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Abstract

Many semantic events in team sport activities e.g. basketball often involve
both group activities and the outcome (score or not). Motion patterns can
be an effective means to identify different activities. Global and local mo-
tions have their respective emphasis on different activities, which are difficult
to capture from the optical flow due to the mixture of global and local mo-
tions. Hence it calls for a more effective way to separate the global and local
motions. When it comes to the specific case for basketball game analysis,
the successful score for each round can be reliably detected by the appear-
ance variation around the basket. Based on the observations, we propose a
scheme to fuse global and local motion patterns (MPs) and key visual infor-
mation (KVI) for semantic event recognition in basketball videos. Firstly,
an algorithm is proposed to estimate the global motions from the mixed mo-
tions based on the intrinsic property of camera adjustments. And the local
motions could be obtained from the mixed and global motions. Secondly,
a two-stream 3D CNN framework is utilized for group activity recognition
over the separated global and local motion patterns. Thirdly, the basket is
detected and its appearance features are extracted through a CNN structure.
The features are utilized to predict the success or failure. Finally, the group
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activity recognition and success/failure prediction results are integrated using
the kronecker product for event recognition. Experiments on NCAA dataset
demonstrate that the proposed method obtains state-of-the-art performance.

Keywords: Event classification, sports video analysis, global & local
motion separation, motion patterns, key visual information

1. Introduction

Recognizing semantic events in sports videos has received increasing at-
tention from the researchers of computer vision due to its great challenges
and wide potential applications in real world. The main challenge is how
to extract discriminative and robust spatio-temporal contextual features in
the dynamic scenes. A great deal of attempts utilized various modalities of
data to establish the mapping relationship between the group activity and
semantic representation such as key components @], multi-level interaction
representations E], hierarchical relational representations B] and semantic
graph [4].

In basketball videos, representations of visual appearance tend to be un-
reliable due to variation of play ground, player’s suits and over-complicated
background. Challenges such as occlusion between individuals and motion
blur problems greatly restrict the performance of player detection and track-
ing based approaches ﬂ, E, , @] In this circumstance, it is more promising
to model representations on the dynamic information to avoid the bias of ap-
pearance variance in the chaotic scene and focus only on the overall motion
regularities.

In basketball games, the camera mostly focuses on the game by ‘translate
movement’ or ‘zooming in/out’. For a specific group activity, the camera is
adjusted in almost the same way. It conveys the consistency of global motion
patterns in the basketball videos. As a typical kind of team sport, a group
activity can be represented as an offensive-defensive confrontation. And the
tactics in the basketball games are reflected as players’ position distributions.
To some extent, the tactics could be represented as local motion patterns.
The global and local motion patterns of two sample activities are shown in
Figure 1. In three-point activity, the general camera motion pattern can be
summarized as pan or tilt (corresponding to the translation in the videos)
at the beginning, then followed by zooming in (corresponding to the cen-
trifugal motion in the videos). In the meantime, the position distribution of
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Figure 1: Visualization results of frames and motion patterns of 3-point and steal activities
for basketball videos in NCAA dataset @] In both cases, from top to bottom each row
denotes video frames, mixed motion, separated global and separated local motions respec-
tively. For better visualization, We use the color-coding rule in M] to encode motions
where different color represents different motion directions while the saturation represents
the motion amplitude. In 3-point activity, camera is firstly moving in translation, followed
by zooming in while the players gradually concentrate to the basket for rebound. As for
steal events, both global and local motion directions will be reversed at some point.
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Figure 2: Examples of success and failure for key visual region. Each line shows the last
6 frames from success or failure clip. The pictures with red borders are frames with great
visual distinctions in success clips.

the players is firstly scattered and then concentrated in the direction of the
basket for rebound. In steal activity, the overall local motion patterns of the
players show a sudden reverse. The camera follows this change and reverses
its translation direction simultaneously. A specific kind of group activity is
much related to the global or local motions. However, the motions from the
estimated optical flow are the mixture of global and local motions. It is nec-
essary to separate them from the mixed motions. Global motion estimation
@, , @] is a typical issue in computer vision. In this paper, we orient a
novel global motion estimation scheme for scene of basketball games based
on our observations. On the other hand, the success or failure of the activity
corresponds to whether the ball falls into the basket or not, and whether the
basket net moves or not. Therefore, the outcome is mainly related to the key
local visual information (KVI), as shown in Figure 2.

