

[∣∣∣α⃗mz −
←
αmz

∣∣∣+ ∣∣∣β⃗mz −
←
βmz

∣∣∣]Nz, (16)

where ξ1, ξ2 ∈ [0, 1], Mmax = max
1≤z≤l

{Mz},

µ1 = min{λ(W )} −max
{
|λ(C̃)|

}
− Mmax

1−θ

∥∥∥Ω̂∥∥∥
1

−Mmax

∥∥∥∆̂∥∥∥
1
+min {λ(H)} ,
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µ2 = −1 + min{λ(B̃)}+min {λ(Λ)} ,

and

ϖ =
l∑

m=1

{
κm −

l∑
z=1

[∣∣∣α⃗mz −
←
αmz

∣∣∣+ ∣∣∣β⃗mz −
←
βmz

∣∣∣]Nz

}
.

Proof. Consider a Lyapunov function as

V (t) = ∥e(t)∥1 + ∥r(t)∥1

+
l∑

m=1

l∑
z=1

β̂mz

1−θ

∫ t

t−τmz(t)
|gz(ez(s))| ds

(17)

For t ∈ [ti, ti+1), we can get the upper right Dini-derivative of V (t) as

V̇ (t) ≤ sgnT (e(t))ė(t) + sgnT (r(t))ṙ(t)

+
l∑

m=1

l∑
z=1

β̂mz

[
1

1−θ |gz(ez(t))| − |gz(ez(t− τmz(t)))|
]

= sgnT (e(t)) {−We(t) + r(t)−He(ti)}

+sgnT (r(t))
{
−B̃r(t)− C̃e(t) + ∆(p̃(t))g(e(t))

+ (∆(p̃(t))−∆(p(t))) f(p(t))

+Ω(p̃(t))g(e(t− τ(t))) + (Ω(p̃(t))− Ω(p(t)))

×f(p(t− τ(t)))− Λr(ti)− Γsgn(r(ti))}

+
l∑

m=1

l∑
z=1

β̂mz

[
1

1−θ |gz(ez(t))| − |gz(ez(t− τmz(t)))|
]

≤ −min{λ(W )}∥e(t)∥1 + ∥r(t)∥1 − sgnT (e(t))He(ti)

−min{λ(B̃)}∥r(t)∥1 +max
{
|λ(C̃)|

}
∥e(t)∥1

+Mmax

∥∥∥∆̂∥∥∥
1
∥e(t)∥1 + sgnT (r(t)) {(∆(p̃(t))−∆(p(t)))

×f(p(t)) + (Ω(p̃(t))− Ω(p(t))) f(p(t− τ(t)))

−Λr(ti)− Γsgn(r(ti))}+ Mmax

1−θ

∥∥∥Ω̂∥∥∥
1
∥e(t)∥1

Combining with me(t) = e(ti)− e(t) and mr(t) = r(ti)− r(t), we get

−sgnT (e(t))He(ti) = −sgnT (e(t))H(e(t) +me(t))

≤ −min {λ(H)} ∥e(t)∥1 +max {λ(H)} ∥me(t)∥1,

−sgnT (r(t))Λr(ti) = −sgnT (r(t))Λ(r(t) +mr(t))

≤ −min {λ(Λ)} ∥r(t)∥1 +max {λ(Λ)} ∥mr(t)∥1.
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According to Assumption 2, the following inequalities hold.

sgnT (r(t)) {(∆(p̃(t))−∆(p(t))) f(p(t))

+ (Ω(p̃(t))− Ω(p(t))) f(p(t− τ(t)))− Γsgn(r(ti))}

≤
l∑

m=1

l∑
z=1

[∣∣∣α⃗mz −
←
αmz

∣∣∣+ ∣∣∣β⃗mz −
←
βmz

∣∣∣]Nz

−
l∑

m=1
sgn(rm(t))sgn(rm(ti))Γm

≤ −
l∑

m=1

{
κm −

l∑
z=1

[∣∣∣α⃗mz −
←
αmz

∣∣∣+ ∣∣∣β⃗mz −
←
βmz

∣∣∣]Nz

}
= −ϖ < 0

Then, we can get that

V̇ (t) ≤
[
−min{λ(W )}+max

{
|λ(C̃)|

}
+ Mmax

1−θ

∥∥∥Ω̂∥∥∥
1

+Mmax

∥∥∥∆̂∥∥∥
1
−min {λ(H)}

]
∥e(t)∥1 +max {λ(H)}

×∥me(t)∥1 +
[
1−min{λ(B̃)} −min {λ(Λ)}

]
×∥r(t)∥1 +max {λ(Λ)} ∥mr(t)∥1 −ϖ

≤ (ξ1 − 1)µ1∥e(t)∥1 + (ξ2 − 1) (µ2∥r(t)∥1 +ϖ)

≤ 0

Thus, the system (3) can achieve synchronization with the system (2) under

the SETC conditions (11) and (12). The proof is finished.

The type of synchronization achieved in this paper is asymptotical synchro-

nization. The derivative of Lyapunov function V (t) is not more than 0, and

each term of Lyapunov function V (t) in (17) is nonnegative. Thus, ∥e(t)∥1 and

∥r(t)∥1 are asymptotically stable as time goes on, in other words,

lim
t→∞

∥p̃(t)− p(t)∥1 = 0

and

lim
t→∞

∥q̃(t)− q(t)∥1 = 0.

This means the synchronization between system (3) and system (2) is asymp-160

totical according to the Definition 1. Similarly, the synchronization between

system (3) and system (2) in the following theorems and corollaries via SETC

or DETC is also asymptotical.
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The feedback controller (10) is an essential item of realizing synchronization

of drive and response IMNNs. Its two items u(t) and v(t) are respectively165

applied in errors e(t) and r(t) to make error systems stable. In addition, u(t)

and v(t) are unchanged when time t ∈ [ti, ti+1), which means that computing

cost decreases due to reducing the update times of feedback controller (10).

