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Abstract

Efficient training of support vector machines (SVMs) with large-scale samples

is of crucial importance in the era of big data. Sequential minimal optimization

(SMO) is considered as an effective solution to this challenging task, and the

working set selection is one of the key steps in SMO. Various strategies have been

developed and implemented for working set selection in LibSVM and Shark. In

this work we point out that the algorithm used in LibSVM does not maintain the

box-constraints which, nevertheless, are very important for evaluating the final

gain of the selection operation. Here, we propose a new algorithm to address

this challenge. The proposed algorithm maintains the box-constraints within a

selection procedure using a feasible optional step-size. We systematically study

and compare several related algorithms, and derive new theoretical results. Ex-

periments on benchmark data sets show that our algorithm effectively improves

the training speed without loss of accuracy.

Keywords: support vector machines, decomposition algorithm, working set

selection, sequential minimal optimization, feasible step-size

1. Introduction

Support vector machines (SVMs) are widely used for classification and re-

gression tasks in machine learning [1], [2], [3], [4]. A number of methods in-
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cluding the kernel method have been developed and successfully used in various

applications [5], [6], [7], [8]. However, the training of SVMs becomes time-

consuming for large-scale datasets [9], [10]. To address this limitation, a num-

ber of algorithms have recently been developed to accelerate the SVM training

procedure [7], [11], [12], [13], [14], [15], [16].

The main computational effort in SVM training is to solve a constrained

quadratic optimization problem in which the kernel matrix may be too large

to store [17]. To improve computation, a sequence of sub-problems, instead

of the entire problem, are often addressed using a decomposition algorithm at

each iteration. Sequential minimal optimization (SMO) is one such algorithm

[18], [19], [20], that solves a minimal sub-problem with two samples [17]. It can

achieve an analytical solution, eliminating the need for using another iterative

quadratic programming optimizer at each iteration. SMO has been widely used

for training SVMs, and implemented in open-source machine learning libraries

such as LibSVM1 [21], and Shark2 [22].

The convergence of SMO algorithm is highly dependent on the selection of

a working set [23]. Platt et al. developed an alogrithm that uses a heuristics to

select the two points [19]. The first point αi is selected from the samples that

violate the Karush-Kuhn-Tucker (KKT) conditions, and the second point αj is

selected to maximize |Ei − Ej |, where Ei (or Ej) is the difference between the

function value and the label of the point. Using the KKT conditions, Keerthi

et al. proposed the most violating pair (MVP) selection method, which is re-

lated to the first-order approximation of the objective function [24]. Instead of

using the first-order approximation, Fan et al. considered second-order informa-

tion and proposed a working set selection technique, that uses the second-order

infromation to select the second point [24]. Additionally, Glasmachers et al.

proposed the hybrid maximum gain (HMG) working set selection algorithm for

large-scale SVM [25]. HMG reuses one variable from the previous iteration

1http://www.csie.ntu.edu.tw/~cjlin/libsvm/
2http://shark-project.sourceforge.net/
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to reduce the number of kernel evaluations. LibSVM is a widely used solver

that employs SMO to solve the quadratic programming in SVM [21]. To sim-

plify the selection procedure, it does not maintain the box-constraints (that is,

0 ≤ αi ≤ C where αi is a dual variable bounded by the factor C) in the working

set selection.

The motivation of this work is that in the optimization problem with con-

straints, the constraints have a great influence on the optimization process.

Therefore, the influence of box-constraints needs to be considered in the work-

ing set selection, especially in cases where no complicated calculations are re-

quired. Based on theoretical analysis and numerical experiments, we observe

that the box-constraints are very important for working set selection, because

box-constraints have a strong impact on the function gain. In this article, we

propose an optimal feasible step-size (OFS) selection strategy which considers

the box-constraints and can avoid time-consuming computations in the selec-

tion procedure. Experiments on extensive benchmark datasets show that the

proposed selection strategy clearly improves the training speed without loss of

accuracy. The major differences between the proposed OFS selection strategy

and LibSVM are listed as follows:

1. OFS maintains the box-constraints in the working set selection, while

LibSVM does not maintain the box-constraints in the selection procedure.

2. OFS selects the first point by examining Iup and Ilow sets, but LibSVM

selects the first point from Iup using the MVP algorithm where Iup and

Ilow are feasible point sets.

3. OFS uses a different clipping method to satisfy the box-constraints to

avoid time-consuming computations. OFS always keeps a feasible step-size

for each point, and uses this step-size to evaluate the objective fcuntion

in the selection procedure.

The main contribution of this work is that the OFS algorithm takes into

account the feasible step size of the dual variable, which further improves the

efficiency of the SVM. In addition, the working set selection method that simply
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relies on gradients can only use gradients as stopping criteria. However, the OFS

working set selection algorithm can use gradients or function gain as stopping

criteria.

The remainder of this paper is organized as follows. Studies related to work-

ing set selection are discussed in Section 2. We describe our proposed OFS

strategy in Section 3. Theoretical analysis and discussion are presented in Sec-

tion 4. Extensive experiments on benchmark datasets are described in Section

5. Finally, we summarize the outcomes of this study in Section 6.

2. Related Work

In this section, we present the SVMs and decomposition algorithm, and

review some existing algorithms for working set selection, such as MVP, LibSVM

and HMG.