Motivated by the above, we develop a unified framework to integrate
the dynamic features of the global and local motion patterns (MPs) with
the appearance features from key visual information (KVI) as illustrated
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Figure 3: An overview of our proposed fusion framework for separated motion patterns and
key visual information. Video frames are input into two pipelines. In the first pipeline,
global and local motions are firstly separated from the mixed motions. Then, motion
patterns are represented through a two-stream 3D CNN module for group activity recog-
nition. In the second pipeline, key visual information is extracted by CNN with the input
of detected basket regions. Finally, prediction vectors from two pipelines are integrated
for semantic events recognition in basketball videos. Here Kronecker products are used
without loss of generality.

in Figure 3. Specifically, the video frames are fed into two pipelines. The
first one involves separating the global and local motions, and extracts the
dynamic motion pattern representation with a two-stream 3D CNN model for
group activity recognition. In the other pipeline, KVI is extracted using CNN
model from the detected basket regions for success/failure prediction. The
group activity recognition and success/failure prediction from two pipelines
are further integrated (by the Kronecker product operation) to infer the
semantic events in basketball videos.

In a nut shell, the main contributions of this work can be summarized as
follows:

1) We make a basic observation that the motion in the basketball game
(and also many other games) contains both global motion and local move-
ment. Furthermore, the global motion is caused by the camera movement,
which can reflect the intention of the camera man and vary depending on the
type of matches. While the local ones show the tactics of the team. Thus
the local motion or the tactics of the same activity are similar. Based on the



observations, we devise a simple yet effective method to estimate the camera
motion, such that the global and local motions are effectively separated from
the mixed motions.

2) We present a unified framework to fuse global and local motion pat-
terns (MPs), as well as key visual information (KVI) for semantic basketball
video event recognition. The KVI module is tailored to detect the basket ap-
pearance change which indicates the outcome for a basketball game round.

3) Experimental results on the public NCAA dataset ﬂ] demonstrate
that the proposed approach outperforms the state-of-the-arts due to its ad-
vantages in employing MPs and KVI via ablation study.

The paper is organized as follows. Section [2 discusses the related work
in literature. Section [3] presents the proposed method which is based on our
observation on the motion patterns and the local appearance for the score
outcome. Experiments are conducted in Section [] and Section [l concludes
this paper.

2. Related Work

Group/Collective Activity Recognition: Before the advent of pow-
erful deep learning methods, devising effective hand-crafted features for group
activity recognition has been extensively studied, which commonly represent
the sequence images with a number of predefined descriptors ﬂa, B, é, @, @, ,
12, ] Lan et al. ﬂa] proposed a latent variable framework to jointly model
the contextual information of group-person and person-person interaction.
Shu et al. ﬂﬂ] conducted a spatiotemporal AND-OR graph to jointly infer
groups, events and individual roles. Wang et al. ﬂﬂ] proposed a bi-linear pro-
gram based MAP inference with a latent structural SVM for human activity
modelling.

More recently, deep neural network architecture achieves substantial suc-
cess on group activity understanding due to its high-capacity of multi-level
feature representation and integration ﬂ, , B, @, ,@] Wang et al. E] pro-
posed a recurrent interactional context model to aggregate person level, group
level and scene level interactions. Shu et al. ﬂj] introduced a confidence-
energy recurrent network (CERN) which utilized a p-value based energy reg-
ularization layer to estimate the minimum of the confident energy. Deng et
al ﬂﬁ] performed structure learning by a unified framework of integrating
graphical models and a sequential inference network.



Sport Video Analysis: Recently, a considerable amount of efforts
have been devoted to team sports analysis, such as basketball @], volleyball
B, @, B, @, , @, @, @, @], soccer ﬁé, @], water polo NE], ice hockey ﬂﬂ]
etc. Ramanathan et al. [1] introduced an attention based BLSTM network
to identify the most relevant component (key player) of the corresponding
event and recognize basketball events. Ibrahim et al. [3] built a relation-
ship graph guided network to infer relational representations of each player
and encode scene level representations. Wu et al. @] proposed a domain
knowledge based basketball semantic events classification method which rep-
resented global and collective motion patterns on different event stages for
event recognition.