Remark 2. When SETC conditions (11) and (12) are violated, the controller

(10) makes one update. That is to say, the controller (10) does not need to170

re-do the calculation as long as SETC conditions (11) and (12) are satisfied.

Therefore, compared with the traditional continuous-time control methods [32-

37], ETC scheme can reduce communication burden based on ensuring system

performance.

Remark 3. Due to the limited communication resources and channel band-175

width, it is very necessary to reduce the update times of controller and data

transmission rate. ETC scheme for the synchronization of IMNNs can effectively

reduce the update times of controller and decrease computing cost. Therefore,

ETC scheme for IMNNs is very practical and meaningful.

Remark 4. In [46-48], the synchronization of MNNs via ETC schemes has180

been studied. These papers focused on the first order derivative of the state

variables and considered one type of error variable, that is to say, one type of

measured error was addressed to achieve synchronization. Compared with the

first order derivative of the state variables, the second order derivative is more

complicated and harder to be addressed. Currently, the solution for the second185

order derivative is to transform the second-order system into two first-order

systems [28-37], which means it needs to consider two types of error variables,

namely two types of measured errors. Therefore, the one error variable strategy

in [46-48] cannot solve the synchronization problem of IMNN systems [28-37].

In other words, the ETC schemes obtained in [42-50] cannot be directly used for190

the synchronization of IMNN systems [28-37]. Therefore, this paper proposes

the synchronization of IMNNs with time-varying delays via new ETC condition

and state feedback controller for the first time.

Corollary 1. IMNNs systems (2) and (3) can be synchronized under as-
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sumptions 1 and 2 with the first type of state feedback controller (10) and the

following SETC conditions

∥me(t)∥1 ≤ ξ1
(µ1∥e(t)∥1+ϖ)

max {λ(H)}
, (18)

∥mr(t)∥1 ≤ ξ2
µ2∥r(t)∥1
max {λ(Λ)}

, (19)

for t ∈ [ti, ti+1), if matrices H, Λ and Γ satisfy (13)-(16), and ξ1, ξ2, µ1, µ2 and

ϖ are the same as Theorem 1.195

Proof. Combining the proof of Theorem 1 with (18) and (19), we get

V̇ (t) ≤
[
−min{λ(W )}+max

{
|λ(C̃)|

}
+ Mmax

1−θ

∥∥∥Ω̂∥∥∥
1

+Mmax

∥∥∥∆̂∥∥∥
1
−min {λ(H)}

]
∥e(t)∥1 +max {λ(H)}

×∥me(t)∥1 +
[
1−min{λ(B̃)} −min {λ(Λ)}

]
×∥r(t)∥1 +max {λ(Λ)} ∥mr(t)∥1 −ϖ

≤ (ξ1 − 1) (µ1∥e(t)∥1 +ϖ) + (ξ2 − 1)µ2∥r(t)∥1
≤ 0

Thus, the system (3) can achieve synchronization with the system (2) under

the SETC conditions (18) and (19). The proof is finished.

Corollary 2. IMNNs systems (2) and (3) can be synchronized under as-

sumptions 1 and 2 with the first type of state feedback controller (10) and the

following SETC conditions

∥me(t)∥1 ≤
ξ1µ1∥e(t)∥1+ℓϖ

max {λ(H)}
, (20)

∥mr(t)∥1 ≤
ξ2µ2∥r(t)∥1 + (1− ℓ)ϖ

max {λ(Λ)}
, (21)

for t ∈ [ti, ti+1), ℓ ∈ (0, 1), if matrices H, Λ and Γ satisfy (13)-(16), and ξ1, ξ2,

µ1, µ2 and ϖ are the same as Theorem 1.

Corollary 3. IMNNs systems (2) and (3) can be synchronized under as-

sumptions 1 and 2 with the first type of state feedback controller (10) and the

following SETC conditions

∥me(t)∥1 ≤
ξ1µ1∥e(ti)∥1+ℓϖ

max {λ(H)}+ ξ1µ1
, (22)

14



∥mr(t)∥1 ≤
ξ2µ2∥r(ti)∥1 + (1− ℓ)ϖ

max {λ(Λ)}+ ξ2µ2
, (23)

for t ∈ [ti, ti+1), ℓ ∈ (0, 1), if matrices H, Λ and Γ satisfy (13)-(16), and ξ1, ξ2,200

µ1, µ2 and ϖ are the same as Theorem 1.

Proof. From (22) and (23), we can get

max {λ(H)} ∥me(t)∥1 ≤ ξ1µ1 (∥e(ti)∥1 − ∥me(t)∥1)+ℓϖ

≤ ξ1µ1∥e(t)∥1+ℓϖ,

max {λ(Λ)} ∥mr(t)∥1
≤ ξ2µ2 (∥r(ti)∥1 − ∥mr(t)∥1) + (1− ℓ)ϖ

≤ ξ2µ2∥r(t)∥1 + (1− ℓ)ϖ,

for t ∈ [ti, ti+1), in other words, the inequalities (20) and (21) in Corollary 2

hold. Thus, all the conditions of Corollary 2 are satisfied.