2.1. Support Vector Machines

Using a function Φ(·), an SVM maps an input vector x to a high dimensional

feature space, and then constructs an optimal separating hyperplane in the

feature space [26], [1]. Given n samples {(x1, y1), ...(xi, yi), ..., (xn, yn)}, the

SVM seeks a decision function f(x) = wTΦ(x) + b with the maximum margin

between different classes in the feature space, where xi is an input vector and

yi is its class label. Given the mapping function Φ(·), the parameters w and b

are obtained by solving the following convex quadratic problem:

min
w,b

1

2
||w||2 + C

n∑
i=1

ξi,

s.t. yi(w
TΦ(x) + b) ≥ 1− ξi, ξi ≥ 0, ∀i = 1, ...n,

(1)

where ξi is a slack variable, and C is a penalty factor.

This problem is often addressed as a dual description to avoid complex fea-

ture mapping. The dual problem of the SVM is obtained by introducing the

Lagrange multipliers α,

min
α

f(α) =
1

2

n∑
i,j=1

αiαjyiyjK(xi, xj)−
n∑
i=1

αi

s.t.
n∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, ∀i = 1, .., n,
(2)
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where αi is a dual variable that is bounded by the penalty factor C. The inner

product can be efficiently computed by a given kernel function K(xi, xj) =

Φ(xi)
TΦ(xj) without an explicit feature mapping. Once the optimal solution

α∗ of the dual problem has been obtained, the optimal primal variables w∗, b∗

and the discriminant function f(x) can be easily determined according to KKT

conditions.

2.2. Decomposition Method and Sequential Minimal Optimization

SVM algorithm is a convex quadratic optimization problem which has been

studied extensively. When the problem scale is small, standard optimal tool-

boxes can be directly used for its training. For large-scale SVM, however, this

becomes computationally prohibitive as the memory required for implementing

the full kernel matrix grows quadratically with the problem scale [27]. To ad-

dress this challenge, several algorithms have been developed, one of which is

the decomposition method [17], where the idea is to solve a sequence of smaller

quadratic programming problems [27]. Instead of updating all of the variables,

the decomposition method optimizes a subset of variables αi, i ∈ B and leaves

the remaining variables αj , j /∈ B unchanged at each iteration, where B is a

working set selected with some strategy.

The SMO algorithm is one of the decomposition method that solves a sub-

problem with the smallest working set size (just two points) at each iteration

[19]. The convergence of SMO depends strongly on the working set selection.

The best working set B∗ = {i, j} should be chosen to minimize the dual

objective function at each iteration. Although with the best working set, the

number of iterations required can be reduced, the complexity in each iteration

becomes higher [24].

In general, the working set is obtained by compromising between the number

of iterations and the complexity of each iteration [28]. Platt proposed a selection

algorithm that uses two separate heuristics to choose the first and second points

[19]. The first point αi is selected from the samples which violate the KKT

conditions, and the second point α2 is selected to maximize the absolute value
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of |Ei − Ej |, where Ei (or Ej) is the difference between the function value and

the label of the training sample xi (or xj).

2.3. Most Violating Pair and LibSVM Method

Keerthi et al. identified a source of inefficiency in Platt’s algorithm that

uses only one point to maximize |Ei−Ej | [29], and proposed the MVP selection

algorithm using the KKT conditions. Considering two different cases of αi, the

KKT conditions can be simplified to: 1) αi > 0, ∇f(α)i + ζyi ≤ 0, and 2)

αi < C, ∇f(α)j + ζyi ≥ 0. Because yi = ±1, the KKT conditions can be

rewritten as

−yi∇f(α)i ≤ ζ ≤ −yj∇f(α)j , ∀ i ∈ Iup(α), j ∈ Ilow(α), (3)

where Iup and Ilow are defined as

Iup(α) ≡ {t|αt < C, yt = 1 ∨ αt > 0, yt = −1},

Ilow(α) ≡ {t|αt < C, yt = −1 ∨ αt > 0, yt = 1}.
(4)

According to the KKT conditions (3), the MVP {i, j} can be obtained as

i = arg max
t
{−yt∇(αk)t

∣∣∣ t ∈ Iup(αk)},

j = arg min
t
{−yt∇(αk)t

∣∣∣ t ∈ Ilow(αk)},

and the complexity is O(n) instead of O(n2).

The MVP method is related to the first-order approximation of the dual

objective function f(α). Instead of using the first-order approximation, Fan

et al. considered the second-order information to select the second point αj

[24]. LibSVM selects αi using the same strategy as MVP, and then checks n

possible pairs to select αj according to the function gain by using second-order

information.

However, in the working set selection procedure, LibSVM does not consider

the box-constraints. After the selection procedure, αi and αj are clipped to

satisfy 0 ≤ αi ≤ C and 0 ≤ αj ≤ C[24].
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2.4. Hybrid Maximum Gain Method

Glasmachers and Igel proposed the HMG algorithm for large scale SVM [25].

HMG reduces the number of kernel evaluations in each iteration by reusing one

variable from the previous iteration. The HMG algorithm evaluates the gain

of the objective function g(α) to select the working set at each iteration. In

the first iteration, HMG randomly selects a working set B0 = {i0, j0} that

satisfies yi0 6= yj0 . In the following iterations, given the previous working set

Bk−1 = {ik−1, jk−1}, HMG searches for the maximum function gain on the

working sets Bk = {ik−1, jk} and Bk = {ik, jk−1}, where ik−1, jk−1 ∈ Bk−1 and

ik, jk ∈ {1, ..., n}.