Global and local motion separation: In broadcast sports videos,
global motion tends to be dominant. Therefore, it is intuitively motivated
to firstly separate global motion and local motion from the mixed motion
fields. In the previous works, ﬂﬂ, @] extracted dense trajectories in the dense
flow field to eliminate the camera motion filed. However, they employed
hand-craft feature descriptors to match feature points which can be time-
consuming and less applicable to deploy on the real time applications. In ﬂﬁ],
Hasan et al. proposed a nonparametric camera descriptor which adopted data
statistics to localize the local motion region to characterize global motion
representation. In @], Yu et al. assumed that camera motion consisted of
only simple translate movement and subtracted the estimated motion field
from the flow field to obtain local motion field. However, in broadcast sports
videos, camera motions are usually the combinations of multiple basic shot
motion patterns.

In summary, most existing group activity recognition methods depend
on both the action detection ﬁ, ﬁ]) or tracking [1] feeding to appearance
stream, as well as the local motion field feeding to motion stream, to extract
either multi-level objects features or contextual spatiotemporal interactional
representations. Nevertheless, under certain circumstances, feature represen-
tation suffers a lot from frequent occlusion among players, rich variations of
player poses and camera movement. These challenges make the high-order
contextual information modelling even difficult. We address the problem by
devising a way of joint representation of motion patterns and key visual infor-
mation for both group activity and semantic event recognition in basketball
videos.



3. The Proposed Basketball Video Event Recognition Approach

3.1. Observations

We delve into the characteristics in basketball videos and make the flowing
observations:

1) Global motion in the basketball video mostly refers to the
camera movement which reflects the ways that the cameramen
represent the group activities. The camera movement is frequent in
basketball videos. Specifically, the camera will keep focusing on the hot area
of the court by lens adjustment. Generally, different activities have unique
focusing areas and motion severities on the court. As shown in Figure 1, in
three-point activity, the camera is firstly translated to track the player who
possesses the basketball, and the camera will zoom in around the basket to
obtain a clear view for audience when the shooting event is performed. Also,
in steal event, the camera will show a reverse motion when the steal action
happens. However, in different type of matches, such as NCAA, NBA or
CBA, it is possible that the camera movement (global motion) shows a little
distinction.

2) Local motion in the basketball video mostly refers to the
team tactics and the collective motion of players. Basketball game is
a type of tactical team-sport in which the local motions present the specific
tactics. When the offensive players organize an attack, the defence players
will show corresponding movement. For example, in three-point activity,
defenders may take one-on-one defence and the position distribution is rela-
tively scattered and the confrontation is not much intense. After the shot, all
the players will struggle for position and rebound which may cause intense
motions. In steal event, when one of the defenders steals the ball, he/she will
quickly launch a counterattack. Meanwhile, all the other players will switch
the role and rush to the other side of the court.

3) Success/failure for each round is correlated to the appearance
variation in the key region around the basket. If the shooting is
successful, the ball will fall into the basket along with the motion of the
net. Failure means the ball is bounced off or not touching the basket, which
generally corresponds to the static basket net. Therefore, Success/Failure
could be identified from the key visual information (appearance variation in
basket region).

Based on the above observations, we propose an MPs and KVI fusion
scheme for semantic event recognition in basketball videos. The proposed
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Figure 4: Basic camera motions. We use the crosses to simulate the change of the actual
object under different camera motions. (a) Static. (b) Pan right / left. (c¢) Tilt up / down.
(d) Zoom in / out.
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two-pipeline structure is shown in Figure 3. In the pipeline for group ac-
tivity recognition, global and local motions are input into two separated 3D
CNN structures for motion pattern representation. Two modalities of mo-
tion patterns are integrated at the softmax layers of the two networks using
the late fusion strategy. In the success/failure prediction pipeline, the basket
detection results of input frames are fed into a CNN structure for key visual
information representation. The prediction vectors from the two pipelines
are further fused by the Kronecker product operation to obtain the semantic
event recognition results in basketball videos.

3.2. Global and Local Motion Separation

Global and local motions have their own emphasis on different activities.
The global motions can effectively present the activities such as three-point,
steal and so on, while the local motion is more discriminative to group ac-
tivity such as 2-point and layup. Therefore, it is possible to promote the
representation capability to the corresponding activities using the separated
global and local motions. In this section, we will firstly estimate the global
motions from the mixed motions, then obtain the local motion from the
mixed and the global motions.