Remark 5. Because the state feedback controller (10) is added to the trans-

formational first-order system (3), it is very convenient to set ETC conditions.205

From Theorem 1 and corollaries 1-3, we have lots of choices to set the condition-

s of measured errors me(t) and mr(t), which the existing methods for MNNs

introduced in [46-48] cannot meet. Therefore, the first type of state feedback

controller (10) is very necessary and flexible for studying the synchronization of

IMNNs and choosing ETC conditions.210

(2) Dynamic Event-Triggered Control

We set two dynamic variables σ1(t) and σ2(t), which satisfy the following

conditions

σ̇1(t) = −σ1(t) + ξ1µ1∥e(t)∥1
−max {λ(H)} ∥me(t)∥1,

(24)

σ̇2(t) = −σ2(t) + ξ2 (µ2∥r(t)∥1 +ϖ)

−max {λ(Λ)} ∥mr(t)∥1,
(25)

where matrices H, Λ satisfy (13)-(14), and ξ1, ξ2, µ1, µ2 and ϖ are the same as

Theorem 1. The initial values of (24) and (25) are σ1(0) and σ2(0), and satisfy

σ1(0) ≥ 0 and σ2(0) ≥ 0.
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The dynamic variables σ1(t) and σ2(t) are used to control the thresholds215

of measured errors me(t) and mr(t) in DETC scheme. For example, error e(t)

and dynamic variable σ1(t) are applied to dynamically decide the threshold of

measured errors me(t) in (26); error r(t) and dynamic variable σ2(t) are applied

to dynamically decide the threshold of measured errors mr(t) in (27). When the

measured errors me(t) and mr(t) exceed the thresholds provided in (26) and220

(27), the control will be updated under a new triggering event. By introducing

dynamic variables, the update times of controller under DETC scheme is less

than that under SETC scheme.

Theorem 2. IMNNs systems (2) and (3) can be synchronized under as-

sumptions 1 and 2 with the first type of state feedback controller (10) and the

following DETC conditions

∥me(t)∥1 ≤ σ1(t) + ξ1
µ1∥e(t)∥1

max {λ(H)}
, (26)

∥mr(t)∥1 ≤ σ2(t) + ξ2
(µ2∥r(t)∥1 +ϖ)

max {λ(Λ)}
, (27)

for t ∈ [ti, ti+1), if matrices H, Λ and Γ satisfy (13)-(16), and ξ1, ξ2, µ1, µ2 and

ϖ are the same as Theorem 1.225

Proof. From (24)-(27), we can get

σ̇1(t) ≥ −σ1(t) + max {λ(H)} (∥me(t)∥1 − σ1(t))

−max {λ(H)} ∥me(t)∥1 = − (1 + max {λ(H)})σ1(t),

and

σ̇2(t) ≥ −σ2(t) + max {λ(Λ)} (∥mr(t)∥1 − σ2(t))

−max {λ(Λ)} ∥mr(t)∥1 = − (1 + max {λ(Λ)})σ2(t),

Therefore, we can obtain that σ1(t) ≥ 0 and σ2(t) ≥ 0 according to Lemma

1.

We define the following function

V1(t) = V (t) + σ1(t) + σ2(t)

where V (t) is the same as (17).

16



For t ∈ [ti, ti+1), we can get the upper right Dini-derivative of V1(t) as

V̇1(t) = V̇ (t) + σ̇1(t) + σ̇2(t)

≤
[
−min{λ(W )}+max

{
|λ(C̃)|

}
+ Mmax

1−θ

∥∥∥Ω̂∥∥∥
1

+Mmax

∥∥∥∆̂∥∥∥
1
−min {λ(H)}

]
∥e(t)∥1

+max {λ(H)} ∥me(t)∥1 +
[
1−min{λ(B̃)} −min {λ(Λ)}

]
×∥r(t)∥1 +max {λ(Λ)} ∥mr(t)∥1 −ϖ

−σ1(t) + ξ1µ1∥e(t)∥1 −max {λ(H)} ∥me(t)∥1
−σ2(t) + ξ2 (µ2∥r(t)∥1 +ϖ)−max {λ(Λ)} ∥mr(t)∥1
= −µ1∥e(t)∥1 − σ1(t) + ξ1µ1∥e(t)∥1 − µ2∥r(t)∥1
−ϖ − σ2(t) + ξ2 (µ2∥r(t)∥1 +ϖ)

≤ (ξ1 − 1)µ1∥e(t)∥1 + (ξ2 − 1) (µ2∥r(t)∥1 +ϖ)

−σ1(t)− σ2(t)

≤ 0

Therefore, IMNNs systems (2) and (3) can be synchronized with the state

feedback controller (10) and the DETC conditions (26) and (27). The proof is230

finished.

Similar to Theorem 2, we can have the following corollaries.

We introduce two dynamic variables σ3(t) and σ4(t), which satisfy the fol-

lowing conditions

σ̇3(t) = −σ3(t) + ξ1 (µ1∥e(t)∥1 +ϖ)

−max {λ(H)} ∥me(t)∥1,

σ̇4(t) = −σ4(t) + ξ2µ2∥r(t)∥1 −max {λ(Λ)} ∥mr(t)∥1,

where matrices H, Λ satisfy (13)-(14), and ξ1, ξ2, µ1, µ2 and ϖ are the same as

Theorem 1. The initial values are σ3(0) and σ4(0), and satisfy σ3(0) ≥ 0 and

σ4(0) ≥ 0.235

Corollary 4. IMNNs systems (2) and (3) can be synchronized under as-

sumptions 1 and 2 with the first type of state feedback controller (10) and the

following DETC conditions

∥me(t)∥1 ≤ σ3(t) + ξ1
(µ1∥e(t)∥1+ϖ)

max {λ(H)}
,
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∥mr(t)∥1 ≤ σ4(t) + ξ2
µ2∥r(t)∥1
max {λ(Λ)}

,

for t ∈ [ti, ti+1), if matrices H, Λ and Γ satisfy (13)-(16), and ξ1, ξ2, µ1, µ2 and

ϖ are the same as Theorem 1.

