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In the Multi-Agent Systems (MAS), graph network topologies play a crucial

role in building consensus among the connected agents. Consensus may be

achieved on many network graphs using distributed control theory. However,

the optimal network topology is not addressed in most of the literature, which

is an important part of building stable consensus among networked agents. In

this paper, the optimal topology is obtained irrespective of the agent dynamics

by using two-dimensional Genetic Algorithm (GA), which is a new approach

in this context. Simulation result for agents with first, and second-order linear

dynamic is obtained. These results show that the proposed method achieves

consensus using the optimal network topology satisfactorily. 
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Abstract

In recent time Multi-Agent Systems has been an active research area to deal 

with real-world problems. Practical problem scenarios are complex enough to

handle with a single agent. Complex situations require Multi-Agent Systems 
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which is a platform to execute complex tasks in a cooperative manner. Cooper-5

ation among the agents means to decide the actions for each agent considering

the state information of the neighbouring agents obtained through a communi-

cation network. This interaction among the agents helps them to converge to a

common value, which is known as consensus. In this process, a group of agents

reaches an agreement to achieve a common goal. A considerable amount of10

work on a consensus problem has been reported in the literature. Some of them

are mentioned in [1], [2], [3], [4], etc. Other examples of collective behaviour of

cooperative platform are formation control [5, 6], Synchronization [7], [8], etc.

The interacting agents exchange information with its neighbour on a graph

network to decide the strategy or control action for the consensus. The dis-15

tributed control theory considers the interaction among the agents while select-

ing the control strategy. It essentially means the control strategy of an agent

depends on how it is connected to its neighbour, and their dynamics. Distributed

control protocols for different dynamical systems have been discussed in the lit-

erature. Consensus problem for the first-order system was studied in [9], [10]20

etc. The consensus was explained with the help of graph theory in [9] for Vicsek

model [11] which proposed a system consisting of n agents and demonstrated by

simulation that all agents asymptotically moved to one direction with the same

speed. Consensus for second-order systems are studied in [12], [13], [14] etc.

These works consider homogeneous linear systems in the multi-agent structure.25

There exist research works that consider first and second-order systems together

in a multi-agent platform. Some of the works are mentioned in [15], [16], [17]

etc. Also few works have been reported in [18], [19] which considers nonlinear

nodal dynamics.

The information exchange with neighbours over communication the network30

plays a key role in building the consensus among the agents [20], [1]. The com-

munication network can be analyzed using the graph theory [21]. The properties

of graph theory have been proved to be very useful in analyzing the nature of

connectivity among the agents. Some papers contain works related to commu-

nication topology. These works consider the switching topology, time delay in35
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communication, link failure, etc. In [22], consensus problems for dynamic agents

with fixed and switching topologies are discussed. Three cases were discussed.

The first one is directed networks with fixed topology; the second one is directed

networks with switching topology, and the third one is undirected networks with

communication time-delays and fixed topology. In [1], the problem of consensus

in the Multi-Agent Systems on a dynamically changing topology is discussed

while considering limited and unreliable communication. In [10], the consensus

of MAS subjected to coupling delay and switching topology is analyzed. In [23],

actuator and communication link fault in networked MAS is discussed. In [24]

stochastic communication link failure in distributed leader-follower MAS is in-

vestigated. Data dropout for each independent communication link is analyzed

using Bernoulli distribution. 

In most of the papers, it is assumed that there exists a predefined commu- 

nication topology and the optimal consensus is studied considering that specific

topology, but there may exists a different network topology in which the agents

can consume less control energy while using the same consensus control pro-

tocol. Obviously there exists one Optimal topology in which the agents spend

minimum the minimum among all the possible network topologies. Our work

is focused on finding this Optimal topology. The output of our work is the

topology (more precisely an adjacency matrix) in which the agents should be

connected such that they can achieve the consensus by spending minimum en-

ergy (using any consensus protocol). This problem has been studied in [25],

[26], [27] where Linear Quadratic Regulator (LQR) was implemented to obtain

a complete graph for the homogeneous system. The similar kind of work is

done in [16], which considered the heterogeneous agents. The optimal topology

obtained is a star graph which shows the existence of direct links between the

leader and the followers. But this topology is restrictive since there is need of

one dedicated connection between the leader and each follower. Moreover the

weight of the edges are also fixed but they can change in practical situation, 
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which may lead to change the cost as well.65