3.2.1. Global Motion Estimation

The camera adjustment is the main contributor to the global motions.
Basic camera adjustments include static, tilt (up or down), pan (left or right)
and zoom (in or out) as shown in Figure 4. The basic camera adjustments
corresponds to the global motions which can be represented as the corre-
sponding color coding images, as shown in Figure 5. We use color-coding
images to represent the camera motions that different color level represents
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Figure 5: Basic camera motions in the format of color coding: (a) Pan left. The global
motion appears as right movement with the same amplitudes in all pixels. (b) Pan right.
The global motion appears as left movement with the same amplitudes in all pixels. (c)
Tilt up. The global motion appears as upward movement with the same amplitudes in all
pixels. (d) Tilt down. The global motion appears as downward movement with the same
amplitudes in all pixels. (e) Zoom in. The global motion appears as the movement toward
the center point in radial direction. The motion amplitude decreases from the center to
the perimeter (f) Zoom out. The global motion appears as the movement away from the
center point in radial direction. The motion amplitude decreases from the center to the
perimeter.

different motion directions while the color intensity or saturation represents
the motion amplitude.

Then, we deeply analyze the intrinsic property of the global motion under
different camera transformations by summarizing the displacement regularity
of the corresponding points in the motion fields. When the camera moves as
pan or tilt, all the points in the motion fields have the same motion amplitude
in both X and Y coordinate. For zooming transformation, as shown in Figure
6(a), the global motion appears as the movement toward the center point in
radial direction. L1 and L2 are two parallel lines. The yellow lines on
L2 and L1 at the top of the red and blue cross represent the mapping of
the corresponding points after zooming in transformation. In this case, we
further deduce the formula of point displacement in both X and Y direction
as illustrated in Figure 6(b). Point P, (¢, yo) on line L2 represents the point
in the red cross in Figure 6(a) while point P(x¢ + Az, yo + Ayp) on line
L1 represents the corresponding point after zooming in transformation. It is
obvious that the points on line L2 have the same Y direction displacement
after zooming. For displacement along X direction, it can be formulated
through geometry deduction as equation (1) and equation (2).

A
tanh(0) = % = A—Z (1)
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Figure 6: (a) The illustration of the displacement of the corresponding points in the scene
after zooming. The red cross represents the original object while the blue cross represents
the object after zooming in transformation. (b) A detailed geometric relationship diagram
of zooming in transformation.

Ab
Aa = - @ (2)
Thus, the displacement of the points along X direction is a linear trans-
formation. Considering a point in current frame (anchor frame) with the
coordinate (x,y), mapping to (2’,y') in the reference frame (target frame)
after global motion transformation. The global motion model can be written
as:

¥ = mox +my

(3)

where [mg, my, ma, mg] are model parameters. Then, the motion vector
of point P can be denoted as MV p = (mgxo+ mq, mayo +ms3). In the actual
scenes, the camera movements can be seen as the combinations of the basic
camera movements, that is, linear superposition of the basic camera transfor-
mations. Therefore, the motion amplitude of any points in the global motion
field can be computed through the above transformations. Furthermore, we
discuss the amplitude distribution of the x- and y-component of the global
motion field. The motion field records the motion increments of each pixel
which can be represented as:

y' = maoy + mg

Ar=12'"—z=(mog— 1)z +my

4
Ay=y —y=(mo—1)y+ms 4)

11



In conclusion, we draw the following characteristics of the global motion
field: (1) In x-component of global motion field, the points with the same
X coordinate have the same amplitude while the points with the same Y
coordinate are subject to linear variation. (2) Similarly, in y-component of
global motion field, the points with the same Y coordinate have the same
amplitude while the points with the same X coordinate are subject to linear
variation. (3) In basketball videos, local motions results from the movement
of the athletes. They only occupy a small region in the relatively center of
the scene. Moreover, the mixed motion in the marginal region of the image
is global motion with high probability.

Theoretically, based on the above characteristics, if the motion vectors
at four corners of the motion field are obtained, global motions of the whole
image could be estimated through linear interpolations. Therefore, we pro-
pose a scheme for global motion estimation with the input of mixed motion
field. Given a mixed motion field with the shape of H x W x 2, the four cor-
ner points can be presented as Pyi(z11, y11), Piw (1w, vaw), Pai(Ta1, ym1)
and Pyw (xgw,ygw) (the index starts from 1). Firstly, motion vectors at
the four corners of the mixed motion field could be computed by statistics.
Given a sequence of x-component in the column of left edge in the mixed
motion field, we sort all the data in the sequence and assign the mean value
of the data in the middle 60% of the sequence to x-component in this column.
Following the same operation, we could obtain the x and y-components of the
four corners in global motion field. Secondly, the x or y-components of the
points in the four marginal lines in global motion field are further obtained
by interpolation from the corresponding end points. Thirdly, we utilize the
linear interpolation algorithm to estimate the x and y-components of global
motions for all of non-marginal points in the motion field. The results are
shown in the third row in Figure 1.