Similarly, we denote two dynamic variables σ5(t) and σ6(t), which satisfy

the following conditions

σ̇5(t) = −σ5(t) + ξ1µ1∥e(t)∥1+ℓϖ

−max {λ(H)} ∥me(t)∥1,
(28)

σ̇6(t) = −σ6(t) + ξ2µ2∥r(t)∥1 + (1− ℓ)ϖ

−max {λ(Λ)} ∥mr(t)∥1,
(29)

where matrices H, Λ satisfy (13)-(14), ℓ ∈ (0, 1), and ξ1, ξ2, µ1, µ2 and ϖ are

the same as Theorem 1. The initial values are σ5(0) and σ6(0), and satisfy

σ5(0) ≥ 0 and σ6(0) ≥ 0.240

Corollary 5. IMNNs systems (2) and (3) can be synchronized under as-

sumptions 1 and 2 with the first type of state feedback controller (10) and the

following DETC conditions

∥me(t)∥1 ≤ σ5(t) +
ξ1µ1∥e(t)∥1+ℓϖ

max {λ(H)}
, (30)

∥mr(t)∥1 ≤ σ6(t) +
ξ2µ2∥r(t)∥1 + (1− ℓ)ϖ

max {λ(Λ)}
, (31)

for t ∈ [ti, ti+1), ℓ ∈ (0, 1), if matrices H, Λ and Γ satisfy (13)-(16), and ξ1, ξ2,

µ1, µ2 and ϖ are the same as Theorem 1.

Proof. From (28)-(31), we get

σ̇5(t) ≥ − (1 + max {λ(H)})σ5(t),

and

σ̇6(t) ≥ − (1 + max {λ(Λ)})σ6(t).

Then, we can obtain that σ5(t) ≥ 0 and σ6(t) ≥ 0.

We define the following function

V2(t) = V (t) + σ5(t) + σ6(t),
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where V (t) is the same as (17).

For t ∈ [ti, ti+1), we can get the upper right Dini-derivative of V2(t) as

V̇2(t) = V̇ (t) + σ̇5(t) + σ̇6(t)

≤
[
−min{λ(W )}+max

{
|λ(C̃)|

}
+ Mmax

1−θ

∥∥∥Ω̂∥∥∥
1

+Mmax

∥∥∥∆̂∥∥∥
1
−min {λ(H)}

]
∥e(t)∥1

+max {λ(H)} ∥me(t)∥1 +
[
1−min{λ(B̃)} −min {λ(Λ)}

]
×∥r(t)∥1 +max {λ(Λ)} ∥mr(t)∥1 −ϖ

−σ5(t) + ξ1µ1∥e(t)∥1+ℓϖ −max {λ(H)} ∥me(t)∥1
−σ6(t) + ξ2µ2∥r(t)∥1 + (1− ℓ)ϖ −max {λ(Λ)} ∥mr(t)∥1
= −µ1∥e(t)∥1 − σ5(t) + ξ1µ1∥e(t)∥1 − µ2∥r(t)∥1
−σ6(t) + ξ2µ2∥r(t)∥1
≤ (ξ1 − 1)µ1∥e(t)∥1 + (ξ2 − 1)µ2∥r(t)∥1 − σ5(t)− σ6(t)

≤ 0,

Therefore, IMNNs systems (2) and (3) can be synchronized with the state245

feedback controller (10) and the DETC conditions (30) and (31). The proof is

finished.

Corollary 6. IMNNs systems (2) and (3) can be synchronized under as-

sumptions 1 and 2 with the first type of state feedback controller (10) and the

following DETC conditions

∥me(t)∥1 ≤ max{λ(H)}
max{λ(H)}+ξ1µ1

σ5(t)

+
ξ1µ1∥e(ti)∥1+ℓϖ

max{λ(H)}+ξ1µ1
,

(32)

and

∥mr(t)∥1 ≤ max{λ(Λ)}
max{λ(Λ)}+ξ2µ2

σ6(t)

+
ξ2µ2∥r(ti)∥1+(1−ℓ)ϖ

max{λ(Λ)}+ξ2µ2
,

(33)

for t ∈ [ti, ti+1), ℓ ∈ (0, 1), if matrices H, Λ and Γ satisfy (13)-(16), and ξ1, ξ2,

µ1, µ2 and ϖ are the same as Theorem 1.

Proof. From (32) and (33), we can get

max {λ(H)} ∥me(t)∥1 ≤ max {λ(H)}σ5(t)

+ξ1µ1 (∥e(ti)∥1 − ∥me(t)∥1)+ℓϖ

≤ max {λ(H)}σ5(t) + ξ1µ1∥e(t)∥1+ℓϖ,
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and

max {λ(Λ)} ∥mr(t)∥1 ≤ max {λ(Λ)}σ6(t)

+ξ2µ2 (∥r(ti)∥1 − ∥mr(t)∥1) + (1− ℓ)ϖ

≤ max {λ(Λ)}σ6(t) + ξ2µ2∥r(t)∥1 + (1− ℓ)ϖ,

for t ∈ [ti, ti+1), in other words, the inequalities (30) and (31) in Corollary 5250

hold. Thus, all the conditions of Corollary 5 are satisfied.

Remark 6. By introducing two dynamic variables, DETC scheme can be

obtained. It is very convenient to set DETC conditions due to the first type

of state feedback controller (10). By analyzing SETC and DETC conditions

introduced in theorems 1-2 and corollaries 1-6, the construct of SETC and255

DETC is different. In SETC conditions, the thresholds of measured errors

me(t) and mr(t) are decided by e(t) and r(t) (or e(ti) and r(ti)), respectively.

While in DETC conditions, the thresholds of measured errors me(t) and mr(t)

are decided by e(t), r(t) (or e(ti), r(ti)) and two dynamic variables. Compared

with DETC scheme, SETC scheme is simpler. But DETC scheme is more260

flexible than SETC scheme. Moreover, the update times of controller under

DETC scheme are less than that under SETC scheme, which will be verified in

Section 4.