In this paper, the optimal topology problem is addressed to find an optimal
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communication topology using bio-inspired optimization technique like Genetic

Algorithm (GA) which eliminates the need to solve the Algebraic Riccati Equa-

tion (ARE) used in LQR. Moreover, finite-time convergence is required to ob-

tain fast consensus, which needs Riccati differential equations to be solved. The

number of differential equation grows with the number of agents. In addition,

this process relaxes the need of direct communication between the leader and

followers (obtained using LQR). It is important to note that normal GA can’t

be used. Normal GA means GA with chromosome as one-dimensional array

of bits. The solution of the optimal topology problem is an optimal adjacency

matrix. Therefore, the chromosomes are two-dimensional matrix instead of a

linear array. 

The Contributions and significance of this work is summarized as follows: 

• Introduction of Bio-inspired algorithm is the first attempt in consensus 

problem. 

• The use of two-dimensional Genetic Algorithm in network topology opti- 

mization problem is a novel concept. 

• The technique is applicable to all category of agents having Linear and

Nonlinear dynamics. Moreover the proposed technique also relaxes the 

need of direct communication between the leader and each follower (dis- 

cussed in a few papers mentioned above). 

• The significance of the work is to design more energy efficient multi-agent

platform (as per the control energy is concerned, which is limited) to 

execute complex operations. Minimization of the graph energy results in 

a reduction in number inter-agent communication links, i.e., the edge of 

the graph. 
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The two-dimensional GA and its use to obtain an optimal topology for con-

sensus are discussed in the following sections.
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In this section, a brief discussion about the topics which are relevant to this 

work is provided. The relevant topics are the graph theory and consensus in

the Multi-Agent Systems using distributed control. These topics are discussed 

2. Preliminaries

95

in brief in the following section.

2.1. Graph Theory

A weighted directed graph can be described by G = {V,E} where, V =100

{1, 2, . . . , n} represents a set of n vertices, E = eij ∈ V × V represents the

set of edges. It can be mentioned that, in case of directed graph eij is the

edge from j to i. The connectivity among the nodes or vertices is given in

Adjacency matrix A = [aij ] ∈ Rn×n. The diagonal elements of adjacency

matrix A are zero, i.e., i ∈ V , aii = 0. The off-diagonal elements, i.e., ∀105

i 6= j, eij ∈ E, aij > 0 represents the weight associated to edge eij , while

aij = 0 otherwise. Ni = j : aij > 0 denote the set of neighboring agent i. The

degree matrix D ∈ Rn×n = diag{
∑

j∈N1
a1j . . .

∑

j∈Nn
anj} and the Laplacian

matrix is L = D − A. An example graph is shown in fig. 1 and the matrices

associated to it are given as follows.

Figure 1: Directed Graph showing the communication links among the agents
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Lemma 1. [29, 30]: L has rank N − 1, i.e., λ1 = 0 is nonrepeated, if and only

if graph G has a spanning tree. 

110

A =





























0 0 1 0 0 0

1 0 0 0 0 1

1 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 0





























(1)

D =





























1 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 2





























(2)

L =





























−1 2 −1 0 0 0

1 0 0 0 0 −1

−1 −1 2 0 0 0

0 −1 0 1 0 0

0 0 −1 0 1 0

0 0 0 −1 −1 2





























(3)

The weight of the edges is considered as 1 for easy interpretation. The adja-

cency matrix, degree matrix, and laplacian matrix are shown in Eqs. (1)-(3),

respectively.

2.2. Consensus on Graph

Consensus of multiple agents on a graph can be achieved by a distributed115

control protocol. The important conditions [28] associated with the graph are

given as follows.
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Lemma 2. [28]: The local voting protocol guarantees consensus of single-

integrator dynamics if and only if the graph has a spanning tree. Then, all 

node states come to the same steady-state values xi = xj , ∀i, j. 