3.2.2. Local Motion Estimation

It seems a natural way to disentangle the local motion from the mixed flow
filed by subtracting the global motion field. However, this simple operation
may produce some extra noises like the still scoreboard regions in the scene
or minor moving amplitude. To alleviate this problem, we devise a threshold
based scheme for local motion estimation.

Assuming (i, y3,), (2%, y?) and (z},y]) as the points in mixed flow field,
global motion field and local motion field respectively with the coordinate
(i,7). And r@) = \/2i* + 3% is the resultant motion amplitude of point

12
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Figure 7: Local motion estimation result: (a) Mixed motion. (b) Local motion estimated
by directly subtracting the global motion from the mixed motion. (c¢) Threshold based
local motion estimation.

(,7). The local motion field can be estimated as follows:

0 | < 0
T = xl — xg |7’£,i’j) — rgi’j)| > 0
0 |7’£,i’j) — rgi’j)| <40
(4,9) (5)
0 || < 6
A= v 1 )
0 |7’£,i’j) — rgi’j)| <40

where 0 represents the threshold and are set to 1.0 in practice which
means that we ignore the points moves less than 1 pixel. The local motion
estimation results are shown in the forth row in Figure 1. To verify the ef-
fectiveness of threshold based local motion separation scheme, we conduct
an experiment to compare the result between the local motion estimated by
directly subtracting the global motion from the mixed motion and local mo-
tion computed by our method. As shown in Figure 7, by applying thresholds,
the noise motion component and the irrelevant scoreboard region could be
successfully suppressed.

To demonstrate the generality of our approach, we show global and local
motion separation results on examples in UCF-101 dataset [45] as shown in
Figure 8. Notably, the global motion and local motion is isolated from the
mixed motion which demonstrates that our scheme can be applies to common
videos without any limitation.

13
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Figure 8: Visualization results of the global and local motion separation results on videos
from UCF-101 dataset. The first row is the video frames. The second row is estimated
mixed flow field. The third and the fourth rows are separated global and separated local
motions.

3.8. Fusing MPs and KVI for FEvent Recognition

3.8.1. Group Activity Recognition via Motz'on Patterns

Recently, two-stream 3D CNN ﬂﬂ E% structures @, @] and multi-
stream 3D CNN framework have been a popular building
block for sequential data modehng. Insplred by these previous works, we
leverage two-stream 3D CNN structure to integrate the global and local mo-
tion patterns for group activity recognition. The network architectures in
both streams are the same. Each of the 3D CNN structure has five 3D
convolutional layers with 64, 128, 128, 256, 256 feature maps, followed by
three fully connected layers of dimensions 2048, 2048 and number of classes.
Batch normalization layer ] is joined after every convolution layers and
first two fully connected layers. We use max pooling in all pooling layers
with 2 x 2 x 2 kernel size except for the first pooling layer where the kernel
size is set to 2 x 2 x 1. Given a video clips, the global motion and local data
are sequentially fed into their corresponding network stream. The output is
the probability distribution to the six group activities (3-point, Free-throw,
Layup, 2-point, Slam dunk and Steal).

14



3.8.2. Success/Failure Prediction using Key Visual Information

Success/Failure are the results of group activities. Success or failure can
be effectively identified by whether the ball falls into the basket along with
motion of the net as shown in Figure 2. According to this point, a Key Vi-
sual Information based scheme is constructed for success/failure prediction.
The basket regions are detected and the appearance features of this regions
are extracted for success/failure prediction. For real-time efficiency, the Sin-
gle Shot Detection (SSD) model @] is employed for basket detection and
AlexNet [38] structure is utilized for appearance features extraction of the
basket. Moreover, considering the fact that the ball in the basket only lasts
for a few frames in success, we devise a strategy that the clip is considered
to be success as long as one of the frame in the clip is predicted to success,
otherwise, it is regarded as failure.