3.2. The Second Type of Controller

Now, we discuss the second type of controller which is added to the original265

second-order system (4) or (5).

We consider the second type of state feedback controller in the Form (B) as

follows

v(t) = −Λr(ti)− Γsgn(r(ti)), t ∈ [ti, ti+1) (34)

where Λ = diag(Λ1,Λ2, . . . ,Λl)
T is positive definite matrix; Γ = diag(Γ1,Γ2, . . . ,Γl)

T ;

sgn() represents sign function; and ti is a release instant.

(1) Static Event-Triggered Control

Theorem 3. IMNNs systems (2) and (5) can be synchronized under assump-

tions 1 and 2 with the second type of state feedback controller (34) and the
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following SETC condition

∥mr(t)∥1 ≤ ξ2
(µ2∥r(t)∥1 +ϖ)

max {λ(Λ)}
, (35)

for t ∈ [ti, ti+1), if

min {λ(W )} > max
{
|λ(C̃)|

}
+

Mmax

1− θ

∥∥∥Ω̂∥∥∥
1
+Mmax

∥∥∥∆̂∥∥∥
1
, (36)

and inequalities (14)-(16) hold, and ξ2, µ2 and ϖ are the same as Theorem 1.270

Proof. Consider a Lyapunov function V (t) which is described in (17). For

t ∈ [ti, ti+1), we can get the upper right Dini-derivative of V (t) as

V̇ (t) ≤ sgnT (e(t))ė(t) + sgnT (r(t))ṙ(t)

+
l∑

m=1

l∑
z=1

β̂mz

[
1

1−θ |gz(ez(t))| − |gz(ez(t− τmz(t)))|
]

= sgnT (e(t)) {−We(t) + r(t)}

+sgnT (r(t))
{
−B̃r(t)− C̃e(t) + ∆(p̃(t))g(e(t))

+ (∆(p̃(t))−∆(p(t))) f(p(t))

+Ω(p̃(t))g(e(t− τ(t))) + (Ω(p̃(t))− Ω(p(t)))

×f(p(t− τ(t)))− Λr(ti)− Γsgn(r(ti))}

+
l∑

m=1

l∑
z=1

β̂mz

[
1

1−θ |gz(ez(t))| − |gz(ez(t− τmz(t)))|
]

≤ −min{λ(W )}∥e(t)∥1 + ∥r(t)∥1
−min{λ(B̃)}∥r(t)∥1 +max

{
|λ(C̃)|

}
∥e(t)∥1

+Mmax

∥∥∥∆̂∥∥∥
1
∥e(t)∥1 −min {λ(Λ)} ∥r(t)∥1

+max {λ(Λ)} ∥mr(t)∥1 +
Mmax

1−θ

∥∥∥Ω̂∥∥∥
1
∥e(t)∥1

−
l∑

m=1

{
κm −

l∑
z=1

[∣∣∣α⃗mz −
←
αmz

∣∣∣+ ∣∣∣β⃗mz −
←
βmz

∣∣∣]Nz

}
=

[
−min{λ(W )}+max

{
|λ(C̃)|

}
+Mmax

∥∥∥∆̂∥∥∥
1

+Mmax

1−θ

∥∥∥Ω̂∥∥∥
1

]
∥e(t)∥1 +

[
1−min{λ(B̃)} −min {λ(Λ)}

]
×∥r(t)∥1 +max {λ(Λ)} ∥mr(t)∥1 −ϖ

≤ (ξ2 − 1) (µ2∥r(t)∥1 +ϖ) ≤ 0

Therefore, IMNNs systems (2) and (5) are synchronized. The proof is com-

pleted.
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To achieve synchronization of IMNNs, the derivative of Lyapunov function

needs to be not more than 0. Therefore, we can have ξ1 ∈ [0, 1] and ξ2 ∈ [0, 1],

which are described in all theorems and corollaries. For example, in the proof

of Theorem 3, some conditions are provided to make the following inequality

V̇ (t) ≤ (ξ2 − 1) (µ2∥r(t)∥1 +ϖ)

hold. Therefore, ξ2 ≤ 1 such that V̇ (t) ≤ 0. In addition, the SETC condition

in Theorem 3 is given by

∥mr(t)∥1 ≤ ξ2
(µ2∥r(t)∥1 +ϖ)

max {λ(Λ)}
.

This means that ξ2 ≥ 0. Thus, we can get ξ2 ∈ [0, 1]. The similar results for

ξ1 ∈ [0, 1] and ξ2 ∈ [0, 1] in other theorems and corollaries can be obtained.

Therefore, Table 1 and Table 2 in the Section 4 show the data transmission rate275

with ξ2 ∈ [0, 1].

Corollary 7. IMNNs systems (2) and (5) can be synchronized under as-

sumptions 1 and 2 with the second type of state feedback controller (34) and

the following SETC condition

∥mr(t)∥1 ≤
ξ2 (µ2∥r(ti)∥1 +ϖ)

max {λ(Λ)}+ ξ2µ2
, (37)

for t ∈ [ti, ti+1), if inequalities (14)-(16) and (36) hold, and ξ2, µ2 and ϖ are

the same as Theorem 1.

(2) Dynamic Event-Triggered Control

Theorem 4. IMNNs systems (2) and (5) can be synchronized under assump-

tions 1 and 2 with the second type of state feedback controller (34) and the

following DETC condition

∥mr(t)∥1 ≤ σ2(t) + ξ2
(µ2∥r(t)∥1 +ϖ)

max {λ(Λ)}
, (38)

for t ∈ [ti, ti+1), if inequalities (14)-(16) and (36) hold, ξ2, µ2 and ϖ are the280

same as Theorem 1, dynamic variable σ2(t) satisfies the condition (25).