A limitation with maximum gain algorithm is that it may stop without ob-

taining the optimal solution. To solve this problem, HMG inherits the conver-

gence property of the MVP algorithm by introducing MVP into the maximum

gain algorithm [25]. When αi or αj is close to the boundary, the MVP algorithm

is used to select the working set. The HMG algorithm is implemented in the

Shark library [22].

3. New Strategies for Working Set Selection

SVMs involve a convex quadratic problem with an equality constraint
∑n
i=1 yiαi =

0 and box-constraints 0 ≤ αi ≤ C. In this section, we describe our proposed

OFS working set selection. OFS maintains the box-constraints and equality-

constraint in the selection procedure to maximize the function gain.

3.1. Optimal Feasible Step-size

Considering the box-constraints, the feasible step-size of αi is defined as

λui
≡ C − αi, λdi ≡ αi,

where λui and λdi indicate the up-direction and down-direction ranges of αi

respectively. The variable αi is varied within this range, and does not violate

the box constraint 0 ≤ αi ≤ C.
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In a working set consisting of αi and αj , these points must change simulta-

neously to satisfy the equality-constraint. For the convenience of description,

we define the feasible step-size of αi and αj as λfsij .

Definition 3.1 (Feasible Step-size). The feasible step-size λfsij refers to the

feasible range of the Lagrange multipliers αi and αj .

Simultaneous changes to the two variables αi and αj within this range do

not violate the box-constraints 0 ≤ αi ≤ C and 0 ≤ αj ≤ C. This is expressed

as follows:

λfsij ≡



min{λdi , λdj}, if yi 6= yj and ∇f(α)i +∇f(α)j > 0;

min{λui
, λuj
}, if yi 6= yj and ∇f(α)i +∇f(α)j < 0;

min{λdi , λuj}, if yi = yj and ∇f(α)i −∇f(α)j > 0;

min{λui
, λdj}, if yi = yj and ∇f(α)i −∇f(α)j < 0;

. (5)

We first discuss the situation yi 6= yj and ∇f(α)i + ∇f(α)j > 0. When

yi 6= yj , according to the equality-constraint, αi and αj must increase or decrease

simultaneously and with the same step-size λ. In addition, if∇f(α)i+∇f(α)j >

0, αi and αj must decrease simultaneously to reduce the objective function value.

The corresponding feasible range is then

λfsij = min{λdi , λdj}.

The other formulations in (5) can be derived in a similar manner.

The feasible step-size may not be the optimal step-size. If we only consider

the equality-constraint and Qii +Qjj − 2Qij > 0, the optimal step-size λoptij is

given by the second-order information. The optimal step-size λoptij is

λoptij =
|yi∇f(α)i − yj∇f(α)j |

Qii +Qij − 2Qij
,

where the working set B = {i, j} is a violating pair. If the optimal solution

violates the box-constraints, it needs to be restricted. For non-positive definite

kernel matrices, if Qii+Qjj−2Qij ≤ 0, it is replaced by a small positive number.
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Definition 3.2 (Optimal Feasible Step-size). The optimal feasible step-size

λofsij is the optimal step-size of αi and αj that satisfies the equality-constraint

and box-constraints.

We define λofsij as:

λofsij = min{λfsij , λoptij}. (6)

When the step-size is λofsij , we obtain the optimal solution that satisfies

all constraints. In this study, we use the optimal feasible step-size to select the

working set. In order to avoid the step-size from being too small, we restrict

λofsij to be larger than a small positive number τ = 10−10.

3.2. Working Set Selection Using First-Order Information

In this section, we propose a new selection algorithm called OFS1, which

uses the first-order information to approximate the objective function. Using

the first-order information, we have the following formulation

f(α+ λd)− f(α) ≈ λ∇f(α)T d,

where λ is the step-size in the feasible direction d. Using the optimal feasible

step-size λofsij , we have the following formulation:

max
{i,j}

λ∇f(α)T d ≈ max
{i,j}
{λofsij (|∇f(α)i − yiyj∇f(α)j |)}. (7)

First, αi is selected to maximize the violating gradient in sets Iup and Ilow.

Second, αj is selected to maximize the approximation function according to (7).

The corresponding working set selection algorithm is given in Algorithm 1.

The feasible step-sizes {λdi , λui , λdj , λuj} and {αi, αj} are updated after

the selection procedure for the next iteration.

3.3. Working Set Selection Using the Second-order Information

Using the second-order information, we can write the following more accurate

formulation for the objective value:

f(α+ λd)− f(α) = λ∇f(α)T d+
1

2
λ2dT∇2f(α)d,
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Algorithm 1: OFS1 Working Set Selection

Input: training set {(xi, yi)}ni=1, gradient {∇f(α)i}ni=1, and feasible

step-size {(λdi , λui)}ni=1;

Output: working set B = {i, j};

1 Select i:

i = arg max
t

 −∇f(α)t, if λut
> 0

∇f(α)t, if λdt > 0

2 Select j:

j = arg max
t
{λofsit(|∇f(α)i−yiyj∇f(α)j |)

}
3 Return B = {i, j}.

where λ is a step-size and d = [1 − yiyj ]T satisfies the equality-constraint.