3.3.3. Fusion of the Two Pipelines

From the above two pipelines, we could obtain the group activity and
success/failure prediction results. We encode these two results into binary
vectors. The element of the highest probability is assigned as 1 while other
elements are assigned as 0. Then, we utilize Kronecker product operation to
fuse these two results into semantic events recognition results which can be
presented as:

‘/event = V:wtim'ty X ‘/sf (6)

where ® represents the Kronecker products operation, Vvt is the group
activity prediction result vector, Vs is the success/failure prediction vector
and V,yent is the fusion results for semantic events prediction in basketball
videos. In NCAA dataset, there are 6 types group activities including 3-
point, free-throw, 2-point, layup and steal. Each of group activity can be
success or failure except for steal activity. The shape of Viciiviy, Vs and
Vevent are 1 x 6, 1 x 2 and 1 x 12 respectively. When reporting our final
11-class semantic events recognition results, we merge steal success and steal
failure in V_pepns-

15



3.3.4. Implementation Details

Group Activity Recognition. Both 3D CNN models of the two streams
are firstly pretrained on Sports-1M dataset M] and then separately fine-
tuned on separated global and local motion fields. We use the Adam Gradient
Descent on each mini-batch with an initial learning rate of 0.001 and
negative log likelihood criterion. The overall objective loss function is the
standard categorical cross-entropy loss.

L=— Z yilog(pi) (7)

where C' is the number of group activity classes, y; is the label and p;
is the output of the softmax layer. The fusion weights ratio of two streams
in Softmax layer is set to 1: 1. On the data imbalance problem in NCAA
dataset, we adopt a re-sampling scheme to ensure that the number of data
from 6 basic events remains equally in every mini-batch. In practice, the
batch size is set to 18 (3 samples per class) due to the limitation of GPUs.
Random crop scheme is employed for data augmentation. We resize the
shortest edge of the frame to 112 and then crop 112 x 112 regions randomly
as spatial resolution. The length of input clip is 16 frames and the size of
input data is 112 x 112 x 3 x 16. For optical flow estimation, there exists
a number of efficient deep learning based optical flow estimation methods
ﬂﬁ, , ] and we adopt off-the-shelf PWC-Net @] to make the trade-off
between speed and performance.

Success/Failure Prediction. We manually annotate 2000 images labeling
both the basket coordinate and the success or failure property for key area
detection and events property prediction tasks respectively. We utilize the
SSD model pretrained on VOC dataset and AlexNet framework pretrained
on ImageNet @] to finetune our data. The initial learning rate is set to
le-4 and 1e-3 for detection and classification task respectively. Adam Gra-
dient Descent is used for learning rate adjustment. All the deep models are
implemented on Pytorch deep learning framework with Nvidia Titan X GPU.

4. Experiments

In this section, we conduct experiments to verify the effectiveness of the
proposed method in event recognition. First, we measure the role of different

16



motion patterns in performance of group activity recognition. Then we eval-
uate the performance the KVI based event success/failure predictor. Finally,
the results of our proposed MPs and KVI based scheme are compared with
state-of-the-arts on NCAA benchmak ﬂ, @] for semantic events recognition
in basketball videos.

4.1. Dataset

The NCAA dataset ﬂ] is a large-scale dataset for semantic events
recognition in broadcast NCAA basketball games. It contains 257 basket-
ball games collected from YouTube. The start and end time point of each
event are well-defined and provided. Based on the characteristics of semantic
events, we split 11 semantic events into 6 group activities including 3-point,
free-throw, layup, 2-point, slam dunk and steal and success/failure (score or
not) of the activity. Besides, steal activity does not distinguish between suc-
cess and failure. We follow the same training and testing sets configuration
as @] including 212 games for training, 12 games for validation and 33 games
for testing.

The NBA&CBA dataset @] aims at evaluating the generalization
ability of group activity recognition algorithms by cross-dataset testing. The
videos are from CBA and NBA basketball games, including totally 329 clips
with the same annotation as NCAA dataset. All the clips are utilized for
testing.