Corollary 8. IMNNs systems (2) and (5) can be synchronized under as-

sumptions 1 and 2 with the second type of state feedback controller (34) and
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the following DETC condition

∥mr(t)∥1 ≤ max{λ(Λ)}
max{λ(Λ)}+ξ2µ2

σ2(t)

+ξ2
(µ2∥r(ti)∥1+ϖ)
max{λ(Λ)}+ξ2µ2

,

for t ∈ [ti, ti+1), if inequalities (14)-(16) and (36) hold, ξ2, µ2 and ϖ are the

same as Theorem 1, dynamic variable σ2(t) satisfies the condition (25).

In this paper, four theorems and eight corollaries are proposed, and the

event-triggered control condition has many forms. The basis for these forms285

of event-triggered control conditions is to make that Lyapunov function will be

not more than 0. We take Theorem 1 and Corollary 1 as examples to explain

the basis of these forms.

The purpose of Theorem 1 and Corollary 1 is to let V̇ (t) ≤ 0. Thus, we can

set different ETC schemes to make V̇ (t) ≤ 0.290

Then the SETC conditions (11) and (12) in Theorem 1 are built, such that

V̇ (t) ≤ (ξ1 − 1)µ1∥e(t)∥1 + (ξ2 − 1) (µ2∥r(t)∥1 +ϖ) .

Similarly, the SETC conditions (18) and (19) in Corollary 1 are structured, such

that

V̇ (t) ≤ (ξ1 − 1) (µ1∥e(t)∥1 +ϖ) + (ξ2 − 1)µ2∥r(t)∥1.

Finally, by using ξ1, ξ2 ∈ [0, 1], we can obtain V̇ (t) ≤ 0.

Remark 7. Different from the first type of state feedback controller (10),

the second type of controller (34) is added to the original second-order system.

The two types of controllers have their respective advantages. On one hand, it

is more convenient to set SETC and DETC conditions under the first type of295

controller than that under the second type of controller. On the other hand, the

second type of controller is simpler than the first type of controller. According

to practical needs, we can adopt appropriate controller.

Remark 8. ETC schemes have been widely used in the first-order systems

[42-50]. Compared with the existing ETC methods [42-50], the proposed ETC300

schemes have two significant advantages: 1) Wider application - The proposed

ETC schemes can be used in the second-order systems besides the first-order
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systems; 2) More flexible - Due to more chances and choices to set ETC condi-

tions, our ETC schemes are more convenient and flexible.

Remark 9. If there exists a finite constant Q such that

lim
i→∞

ti =
∞∑
i=0

(ti+1 − ti) = Q,

then system exhibits Zeno behavior [51]. Nevertheless, Zeno behavior is not

desired in system. When event-triggered release times in finite time is finite,

namely, execution time t̄i = ti+1−ti is bigger than a positive constant, then Zeno

behavior will not occur in the system. Actually, all SETC and DETC conditions

provided in these theorems and corollaries of this paper will not make IMNNs

exhibit Zeno behavior. We take Theorem 3 as an example. In Theorem 3, when

event is triggered for t ∈ [ti, ti+1), we can have

∥mr(ti+1)∥1 > ξ2
(µ2∥r(t)∥1 +ϖ)

max {λ(Λ)}
,

In addition,

d
dt∥mr(t)∥1 ≤

∥∥ d
dtmr(t)

∥∥
1
= ∥ṙ(t)∥1

=
∥∥∥−B̃r(t)− C̃e(t) + ∆(p̃(t))f(p̃(t))

−∆(p(t))f(p(t)) + Ω(p̃(t))f(p̃(t− τ(t)))

−Ω(p(t))f(p(t− τ(t)))− Λr(ti)− Γsgn(r(ti))∥1
≤

∥∥∥B̃∥∥∥
1
∥r(t)∥1 +

∥∥∥C̃∥∥∥
1
∥e(t)∥1 + 2

(∥∥∥∆̂∥∥∥
1
+

∥∥∥Ω̂∥∥∥
1

)
Mmax

+∥Λ∥1∥r(ti)∥1 + ∥Γ∥1
≤

∥∥∥B̃∥∥∥
1
∥mr(t)∥1 +

(∥∥∥B̃∥∥∥
1
+ ∥Λ∥1

)
∥r(ti)∥1 + ∥Γ∥1

+
∥∥∥C̃∥∥∥

1
∥e(t)∥1 + 2

(∥∥∥∆̂∥∥∥
1
+

∥∥∥Ω̂∥∥∥
1

)
Mmax

Combining with V̇ (t) ≤ 0 and the expression of V (t), we can get

∥e(t)∥1 ≤ V (0)

and

∥r(t)∥1 ≤ V (0).

Let

J =
(∥∥∥B̃∥∥∥

1
+ ∥Λ∥1 +

∥∥∥C̃∥∥∥
1

)
V (0) + ∥Γ∥1

+2
(∥∥∥∆̂∥∥∥

1
+
∥∥∥Ω̂∥∥∥

1

)
Mmax.
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Then,
d

dt
∥mr(t)∥1 ≤

∥∥∥B̃∥∥∥
1
∥mr(t)∥1 + J.

Because mr(ti) = 0, we can have

∥mr(t)∥1 ≤ J∥∥∥B̃∥∥∥
1

[
e∥B̃∥1

(t−ti) − 1
]

for t ∈ [ti, ti+1). So,

ξ2
(µ2∥r(t)∥1 +ϖ)

max {λ(Λ)}
< ∥mr(ti+1)∥1 ≤ J∥∥∥B̃∥∥∥

1

[
e∥B̃∥1

(ti+1−ti) − 1
]

and

t̄i = ti+1 − ti >
1

∥B̃∥
1

ln

[
ξ2∥B̃∥

1
(µ2∥r(t)∥1+ϖ)

max{λ(Λ)}J + 1

]
≥ 1

∥B̃∥
1

ln

[
ξ2∥B̃∥

1
ϖ

max{λ(Λ)}J + 1

]
.