2.2.1. Consensus for Single-Integrator System 

Distributed control [28] for a Single integrator dynamic system is given as 

follows. The single integrator dynamics can be given by 

120

ẋi = ui (4)

where x and u denote the state and the control, respectively. Distributed Con-

trol protocol is given by

ui =
∑

aij(xj − xi) (5)

Therefore the dynamics is written as125

ẋi =
∑

aij(xj − xi) (6)

= −xi

∑

j∈Ni

aij +
∑

j∈Ni

aijxj

= −dixi + [ai1 . . . aiN ]











x1

...

xN











(7)

The global state x = [x1 . . . xN ]T is given by

ẋ = −Dx+Ax = −Lx (8)

The Distributed voting protocol is applied to the single integrator agents on

the graph shown in fig. 1. The eigen values are shown in fig. 2a.

It can be observed that there is no repeated eigenvalue at zero. Therefore

the graph has a spanning tree. According to Theorem 2, the voting protocol

builds consensus among the agents on a graph. Figure 2b shows the agents with130
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(a) Eigenvalues of Laplacian

different initial conditions, attain a common value at the same time. Hence,

Theorem 1, and 2 lead to achieving consensus among Multi-Agent Systems. 

2.2.2. Consensus for Linear System 

The consensus of agents with linear dynamics [28] is also discussed in this 

paper. The agent dynamics is considered
 

as follo


ws
 

Żi = 

0 1
 Zi + 

0
 u 

0 0 
= AZi + Bu 

where Zi = [x1i x2i]. The control expression for ith agent is given as 
∑ 

ui = Ki aij (Zi − Zj ) 
j∈Ni 

The gain of the feedback control law can be calculated using the LQR by solving 

ARE given as 

AT P + P A + Q − P BR−1BT P = 0 (11) 

where P is the solution of the ARE, Q ≥ 0, R > 0. The expression of the gain 

obtained as follows 

Ki = R−1BT P (12) 

(10) 

(b) Consensus of Agents

Figure 2: Consensus of Single-Integrator Agents

135

1

(9)
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It can be observed in fig. 2a that one eigenvalue (λ1) is zero and others have 

a real positive part. Therefore the graph in fig. 1 has a spanning tree. It can 

be noted that the graph has more than one spanning tree, and the consensus

can be built in many ways. Moreover, a number of such graphs are possible,

which can have spanning trees. For each possible graph topology, there exists

a different set of the neighbourhood and the agents require different control

energy to achieve consensus on each of these network topologies. Therefore

there is a scope to minimize the control energy require for consensus and find

the network topology corresponding to the minimum energy (it is known as 

Optimal Topology). Therefore the problem can be given as 

∑ 

3. Problem Formulation

min
i∈Ni

uT
i ui

The solution to this problem is the minimum energy and a network topology

(specifically an adjacency matrix) which needs to satisfy constraints according140

to Theorem 1 and 2.

4. Two-Dimensional Genetic Algorithm (2D GA)

Generally, the GA works by the evolution of the chromosomes through

generations. The chromosomes are usually a string of bits (0 and 1) or one-

dimensional array of bits. But in this problem, the chromosome can’t be repre-145

sented by a one-dimensional bit string. Because in this case, the chromosomes

are the adjacency matrix A. The two-dimensional chromosome representation

is discussed in the following section.

4.1. Two-dimensional Chromosome representation

Two dimensional GA has been used to solve various problems. It is used150

in packing problem [31] which aims to obtain high packing density. 2D GA is

9



used for flight scheduling problem in [32] where the problem of scheduling of

aircrafts is solved using 2D GA. The time table or schedule is considered as a

2D chromosome.

The variables required to describe a 2D chromosome is given in Table 1.155

Table 1: Description of Variables

Variable Definition

N no of chromosome in the population

Ck kth chromosome, 1 ≤ k ≤ N

Ck(i, j) Gene at the position (i, j) in chromosome matrix

R No. of rows of chromosome matrix

Q No. of rows of chromosome matrix

The dimension of the chromosome matrix is considered as R×Q. Therefore,

rows and columns are denoted by 1 ≤ i ≤ R, and 1 ≤ j ≤ Q respectively. An

example of two-dimensional chromosome is given by

A =





























0 0 1 0 0 0

1 0 0 0 0 1

1 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 0





























(13)

A is an adjacency matrix which represents a directed graph as shown before.