4.2. Group Activity Recognition

To verify the effectiveness of motion pattern representations on basket-
ball activity recognition, we conduct several experiments based on different
modalities of motion patterns and compare the performance with GCMP
method @] We also directly use the mixed motions to train a 3D CNN
model to validate the benefit of the motion separation scheme for group ac-
tivity recognition. Accuracy(ACC) and mean average precision (MAP) to
evaluate the method. In this paper, MAP (mean average precision) is the
average precision of every class. For a certain class, precision of a class refers
to the proportion of the number of correctly predicted samples in the number
of all the samples that are predicted to this class. Suppose a dataset contains
k classes (class 0 to class k-1). For a certain class i, assuming that the number
of samples correctly classified to this class is S& and the number of samples

17



Table 1: Group activity recognition results (Accuracy/Mean average precision(MAP))
on NCAA dataset @] The results are reported on single global motion stream, single
local motion stream, single mixed motion stream and global and local patterns fusion

two-stream framework.

ACC/MAP Method Mixed Global Local Two-Stream
motion motion motion

Activity Stream Stream Stream Framework
3-point 0.728/0.716 | 0.709/0.701 | 0.695/0.707 | 0.777/0.733

Free Throw 0.776/0.825 | 0.776/0.929 | 0.821/0.932 | 0.881/0.937

Layup 0.580/0.639 | 0.548/0.581 | 0.626/0.618 | 0.609/0.695

2-point 0.508/0.575 | 0.467/0.550 | 0.563/0.674 | 0.541/0.626

Slam Dunk 0.333/0.08 | 0.500/0.138 0.389/0.09 | 0.556/0.147

Steal 0.921/0.899 | 0.978/0.911 | 0.940/0.910 | 0.962/0.924

\ Mean | 0.641/0.623 | 0.663/0.635 | 0.672/0.656 | 0.721/0.677

wrongly classified to this class is S%. Then the MAP can be expressed as:

1k—1 SZ

As shown in Table 1, the mixed motion stream obtains the worst per-
formance which demonstrates the significance of motion separation in group
activity recognition. For the effectiveness of fusing global and local motion
streams, both accuracy and MAP have an obvious increase on the activities
for 3-point, free-throw and slam dunk after the fusion of global and local
motion streams. This can be explained by the fact that global and local
motion patterns in the above three activities are complementary.

Specifically, the global motion pattern in 3-point activity is similar with
some of the 2-point activities. Nevertheless, local motion patterns can be
more distinctive between 3-point and 2-point activities. The position dis-
tribution of players is relatively scattered in 3-point and rather denser in
2-point event. Therefore, local motion is more intensive in 2-point compared
to that in 3-point. In this sense, the combination of these two modalities is
beneficial for activity recognition.

The performance shows slightly reduction after the integration of two

(8)
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Figure 9: Confusion matrix for the NCAA dataset obtained using our two-stream frame-
work.

streams in layup and 2-point activities. In our analysis, these two activi-
ties share similar motion patterns in both global and local modalities. In
this circumstances, fusion may not boost the performance. All models show
excellent performance on steal event which is mainly because that motion
direction reversal is an unique and discriminative feature in both global and
local motion patterns among all the activities. Global motion is dominant in
the scene thus the accuracy of global motion stream on steal activity achieves
the best result. As expected, the mixed motion stream achieves similar re-
sults compared with global and local streams while is mainly because global
motions are dominant in the scene. Thus the local motion patterns can not
be fully generalized by the model. In addition, we draw the confusion matrix
as shown in Figure 9 based on our global and local motion fusion model.
Consequently, it can be demonstrated that learning feature representations
separately on global and local motions is necessary and effective.
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Table 2: Performance comparison on 11 classes semantic basketball events classification
results based on method with/without key visual information (KVT).

Method Global Global Motion Local Local Motion T " Two-stream
eHRo Motion + KVI Motion + KVI wo-stream + KVI
Accuracy 0.381 0.628 0.403 0.657 0.409 0.712

4.8. Success/Failure Prediction

Next, we evaluate our KVI based scheme for success/failure prediction.
As mentioned in Section 5.2, given an image sequence, basket region is ini-
tially detected and the cropped regions are fed into CNN model to identify
if the ball falls into the basket. The clip is predicted to be success as long as
one of the frame in the clip is predicted to success. During the experiment,
the frame is predicted to be the label of success when the response value of
the corresponding neuron in the softmax layer is greater than a threshold.
To obtain a proper value of the threshold, we adjust the threshold ranging
from 0.5 to 1.0 with interval of 0.05. Under different thresholds, we test the
accuracy on all success clips, all failure clips and overall testing clips. The
accuracy curve shown in Figure 10 reveals that the highest performance of
0.887 is reached when the threshold is set to 0.7.