First, we consider the relationship between the feasible step-size λfsij and

the optimal step-size λoptij . If λfsij < λoptij , the optimal step-size should be

restricted using the box-constraints and λfsij is the optimal solution. Then, we

have:

f(α+ λd)− f(α) = λfsij∇f(α)T d+ 1
2λ

2
fsij

dT∇2f(α)d

= −λfsij |yi∇f(α)i − yj∇f(α)j |+ 1
2λ

2
fsij

(Qii +Qjj − 2Qij)

(8)

If λfsij ≥ λoptij , the optimal solution satisfying all of the constraints is

λoptij . This gives:

f(α+ λd)− f(α) = λoptij∇f(α)T d+ 1
2λ

2
optijd

T∇2f(α)d

= − 1
2λoptij (|yi∇f(α)i − yj∇f(α)j |)

(9)

First, αi is selected using OFS1, and then αj is selected to maximize the

function gain according to (8) and (9). The working set selection algorithm
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using the second-order information is summarized in Algrothm 2.

Algorithm 2: OFS2 Working Set Selection

Input: training set {(xi, yi)}ni=1, gradient {∇f(α)i}ni=1, feasible step-size

{(λdi , λui
)}ni=1, and kernel matrix Q;

Output: working set B = {i, j};

1 Select i:

i = arg max
t

 −∇f(α)t, if λut
> 0

∇f(α)t, if λdt > 0

2 Select j:

j = arg max
t

 λfsit |yi∇f(α)i − yt∇f(α)t| − 1
2λ

2
fsit

(Qii +Qtt − 2Qit), if λfsit < λoptit

1
2λoptit |yi∇f(α)i − yt∇f(α)t|, if λfsit ≥ λoptit

3 Return B = {i, j}.

The feasible step-sizes {λdi , λui
, λdj , λuj

} and {αi, αj} are updated after

the selection procedure. In SVMs such as LibSVM, the stopping criterion is

checked using the information provided in the working set selection. The Lib-

SVM algorithm stops if the sum of the violations of the working set is less than

a predefined constant ε. The propsed algorithms OFS1 and OFS2 also use the

same stopping criterion as in LibSVM.

4. Analysis and Discussion

In this section, we discuss the convergence properties of OFS1 and OFS2,

and their relation with other selection methods such as the original SMO, MVP

and LibSVM algorithms.

4.1. Asymptotic Convergence of OFS1 and OFS2

The decomposition algorithm may not converge to the optimal solution if

the working set selection method is inappropriate. Using the results in [30], we
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prove that our proposed selection algorithm leads to asymptotic convergence.

The general working set selection procedure defined in [30] consists of the

following steps:

1) Consider a fixed 0 < σ < 1 for all iterations.

2) Select any i ∈ Iup(α), j ∈ Ilow(α) satisfying :

− yi∇f(α)i + yj∇f(α)j ≥ σ(m(α)−M(α)) > 0.

3) Return B = {i, j}.

(10)

Lemma 4.1. Let {αk} be the infinite sequence generated by the SMO-type

method satisfying the above general working set selection. Then, any limit point

of {αk} is a stationary point of SVM [30].

The decomposition algorithm converges asymptotically to the optimum, and

terminates after satisfying a stopping condition [24].

Theorem 4.2. Let {αk} be the infinite sequence generated by the OFS1. Then,

any limit point of {αk} is a stationary point of SVM. Moreover, if the kernel

matrix is positive definite, {αk} is globally convergent to the unique minimum

of SVM.

Proof: OFS1 selects αi from Iup or Ilow. In order to simplify the proof

procedure, we assume that αi is selected from Iup, and yi = 1. According to

the definition of Iup and OFS1, if yi = 1 and αi < C, the second point needs to

satisfy yj = 1 and αj > 0 to ensure λij > 0. That is, αj belongs to Ilow.

Then, OFS1 selects i = m(α) and j = arg max
t
{λofsit(−∇f(α)i+∇f(α)j)|λofsit >

0)}. And, we ssume that j̄ is selected by j̄ = min
j∈Ilow(α)

−yj∇f(α)j (that is, j̄ =

M(α)). As a consequence, the following inequality is satisfied with λofsij > 0

and λofsij̄ > 0,

λofsij (−∇f(α)i +∇f(α)j) ≥ λofsij̄ (m(α)−M(α)).
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Thus,

−∇f(α)i +∇f(α)j ≥
λofsij̄

λofsij
(m(α)−M(α))

≥
min
k,l
{λofskl

}

max
k,l
{λofskl

} (m(α)−M(α))

= τ
C (m(α)−M(α)),

(11)

where τ is the minimum step-size, and C is the maximum step-size. Then, the

OFS1 algorithm satisfies the inequality (10) for σ = τ
C .

Similarly, the other situations can also be proved. If OFS1 selects αi from

the set Ilow, the proof is the same as the above procedure, because we can

exchange the class label for binary classification. Then, the OFS1 algorithm is

a special case of (10), and all theoretical properties of (10) proved by Lin [30]

hold here.

For the OFS2 algorithm, if λfsij ≥ λoptij , it selects

j = arg max{1

2
λoptij |yi∇f(α)i − yj∇f(α)j |}.

The proof process is the same as for the OFS1 algorithm using λoptij instead of

λofsij . If λfsij < λoptij , OFS2 selects

j = arg max
t
{λfsit |yi∇f(α)i − yt∇f(α)t| −

1

2
λ2fsit(Qii +Qtt − 2Qit)}.

We can also find a fixed σ to satisfy the inequality (10). Moreover, we can

pre-define a small tolerance ε > 0 and check whether the maximal violation is

sufficiently small, that is, m(α) −M(α) < ε. Or more simply, we may check

whether the selected working set satisfies −yi∇f(α)i + yj∇f(α)j ≤ ε, because

this implies m(α)−M(α) < ε/σ [24].

The time complexity of OFS is the same as that of LibSVM. The difference

is that the efficiency of OFS is further improved under the same complexity.