Therefore, under the conditions of Theorem 3, error system (8) (or (9)) will not305

exhibit Zeno behavior.

4. Numerical Simulation and Data Analyses

In this section, we provide an example and some data analyses to verify the

validity of the obtained results.

Example. Consider a drive IMNN as

d2pm(t)
dt2 = −bm

dpm(t)
dt − cmpm(t) +

2∑
z=1

αmz(pm(t))

×fz(pz(t)) +
2∑

z=1
βmz(pm(t))fz(pz(t− τmz(t)))

+Im(t), m = 1, 2,

(39)

where b1 = b2 = 4.5; c1 = c2 = 1.8; τmz(t) = 0.1sin(t), m, z = 1, 2; external

input I1(t) = I2(t) = 0; memristive connection weights:

α11(p1(t)) =

 1.2, |p1(t)| ≤ 1,

0.9, |p1(t)| > 1,

α12(p1(t)) =

 −0.3, |p1(t)| ≤ 1,

−0.16, |p1(t)| > 1,
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α21(p2(t)) =

 −0.5, |p2(t)| ≤ 1,

−0.8, |p2(t)| > 1,

α22(p2(t)) =

 0.09, |p2(t)| ≤ 1,

0.25, |p2(t)| > 1,

β11(p1(t)) =

 −0.48, |p1(t)| ≤ 1,

−0.34, |p1(t)| > 1,

β12(p1(t)) =

 0.36, |p1(t)| ≤ 1,

0.56, |p1(t)| > 1,

β21(p2(t)) =

 0.65, |p2(t)| ≤ 1,

0.8, |p2(t)| > 1,

β22(p2(t)) =

 0.6, |p2(t)| ≤ 1,

0.4, |p2(t)| > 1,

Then, we can get that310

∆̂ =

 1.2 0.3

0.8 0.25

 ,

Ω̂ =

 0.48 0.56

0.8 0.6

 ,

and
∥∥∥∆̂∥∥∥=2,

∥∥∥Ω̂∥∥∥=1.28.

Set ω1 = ω2 = 4 and qm(t) = dpm(t)
dt + 4pm(t), m = 1, 2. Then system (39)

can be rewritten as

dp1(t)
dt = −4p1(t) + q1(t),

dp2(t)
dt = −4p2(t) + q2(t),

dq1(t)
dt = −0.5q1(t) + 0.2p1(t) +

2∑
z=1

α1z(p1(t))

×fz(pz(t)) +
2∑

z=1
β1z(p1(t))fz(pz(t− 1)),

dq2(t)
dt = −0.5q2(t) + 0.2p2(t) +

2∑
z=1

α2z(p2(t))

×fz(pz(t)) +
2∑

z=1
β2z(p2(t))fz(pz(t− 1)),

(40)
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We consider the second type of controller, therefore, the corresponding re-

sponse system (Form (B)) can be written as

dp̃1(t)
dt = −4p̃1(t) + q̃1(t),

dp̃2(t)
dt = −4p̃2(t) + q̃2(t),

dq̃1(t)
dt = −0.5q̃1(t) + 0.2p̃1(t) +

2∑
z=1

α1z(p̃1(t))

×fz(p̃z(t)) +
2∑

z=1
β1z(p̃1(t))fz(p̃z(t− 1)) + v1(t),

dq̃2(t)
dt = −0.5q̃2(t) + 0.2p̃2(t) +

2∑
z=1

α2z(p̃2(t))

×fz(p̃z(t)) +
2∑

z=1
β2z(p̃2(t))fz(p̃z(t− 1)) + v2(t),

(41)

Considering activation function fz(x) = |x+1|−|x−1|
2 , we can obtain that

Mz = 1, Nz = 1, z = 1, 2. Combining with

2∑
z=1

[∣∣∣α⃗1z −
←
α1z

∣∣∣+ ∣∣∣β⃗1z −
←
β1z

∣∣∣]Nz = 0.78

and
2∑

z=1

[∣∣∣α⃗2z −
←
α2z

∣∣∣+ ∣∣∣β⃗2z −
←
β2z

∣∣∣]Nz = 0.81,

we can set κ1 = 0.8, κ2 = 0.83, ϖ = 0.04. Then, we set Γ as follows Γ1 = 0.82, if sgn(r1(t))sgn(r1(ti)) > 0,

Γ1 = −0.82, otherwise,

and  Γ2 = 0.85, if sgn(r2(t))sgn(r2(ti)) > 0,

Γ2 = −0.85, otherwise,

Choosing Λ= diag{0.75, 2}, we can get that µ2 = 0.25.

Therefore, we can obtain the following SETC and DETC conditions.

1) SETC condition (Theorem 3):

∥mr(t)∥1 ≤ ξ2 (0.125∥r(t)∥1 + 0.02) , (42)

2) DETC condition (Theorem 4):

∥mr(t)∥1 ≤ σ2(t) + ξ2 (0.125∥r(t)∥1 + 0.02) , (43)
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Fig. 1. Synchronization errors e1(t) and e2(t) of systems under SETC condition with the

second type of controller and ξ2 = 0.5.
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Fig. 2. Synchronization errors r1(t) and r2(t) of systems under SETC condition with the

second type of controller and ξ2 = 0.5.

for t ∈ [ti, ti+1), ξ2 ∈ [0, 1], where σ̇2(t) = −σ2(t) + ξ2 (0.25∥r(t)∥1 + 0.04) −

2∥mr(t)∥1, the initial value satisfies σ2(0) ≥ 0.315

From the conditions of Theorems 3 and 4, we can get that the IMNN systems

(40) and (41) can be synchronized with the second type of controller under the

SETC condition (42) and DETC condition (43).