Each gene or each element of A represents the existence of a weighted directed

edge, i.e., the status of the connection between any two specific agents. It can

be noted that the weights are considered as 1 for simplicity.

4.2. Population Generation160

In this work, the chromosomes are represented as square matrices because

the adjacency matrix is square. It is important to note that the adjacency matrix
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is not symmetric since it represents a directed graph. Also, the diagonal elements

are zero. The algorithm to generate kth chromosome Ck of the population of

size N is given in Algorithm 1.165

Algorithm 1 Initial Population generation

for i = 1 to R do

for j = 1 to Q do

x← random number x ∈ (0, 1)

if x > 0.5 then

Ck(i, j)← 1

else

Ck(i, j)← 0

end if

if i = j then

Ck(i, j)← 0

end if

end for

end for

In the algorithm, the genes of a chromosome are created in a random manner.

The genes at position (i, j) of the chromosome matrix, Ck is selected depending

on a random variable x ∈ (0, 1). If x > 0 then the value is selected as 1,

otherwise 0. The diagonal elements are set to zeros. These chromosomes, thus

generated, are provided as the initial population of the Genetic Algorithm.170

4.3. Crossover

There are a few Crossover methods exist in the literature. Some of these

methods are Multipoint Crossover [33], Uniform Crossover [34], One-Point Crossover

[35], Substring Crossover [35]. More crossover methods can be found in [36].

Crossover method mentioned in [32], is adopted in this work. These methods175

are presented in algorithmic form. The 2D parent chromosomes are denoted by

11



‘Parent 1’, and ‘Parent 2’. They are shown in fig. 3. The produced children are

denoted by ‘Child 1’ and ‘Child 2’.

Figure 3: Parent Chromosomes

Algorithm 2 Substring Crossover

r1 ← random integer < R

r2 ← random integer < Q

x← random number x ∈ (0, 1)

if x > 0.5 then

Execute Horizontal Crossover(r1, r2)

else

Execute V ertical Crossover(r1, r2)

end if

The crossover point is selected in a random manner. Two random integers

(r1 and r2) are generated, which are less than the maximum number of rows (R)180

and columns (Q) as given in Algorithm 2. An example of parent chromosomes

is shown in fig. 3. The genes of Parent 1 is represented as a11 to a44. Similarly,

the genes of Parent 2 are represented by b11 to b44. The crossover point is

the gene at position (r1, r2) of parent chromosome matrices. The algorithm is

12



explained with the help of an example. In this example, the dimension of parent185

chromosome matrices is 4 × 4, i.e., R = 4, and Q = 4. The crossover position

is obtained as r1 = 2, r2 = 2. Therefore the points of crossover for Parent 1

and Parent 2 are a22, and b22, respectively. Next, the type of crossover needs

to be selected. For this purpose, a random variable x is considered, which can

take any value between 0 and 1. As described in the algorithm, if the value190

of x is greater than 0.5, the horizontal crossover is selected. Otherwise, for

x < 0.5, the vertical crossover is chosen. The horizontal crossover function

Horizontal Crossover() is described as follows. The rows or part of rows are

exchanged between the parents.

Algorithm 3 function Horizontal Crossover

Block1P1 ← Parent1(r1, r2 + 1 : Q)

Block2P1 ← Parent1(r1 + 1 : R, 1 : Q)

Block1P2 ← Parent2(r1, r2 + 1 : Q)

Block2P2 ← Parent2(r1 : R, 1 : Q)

Block1P1 ⇀↽ Block1P2 and Block2P1 ⇀↽ Block2P2

The pictorial representation of Algorithm 3 is shown in fig. 4. According195

to the algorithm, the selected genes of Parent 1, i.e., a23 to a44 (shown in the

red box) are replaced by selected genes of Parent 2, i.e., b23 to b44 (shown in

the green box) to obtain Child 1. Similarly, a23 to a44 of Parent 1 is copied in

place of b23 to b44 of Parent 2 to obtain Child 2. In this algorithm, a23 and

a24 of Parent 1 are denoted by Block1P1. The genes a31 to a44, i.e., the third200

and fourth rows are denoted as Block2P1. Similar elements of the Parent 2 are

denoted as Block1P2 and Block2P2.