According to the analysis of Lin et al., the convergence rate of the decomposition

algorithm is linear [21]. Therefore, in the worst case, the convergence speed of

OFS is also linear. Its time complexity is between O(D ∗n2) and O(N2
sv +Nsv ∗

D ∗ n), where n is the number of training samples, D is the original dimension

of the sample, and Nsv is the number of support vectors [31].
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4.2. Relation of OFS1 to SMO and MVP

As mentioned above, the SMO algorithm uses two criteria to select the two

working variables: αi is chosen from among those samples that violate the KKT

conditions, and αj is selected to maximize |Ei−Ej |, where Ei and Ej are defined

in (??).

We present an interesting result that |Ei − Ej | is equal to |yi∇f(α)i −

yj∇f(α)j |. According to the definition (??), we have

|Ei − Ej | =

∣∣∣∣∣
(

n∑
t=1

αtytK(xt, xi) + b− yi

)
−

(
n∑
t=1

αtytK(xt, xj) + b− yj

)∣∣∣∣∣
=

∣∣∣∣∣yi
(

n∑
t=1

αtyiytK(xt, xi)− 1

)
− yj

(
n∑
t=1

αtyjytK(xt, xj)− 1

)∣∣∣∣∣
= |yi∇f(α)i − yj∇f(α)j | ,

where ∇f(α)i and ∇f(α)j are the gradients of the dual objective function (2)

with respect to αi and αj ,

∇f(α)i =

(
n∑
t=1

αtyiytK(xt, xi)

)
− 1, ∇f(α)j =

(
n∑
t=1

αtyjytK(xt, xj)

)
− 1.

Therefore, the original SMO algorithm selects the first point αi from those

samples that violate the KKT conditions, and selects the second point αj just

as in the MVP algorithm.

The second interesting result is that the MVP algorithm can be considered

as a special case of the OFS1 algorithm which uses the same step-size for all

variables. The MVP algorithm selects the working set B = {i, j} by solving the

optimization problem max
i∈Iup,j∈Ilow

{−yi∇f(α)i + yj∇f(α)j}. It may be rewritten

as:

max
i∈Iup,j∈Ilow

{−yi∇f(α)i + yj∇f(α)j} = max
λui

>0,λdj
>0
{−∇f(α)i +∇f(α)j}

= max
i,j
{−∇f(α)i +∇f(α)j

∣∣∣ λij > 0}.

Without loss of generality, we assume that the step-size λofsij is fixed to 1.
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The working set {i, j} of OFS1 is selected as follows:

i = arg max
t
{−∇f(α)t

∣∣∣ λut
> 0, ∇f(α)t

∣∣∣ λdt > 0},

j = arg max
t
{(|∇f(α)i − yiyj∇f(α)j |)

∣∣∣λij > 0}.
(12)

The result can be proved under four conditions according to the class labels yi

and yj . We assume that yi = 1 and yj = 1. According to the definitions of Iup

and Ilow, we have

yi = 1 ∧ yj = 1⇒ αi < C ∧ αj > 0⇒ λui > 0 ∧ λdj > 0.

If OFS1 selects αi according to i = arg max
t
{∇f(α)t | λut

> 0}, that is,

i ∈ Iup, then OFS1 needs to select j from the set Ilow to make λij > 0, and this

implies −∇f(α)i ≥ ∇f(α)j . Hence, we can obtain

max{| − ∇f(α)i +∇f(α)j |
∣∣∣λij} = max{−∇f(α)i +∇f(α)j

∣∣∣λij}.
This mean that MVP is the same as the OFS1 algorithm using the same step-

size. The other situations can be easily proved in a similar manner.

4.3. Relation of OFS2 to LibSVM

In the working set selection algorithm for LibSVM, αi is selected (as in MVP)

from Iup(α), and αj is selected from Ilow(α) using the second-order information

that disregards the box-constraints. The values of αi and αj are bounded after

the working set selection to satisfy the box-constraints.

OFS2 uses the second-order information that is similar to LibSVM, but with

two important differences. The first is that OFS2 selects αi from both Iup(α)

and Ilow(α) sets, instead of only Iup(α). The second difference is that OFS2

considers the box-constraints in selecting αj .

Two points should be stated regarding the effect of maintaining the box-

constraints when selecting the working set. First, box-constraints are an impor-

tant factor affecting the function gain, and second, the non-degenerate points

that can ignore the box-constraints constitute only a small part of the support

vectors (SVs) in some data.
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1) Box-constraints have a strong impact on the function gain. When the

optimal solution is located in the feasible region, the box-constraints are non-

active and do not influence the optimal solution. However, if the optimal point is

outside the feasible region, the box-constraints are active and affect the optimal

solution. Using the second-order information, we have the following equation:

f(α+ λd)− f(α) = λ∇f(α)T d+
1

2
λ2dT∇2f(α)d,

where λ is the step-size, ∇f(α) = [∇f(α)i ∇f(α)j ]
T , and d = [1,−yiyj ]T is a

feasible direction. Solving this sub-problem, we obtain the optimal step-size λ∗

without referring to the box-constraints as follows

λ∗ = − (∇f(α)i)− yiyj∇f(α)j)

(Qii +Qii − 2yiyjQij)
.

The optimal function gain without the box-constraints is

g(λ∗) = f(α∗)− f(α) = −1

2
λ∗2(Qii +Qii − 2yiyjQij).