As shown in Figs. 1, 7 and 2, 8, errors em(t) and rm(t), m = 1, 2 converge to

zero asymptotically under SETC and DETC condition. Sample error rm(ti) and320

measured error mrm(t) are shown in Figs. 3, 9 and 4, 10, respectively. Before

measured error mrm(t) breaches the SETC or DETC condition, sample error

rm(ti) remains unchanged. When measured error mrm(t) breaches the SETC
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Fig. 3. Sample errors r1(ti) and r2(ti) of systems under SETC condition with the second

type of controller and ξ2 = 0.5.
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Fig. 4. Measured errors mr1(1) and mr2(t) of systems under SETC condition with the second

type of controller and ξ2 = 0.5.
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Fig. 5. 1-norm ∥mr(t)∥1 and the threshold ξ2
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0.125∥r(t)∥1 + 0.02

)
under SETC condition

with the second type of controller and ξ2 = 0.5.
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Fig. 6. Event-triggered instants under SETC condition with the second type of controller

and ξ2 = 0.5.
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Fig. 7. Synchronization errors e1(t) and e2(t) of systems under DETC condition with the

second type of controller and ξ2 = 0.5.

or DETC condition, in other words, 1-norm ∥mr(t)∥1 exceeds the threshold

ξ2 (0.125∥r(t)∥1 + 0.02) for SETC condition and σ2(t)+ξ2 (0.125∥r(t)∥1 + 0.02)325

for DETC condition, the event is triggered, as shown in Figs. 5, 6, 11 and 12.

In this paper, IMNN systems (41) and (40) can be synchronized and effectively

reduce the update times of controller via SETC or DETC scheme.

Now, we discuss the relationship between parameter ξ2 and trigger frequency.

There are three performance parameters (trigger times Tt, data transmission330

rate Tr and average release period Rp) which will be used. Table 1 shows that

there are just 154 trigger times and 7.70% data transmission rate when we set

ξ2 = 0.2 under SETC strategy. In other words, the controller just updates 154
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Fig. 8. Synchronization errors r1(t) and r2(t) of systems under DETC condition with the

second type of controller and ξ2 = 0.5.
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Fig. 9. Sample errors r1(ti) and r2(ti) of systems under DETC condition with the second

type of controller and ξ2 = 0.5.
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Fig. 10. Measured errors mr1(1) and mr2(t) of systems under DETC condition with the

second type of controller and ξ2 = 0.5.
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Fig. 11. 1-norm ∥mr(t)∥1 and the threshold σ2(t) + ξ2
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under DETC

condition with the second type of controller and ξ2 = 0.5.
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Fig. 12. Event-triggered instants under DETC condition with the second type of controller

and ξ2 = 0.5.

times, and saves 92.30% computational resource. As parameter ξ2 is increased

to 1, the trigger times and data transmission rate are decreased to 31 and 1.55%,335

respectively. Moreover, the increasing average release period means that trigger

times will decrease when parameter ξ2 is increased from 0 to 1. Therefore, we

can obtain that a large parameter ξ2 under SETC strategy (42) can reduce

computational burden and trigger frequency.

From Table 2, the controller updates 150 and 6 times, and saves 92.50%340

and 99.70% computational resource when ξ2 is 0.2 and 1, respectively. As

parameter ξ2 is increased, the trigger times and data transmission rate are

decreased, and average release period is increased. Similarly, we can obtain
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Table 1. FOR FIXED TIME INTERVAL h = 0.0025, t = 5, PERFORMANCE PARAM-

ETERS: Tt, Rp AND Tr UNDER THE SECOND TYPE OF CONTROLLER AND SETC

CONDITION (42) WITH DIFFERENT ξ2.

ξ2 0 0.2 0.4 0.6 0.8 1

Tt 2000 154 91 59 48 31

Rp 0.0025 0.0095 0.0202 0.0257 0.0491 0.0534

Tr 100% 7.70% 4.55% 2.95% 2.40% 1.55%

Table 2. FOR FIXED TIME INTERVAL h = 0.0025, t = 5, PERFORMANCE PARAM-

ETERS: Tt, Rp AND Tr UNDER THE SECOND TYPE OF CONTROLLER AND DETC

CONDITION (43) WITH DIFFERENT ξ2.

ξ2 0 0.2 0.4 0.6 0.8 1

Tt 878 150 63 12 9 6

Rp 0.0040 0.0119 0.0258 0.1204 0.1347 0.6698

Tr 43.90% 7.50% 3.15% 0.60% 0.45% 0.30%

that a large parameter ξ2 under DETC strategy (43) can reduce computational

burden. For fixed parameter ξ2, the trigger times and data transmission rate345

for DETC strategy are less than those for SETC strategy. Therefore, DETC

strategy is a more appropriate way for achieving synchronization of IMNNs.

5. Conclusion

This paper discusses two types of state feedback controllers. The first type of

controller is added to the transformational first-order system, the second type of350

controller is added to the original second-order system. Moreover, based on each

controller, we study SETC and DETC strategies for synchronization of IMNNs

with time-varying delays. Compared with traditional continuous-time control

methods, ETC strategies can effectively reduce the update times of controller
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and computational burden. Finally, numerical simulation and data analyses are355

given to verify the validity of the obtained results.

In the future works, we will consider synchronization of various memristive

neural networks via event-triggered control. Due to dependence on state for

parameters of memristive neural networks and environment disturbances, there

may be parameter perturbations in the systems in reality. Therefore, it is very360

interesting to study synchronization of memristive neural networks under some

parameter perturbations via event-triggered control.
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