The Vertical Crossover algorithm is given in Algorithm 4.
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Figure 4: Horizontal Crossover: The selected rows and part of rows of Parent 1 and Parent 2

are exchanged.

Algorithm 4 function V ertical Crossover

Block1P1 ← Parent1(r1 + 1 : R, r2)

Block2P1 ← Parent1(1 : R, r2 + 1 : Q)

Block1P2 ← Parent2(r1 + 1 : R, r2)

Block2P2 ← Parent2(1 : R, r2 + 1 : Q)

Block1P1 ⇀↽ Block1P2 and Block2P1 ⇀↽ Block2P2

Vertical crossover is shown in fig. 5. In this case, genes of Parent 2, i.e., b32

to b44 (shown in the red box) are copied to the same positions of Parent 1, i.e.,205

a32 to a44 (shown in the green box) to obtain Child 1. A similar operation is

performed to obtain Child 2. In this case, a32 and a42 of Parent 1 are denoted by

Block1P1. The genes a13 to a44, i.e., the third and fourth columns are denoted

as Block2P1. Similar elements of the Parent 2 are denoted as Block1P2 and

Block2P2.210

Another type of substring crossover is given in Algorithm 5. This is simplified

version of horizontal and vertical crossover.
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Figure 5: Vertical Crossover: The selected columns and part of columns of Parent 1 and

Parent 2 are exchanged.

Algorithm 5 Substring Crossover

r1 ← random integer < R

r2 ← random integer < Q

Block1 ← Parent1(r1 : R, r2 : Q)

Block2 ← Parent2(r1 : R, r2 : Q)

Block1 ⇀↽ Block2

According to this algorithm, the two random integers r1 and r2 are obtained.

The block of genes in rows r1, r1 + 1, . . . , R and columns r2, r2 + 1, . . . , Q are

interchanged between the two parents. The algorithm is explained with the help215

of an example, as shown in fig. 6. The block of genes are marked in the red box

for Parent 1 and green for Parent 2. These genes are interchanged to obtain

Child 1 and Child 2.

4.4. Mutation

The Mutation is an important operation to preserve the genetic diversity of220

a population of chromosomes in every generation. The Mutation is performed

by exchanging one or more genes of the chromosomes. Generally, a certain

percentage of the population is allowed to undergo mutation. The Mutation

15



Figure 6: Substring Crossover: Selected block of genes are exchanged between the parents.

may change the solution considerably from the previous solution. Hence GA

can come to a better solution by using mutation. Few mutation operations are225

shown in the following algorithms.

4.4.1. Two-Dimensional String Swapping Mutation

The process for this mutation is given in Algorithm 6.

Algorithm 6 String Swapping Mutation

x← random number x ∈ (0, 1)

if x > 0.5 then

Execute Horizontal Swap()

else

Execute V ertical Swap()

end if

The selection of the mutation type is purely random. It depends on a random

variable x ∈ (0, 1). If the value of x is greater than 0.5, then Horizontal Swap230

function, i.e., Horizontal Swap() is executed. Otherwise, V ertical Swap() is

executed.

16



Algorithm 7 Horizontal Swap()

m1 ← random integer < R

m2 ← random integer < R

if m1 6= m2 then

Swap mth
1 and mth

2 rows of Ck

end if

Horizontal Swap() function is given in Algorithm 7. It swaps mth
1 and mth

2

rows of a chromosome. The pictorial representation of the operation is shown

in fig. 7. Let us consider, m1 = 1, and m2 = 3. Therefore, the first and third235

rows are swapped, as shown in the figure.

Figure 7: Horizontal Swapping: The selected rows are shown in red and green box. They are

swapped.

V ertical Swap() function is given in Algorithm 8. It swaps mth
1 and mth

2

columns of a chromosome. The pictorial representation of the operation is shown

in fig. 8. Let us consider, m1 = 2, and m2 = 4. Therefore, the second and

fourth columns are swapped, as shown in fig. 8.240

Algorithm 8 V erical Swap()

m1 ← random integer < Q

m2 ← random integer < Q

if m1 6= m2 then

Swap mth
1 and mth

2 columns of Ck

end if

17



Figure 8: Vertical Swapping: The selected columns are shown in red and green box. They are

swapped.