Considering the box-constraints 0 ≤ α ≤ C, we obtain the feasible optimal

step-size λ′. That is, λ∗ is clipped by the box-constraints and denoted by

λ′ = µλ∗, where 0 ≤ µ ≤ 1. We can then rewrite the objective function gain

g(µ) with respect to µ as:

g(µ) = f(α+ µλ∗d)− f(α)

= µλ∗∇f(α)T d+ 1
2 (µλ∗)

2
dT∇2f(α)d

= µλ∗[∇f(α)i − yiyj∇f(α)j ] + 1
2 (µλ∗)

2
((Qii +Qii − 2yiyjQij))

= − 1
2λ
∗2(Qii +Qii − 2yiyjQij)(2µ− µ2)

= g(λ∗)(2µ− µ2)

(13)

The above equation shows that the function gain is a quadratic function with

respect to µ. When 0 < µ � 1, the objective gain sharply decreases because

of the box-constraints. More importantly, the coefficient of the gain function

is g(λ∗). The larger the value of g(λ∗), the greater is the impact of the box-

constraints. This phenomenon is shown in Figure 1(a). The function gain

becomes smaller as µ decreases, and it is proportional to the coefficient g(λ∗).
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2) For noisy data typically there are a large number of bounded support

vectors, and the number of non-degenerate points (i.e. 0 < αi < C) is a small

part of SVs. Fan et al. showed that the box-constraints do not affect the working

set selection under the assumptions that the kernel matrix Q is positive definite

and the optimal solution satisfies the non-degeneracy condition [24]. If all the

SVs are non-degenerate points, the box-constraints can be ignored. However,

the non-degenerate SVs only constitute a small portion of the SVs for some

data.

To clarify this problem, we consider a linear SVM classifier. For a non-

degenerate point 0 < αi < C, we have yi(w
Txi + b) = 1. This means that it

lies on the margin. That is, all of the samples that satisfy the non-degenerate

condition lie on the margin. However, the samples that lie on the margin do

not necessarily satisfy the non-degenerate condition. For clarity, this situation

is shown in Figure 1(b).
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Figure 1: Box-constraints have a strong impact on the function gain, and the non-degenerate

SVs that can ignore the box-constraints only constitute a small portion of the SVs for some

data.
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5. Experiments

Our experiments focus on the number of iterations and running-time for

OFS1, OFS2 and LibSVM-3.21.

The implementations of OFS1 and OFS2 were based on the LibSVM-3.21

library, and the time required for each iteration is very similar. Therefore, the

performance improvement of the new algorithms mainly depends on reducing

the number of iterations. That is, the actual running time of the OFS algorithm

is reduced by reducing the number of iterations. We used a grid search technique

using 5-fold cross-validation to determine the optimal hyper-parameter values

of various kernel functions for different data sets. The iterations and runtimes

presented in this paper are the sum over the 5-fold cross-validation.

The runtimes given in the experimental results were achieved on a Linux

operating system with an Intel Core i7-6820 CPU (2.7 GHz) and DDR4 RAM

(32 GB). The stopping criterion was the same for all the compared algorithms:

|yi∇f(α)i − yj∇f(α)j | < ε, where ε = 10−3.

5.1. Datasets and Experimental Settings

Experiments were conducted on nine datasets. Most of these were obtained

from the National Taiwan University3 [21], with the others taken from UCI

[32], Statlog [33], and OpenML4. OpenML is an online platform in which sci-

entists can automatically log and share machine learning datasets, code, and

experiments, allowing them to build directly on the work of others [34]. Ta-

ble 1 presents detailed information about all of the experimental datasets. For

multi-class classification, we used the one-against-one strategy as LibSVM does.

We examined the performance of OFS1 and OFS2 algorithms with different

kernel functions: radial basis function (RBF) kernel K(xi, xj) = exp(−γ ‖

xi − xj ‖2), polynomial kernel K(xi, xj) = (γ(xTi xj + r))d, and sigmoid kernel

K(xi, xj) = tanh(γ(xTi xj + r)).

3http://ntucsu.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
4http://www.openml.org/
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Table 1: Dataset information

Dataset Samples Features Classes

mushroom 8,124 112 2

ijcnn1 49,990 22 2

covtype 100,000 54 2

skin 245,057 3 2

svmguide3 1,243 21 2

kddcup99 494,020 41 23

mnist 8,000 780 10

w7a 24,692 300 2

cod-rna 59,535 8 2

The radial basis function kernel is also called Gaussian kernel function, which

is one of the most commonly used kernel functions in SVMs. The polynomial

kernel is well-suited to problems in which the training data are normalized. Its

adjustable parameters are the slope γ, the constant term r and the polynomial

degree d. The sigmoid kernel is also known as the hyperbolic tangent Kernel or

multilayer perceptron kernel. It comes from neural networks, where the bipolar

sigmoid function is often used as an activation function [23]. The sigmoid kernel

matrix Q may not be positive semi-definite.

We use a grid search technique with 5-fold cross-validation to find out the op-

timal parameter values of various kernels. They are listed in Table 2 to facilitate

the reproduction of experimental results. The parameters of the sigmoid kernel

for datasets mnist is not given in the table, as they have very low precision and

too long running-time.

5.2. Comparison of Working Set Selection

There are several different algorithms for working set selection, such as MVP,

LibSVM and HMG. In our experiments, we found that LibSVM is one of the

fastest working set selection algorithms currently available. We conducted a

comparative analysis for HMG and LibSVM (both used in the shark library).
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Table 2: Parameters used for the various kernels.