4.4.2. Two-Dimensional Two-Point Swapping Mutation Operation

Another type of mutation process is described in this section. It is named

as Two-point swapping. The algorithm is given as follows.

Algorithm 9 Two− Point Swap()

m1 ← random integer < R

n1 ← random integer < Q

m2 ← random integer < R

n2 ← random integer < Q

if m1 6= m2 and n1 6= n2 then

Swap Ck(m1, n1) and Ck(m2, n2)

end if

In this section, the simulation results are presented. The simulation is per- 

formed to find the optimal topology for six agents.Two types of agent dynamics 

are considered i.e., single integrator and Second-order linear system. 

In this algorithm, two pairs of random integers are generated viz., (m1, n1),

and (m2, n2). Genes at these two positions are swapped. An example of this245

operation is shown in fig. 9. The two random pairs are generated as (3, 3) and

(1, 4). These elements (shown in the red and green box) are swapped, as shown

in the figure.

5. Results

250
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Figure 9: Two-Point Swapping: genes at two positions of a parent chromosome are swapped.

5.1. Optimal topology for Single Integrator System

The initial conditions of the agents are considered as x0 = [1 2 − 3 4 − 2 − 1].

The output of the two dimensional GA is an optimal adjacency matrix which is

given in Eq. (14).

A =





























0 0 1 0 0 0

1 0 0 0 0 1

1 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 0





























T

(14)

The graph corresponding to the optimal adjacency matrix is shown in fig.

10d. It can be observed that the directed graph shown in fig. 10d has a spanning255

tree. The existence of the spanning tree can be confirmed by the eigenvalues

of the Laplacian matrix. These eigenvalues are shown in fig. 10c. It is clear

that one of the eigenvalues is zero, and the rest of them have positive real

part. Hence, there is no repeated eigenvalue at zero, which is an important

requirement for a graph to contain a spanning tree.260

The consensus among the agents on the optimal topology is shown in fig.

10b. All the agents with different initial conditions reached a common value

within a few seconds on the graph.

The cost or fitness value for various graphs are shown in fig. 10a. It can be

observed that the cost decreases as the iteration of GA progress and finally, it265

reaches the lowest value 66 at 61st iteration.
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(a) Cost obtained using GA (b) State trajectories of the Agents

(c) Eigen values of Graph Laplacian matrix

5.2. Optimal Topology for Linear system 

The linear dynamics considered for the agents is discussed in section 2.2.2.

The value of the gain matrix is considered as 
 

−20 0 

 

Ki = 
−10 0 

 

It can be observed that the control energy is minimized, as shown in fig. 11b.

The optimal graph obtained is shown in fig. 11a. It can be observed that the 

(d) Optimal Graph obtained by GA

Figure 10: Results obtained by two-dimensional GA
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optimal graph obtained for linear dynamic agents is different from the single-

integrator case. It is obvious because of the different dynamics, control expres-

sion, and initial conditions. The state trajectories (figs. 12a and 12b) show that

the agents have achieved consensus within a few seconds. The control for the

consensus is shown in fig. 13. Hence, the performance of two-dimensional GA

for solving the optimal topology problem is satisfactory. 

275

(a) Optimal Graph obtained using GA
(b) Cost minimized by GA

Figure 11: Performance of GA

6. Conclusion

This paper presents the bio-inspired approach to solve the optimal topology

problem. It relaxes the need for direct communication between the leader and

followers in a fixed star topology which was obtained by LQR presented in a280

few recent works. The results show that the agents have reached consensus

by spending minimum control energy on the optimal communication topology

obtained by two-dimensional GA, which is a novel approach. It is also possible

to include more agents in the network and reconfigure the topology comfortably.

It is because the inclusion of agents requires a change of dimension of adjacency285

matrix in the initial population, which is scope for future work. The technique
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(a) State Trajectory x1 (b) State trajectory x2

Figure 12: State Trajectories

Figure 13: Control of Agents u

will help the user to find a specific communication topology which is more energy

efficient towards achieving consensus.
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