Dataset
RBF kernel Polynomial kernel Sigmoid kernel

C γ C γ r d C γ r

mushroom 0.5 0.25 0.03125 1 0.25 3 16 0.03125 0.03125

ijcnn1 64 1.0 1 1 4 3 1 0.125 0.03125

covtype 64 0.5 1 1 0.25 3 16 0.0625 0.0

skin 8 256 1 4 0.5 3 1 0.125 0.25

KDD99 64 0.5 1 0.5 4 3 16 0.0625 0.03125

svmguide3 64 0.125 4 1 4 3 1 0.0625 0.03125

mnist 2 0.0625 0.03125 0.125 4 3 - - -

w7a 8 0.0625 8 0.25 0 3 8 0.03125 0.0

cod-rna 32 1.0 1.0 4.0 2.0 3 32 0.03125 0.0

On our test datasets, we found that the average running-time of LibSVM is

52.66% of HMG. Therefore, we chose LibSVM as the reference for the new

algorithm. The experiments used the same stopping criteria for all algorithms,

and results are presented in Tables 3, 4 and 5.

In experiments, we found that the optimal objective function values of differ-

ent algorithms are almost the same, and their prediction accuracy is also very

similar. The accuracy of each algorithm is in the right column of the table.

Both OFS1 and OFS2 use the second-order information when calculating the

feasible step size and save it in memory. Their difference is that OFS1 only

considers first-order information in the working set selection process to simplify

the selection. In the OFS2 algorithm, the second-order information is also con-

sidered in the working set selection process, and the function gain is accurately

calculated. Therefore, each iteration of OFS2 is longer than OFS1, but OFS2

has fewer iterations. Generally, the overall running-time of the OFS2 algorithm

is shorter than that of OFS1, and the OFS2 is recommended. However, on some

special data sets, if the number of iterations of OFS1 is very close to OFS2, the

running time of OFS1 is shorter.
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Table 3: Comparison of the number of iterations and runtime of LibSVM, OFS1, and OFS2

using the RBF kernel. The iterations and runtime are the average of 5-fold cross-validation.

The ratio is defined as the ratio of the corresponding value and LibSVM. In each case, the

best value is highlighted.

Dataset
Iterations Runtime (s) Accuracy (%)

LibSVM OFS1 OFS2 LibSVM OFS1 OFS2 LibSVM OFS1 OFS2

mushroom 80345 60600 61477 40 33 34 100.00 100.00 100.00

ijcnn1 169300 95145 95790 175 131 130 98.50 98.51 98.50

covtype 1430549 702645 649107 4986 3707 3537 83.78 83.57 83.79

skin 35317 19451 19560 358 222 223 99.97 99.97 99.97

kddcup99 129882 92349 93058 355 309 310 99.94 99.94 99.94

svmguide3 22268 16414 14790 0.64 0.48 0.45 84.47 84.47 84.47

mnist 308363 304975 305266 290 284 281 94.91 94.90 94.90

cod-rna 172775 125466 113327 280 237 230 95.42 95.41 95.41

w7a 37277 35401 32790 40 38 37 98.71 98.71 98.71

avgerage

(ratio)

265120

(1.000)

161382

(0.609)

153907

(0.581)

752

(1.000)

551

(0.760)

531

(0.733)

95.08

(1.000)

95.05

(0.9997)

95.08

(1.000)
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Table 4: Comparison of the number of iterations and runtime of LibSVM, OFS1, and OFS2

for the polynomial kernel. The iterations and runtime are the average of 5-fold cross-validation.

The ratio is defined as the ratio of the corresponding value and LibSVM. In each case, the

best value is highlighted.

Dataset
Iterations Runtime (s) Accuracy (%)

LibSVM OFS1 OFS2 LibSVM OFS1 OFS2 LibSVM OFS1 OFS2

mushroom 25241 15585 15274 6.69 5.52 5.25 100.00 100.00 100.00

ijcnn1 536776 279071 264186 407 235 226 97.91 97.88 97.88

covtype 2767628 1344649 1247943 7702 5139 4842 81.84 81.76 81.85

skin 621478 452966 418787 1730 1447 1365 99.83 99.82 99.83

kddcup99 248875 148022 133620 406 300 283 99.93 99.93 99.93

svmguide3 316743 236144 228717 5.72 4.42 4.11 84.79 84.79 84.79

mnist 117334 121452 121288 523 545 538 95.30 95.30 95.29

cod-rna 6510558 3748627 3199943 4788 2787 2306 95.31 95.30 95.30

w7a 16272 13212 13118 22 21.7 21.2 98.50 98.52 98.52

avgerage

(ratio)

1240101

(1.000)

706636

(0.570)

626986

(0.506)

1732

(1.000)

1165

(0.673)

1065

(0.615)

94.82

(1.000)

94.81

(0.9999)

94.82

(1.000)
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Table 4 indicates that using the polynomial kernel is similar to using the

RBF kernel. The proposed algorithms can improve the training speed without

loss of accuracy. On some datasets, the running-time of the polynomial kernel is

significantly greater than the Gaussian kernel, such as the skin dataset. But on

other data sets, the polynomial kernel takes less time than the Gaussian kernel,

such as the mushroom data set. The main reason for this difference is that

running-time is greatly affected by hyperparameters. For example, in the mnist

dataset, the hyperparameter C of the polynomial kernel is 0.03125, and the

number of iterations and running-time of OFS is slightly larger than LibSVM.

In general, the Gaussian kernel is usually faster than the polynomial kernel, and

the performance improvement of the OFS2 algorithm is more obvious.

Table 5: Comparison of the number of iterations and runtime of LibSVM, OFS1, and OFS2

for the sigmoid kernel. The iterations and runtime are the average of 5-fold cross-validation.

The ratio is defined as the ratio of the corresponding value and LibSVM. In each case, the

best value is highlighted.

Dataset
Iterations Runtime (s) Accuracy (%)

LibSVM OFS1 OFS2 LibSVM OFS1 OFS2 LibSVM OFS1 OFS2

mushroom 10873 6491 7672 2.2 1.7 1.8 99.80 99.83 99.83

ijcnn1 40841 28900 27436 329 243 237 90.61 90.63 90.62

covtype 137011 88837 87696 2725 1998 1994 63.05 63.02 63.02

skin 245909 152286 102447 10294 6060 4019 85.84 85.85 85.84

kddcup99 95609 69930 65846 533 457 430 99.83 99.83 99.83

svmguide3 2618 2099 2154 0.37 0.31 0.32 79.08 79.08 79.16

cod-rna 52188 38464 43000 281 239 248 93.40 93.37 93.39

w7a 7351 6307 7427 107 100 112 97.61 97.62 97.73

arith. avg.

(ratio)

74050

(1.000)

49164

(0.663)

42960

(0.580)

1771

(1.000)

1126

(0.636)

868

(0.490)

88.65

(1.000)

88.65

(1.000)

88.68

(1.0003)

From Table 5, we can see that the OFS algorithm obtains greater improve-

ment when using the sigmoid kernel.

In addition, it should be noted that on some datasets such as kddcup99 and

covtype, the performance improvement of OFS is very significant. However, on
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other datasets such as mnist, the performance improvement of OFS is small.

Its running-time is almost the same as LibSVM. The performance improvement

of OFS is closely related to the characteristics of the datasets. When the data

dimension is high, the running-time is mainly used for the calculation of the

kernel matrix. If the OFS algorithm does not significantly reduce the number

of iterations, its running-time is very close to LibSVM. For example, the mnist

dataset has 780 features. With the Gaussian kernel function, the number of iter-

ations of LibSVM is 308363, and the running-time is 290 seconds. The number

of iterations of OFS2 is 305266 and the running-time is 281 seconds. However, in

the experiments of kddcup99, covtype and skin, the number of iterations of the

OFS algorithm is significantly less than that of LibSVM, and the corresponding

running-time is also greatly reduced. Moreover, the performance improvement

of OFS is closely related to the support vector (SV) proportion of the data set.

For example, in the mnist dataset (with the Gaussian kernel), the percentage

of SV is 48.125%, and the running-time of OFS is 97.17% of LibSVM, with

almost no speed increase. However, in other data sets, SV accounts for a small

proportion, and the OFS performance improvement is relatively clear. For ex-

ample, in the skin, covtype, kddcup99, and ijcnn1 datasets, the SV proportions

are 0.79%, 3.31%, 1.14% and 4.86%, respectively. The runtimes of OFS were

59.36%, 74.35%, 86.47% and 74.56% of those of LibSVM, respectively. Further-

more, we found that the performance improvement of OFS using polynomial

kernels and sigmoid kernels is more significant than that of Gaussian kernels.

Generally, for the same data set, the running-time of the Gaussian kernel is

often less than that of the polynomial and sigmoid kernels.

5.3. Experiments Using Different Hyper-parameters

This section analyzes the hyper-parameters that affect the number of itera-

tions and runtime of the SVM using the skin data set. We examined the RBF

kernel, as it has some nice properties. We analyzed these hyper-parameters in-

dependently to simplify the experiments. The experimental results are given in

Figure 2 and 3.
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Figure 2: Comparison of the number of iterations required for different hyper-parameters with

various C, where γ = 256. The solid point represents the optimal value of parameter.

Figure 2 presents the relation required between the number of iterations

and the regularization parameter C. Note that the box-constraints cannot be

ignored although C is very large, because the constraint 0 ≤ α always exist.
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Figure 3: Comparison of the number of iterations for different hyper-parameters with various

γ, where C = 8. The solid point represents the optimal value of parameter.

Figure 3 presents the relation between the number of iterations and hyper-
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parameter γ. When the value of the hyperparameter is very small, the perfor-

mance improvement of OFS is not obvious.

Moreover, in the mnist dataset, the optimal hyperparameter C of the poly-

nomial kernel is 0.03125, and the number of iterations and running-time of OFS

are slightly larger than LibSVM.

6. Conclusions

Training SVMs involves solving constrained quadratic optimization prob-

lems. For large scale data, these are usually solved by decomposition algorithms

such as SMO, and the performance of the SMO algorithm is highly dependent

on the working set selection scheme. In this paper, we have presented the OFS

strategy for working set selection. In addition, we provide a theoretical analysis

for different selection methods. Finally, experiments were conducted to compare

the performance of different selection algorithms. In smmary, we can state the

following main conclusions:

1. Box-contraints have a great impact on the function gain and we have

empirically shown that it is important for working set selection.

2. The OFS strategy considers box-constraints and can avoid time-consuming

computations. Experiments show that this method efficiently improves the

SVM training speed.

3. In general, working set selection using the second-order information is

better than the first-order information. However, the OFS1 algorithm is

effective for some data, even though it uses the first-order information to

approximate the function gain.

The strategies for working set selection are crucial for SVMs training. The

OFS strategy can be combined with other efficient solutions, such as parallel

training. Moreover, the proposed idea can also be used in multi-kernel learning.

In future work, we will study these methods using the optimal step-size method.
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