To demonstrate this view, we directly applied motion patterns to classify
11 classes of group activities with success/failure and the results are shown in
Table 2. As shown in Table 2, the performance of using only motion patterns
is much lower than using motion patterns + KVI.

Samples that are wrongly predicted are shown in Figure 11. For the suc-
cess clip that wrongly predicted to failure, the main reason is that the end
point is annotated too early that the ball has not yet been in the basket. We
believe that by extending the end point for short period of time, the perfor-
mance can be further improved. For the failure clip that wrongly predicted to
success, we think that the background noise and low resolution are the main
reasons leading to misclassification. Also, in some cases, players may unin-
tentionally hit the net and make the net move when blocking or struggling
for rebound thus influence the results. With the augmentation of the training
set by introducing detected basket images under various circumstances, this
problem would be alleviated.
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Figure 10: The accuracy curve of success clips, failure clips and overall activity suc-
cess/failure prediction accuracy under different thresholds, on the NCAA dataset [1].

(b) Failure clip that is wrongly predicted to success.

Figure 11: Examples of clips that are wrongly predicted. For simplicity, we only show the
last 30% of the frames which are highly correlated to shooting success and failure.
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Table 3: Performance (mean average precision) comparisons with the state-of-the-art
methods on the NCAA dataset @] for basketball video semantic event recognition.

Semantic IDT C3D MIL LRCN | BLSTM | On_.GCMP | Global Local Two-stream
Events [24] [32] [39] [40] (1] [46] + KVI | + KVI + KVI
3-point succ. | 0.370 | 0.117 | 0.237 0.462 0.600 0.737 0.705 0.688 0.781
3-point fail. 0.501 | 0.282 | 0.335 0.564 0.738 0.753 0.714 0.710 0.764
Free. succ. 0.778 | 0.642 | 0.597 0.876 0.882 0.656 0.767 0.851 0.885
Free. fail. 0.365 | 0.319 | 0.318 0.584 0.516 0.772 0.722 0.797 0.842
Layup succ. 0.283 | 0.195 | 0.257 0.463 0.500 0.491 0.593 0.673 0.686
Layup fail. 0.278 | 0.185 | 0.247 0.386 0.445 0.528 0.476 0.506 0.493
2-point succ. | 0.136 | 0.078 | 0.224 0.257 0.341 0.629 0.387 0.404 0.418
2-point fail. 0.303 | 0.254 | 0.299 0.378 0.471 0.655 0.566 0.649 0.605
Slam. succ. 0.197 | 0.047 | 0.112 0.285 0.291 0.308 0.591 0.681 0.724
Slam. fail. 0.004 | 0.004 | 0.005 0.027 0.004 0.250 0.240 0.067 0.194
Steal 0.555 | 0.303 | 0.843 0.876 0.893 0.612 0.979 0.941 0.963

| Mean | 0.343 | 0.365 | 0.221 | 0.316 | 0.516 | 0.581 | 0.613 | 0.630 | 0.669 |

4.4. Comparison with the State-of-the-Art

We compare our proposed method against dense trajectories with Fisher
encoding (IDT) ﬂﬂ], C3D with SVM classifier (C3D) ﬂﬁ], multi-instance
learning method (MIL) [39], long-term recurrent convolutional networks (LRCN) @],
attention based key player recognition method (BLSTM) @] and On_GCMP ]
as shown in Table 3. Our proposed MPs and KVI based methods outper-
form these baselines by a large margin of 15.3%-44.8% on average. We obtain
better performance on all the events and show significant improvement on
3-point succ., Free-throw fail., layup succ. and slam dunk succ.. Overall, the
superior performance indicates that our proposed scheme focuses on more
discriminative features in basketball videos and is more robust and effective
to background variations.

Then, we make a comparison with ontology embedded global and col-
lective motion pattern based method (On_-GCMP) @] Similar to our per-
spective, @] used motion patterns as cues for semantic events modeling.
However, they directly utilized mixed motion as input without motion sepa-
ration which caused the loss of motion information. Although better perfor-
mance is obtained on layup fail., 2-point succ., 2-point fail. and slam dunk
succ. events. They extended the NCAA dataset forward and backward and
employed a multi-stage framework that firstly merged 2-point and layup for
5-class prediction on event-occ stage, further classified 2-point and layup on
pre-event stage, and finally judged success or failure on post-event stage. We
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Table 4: Performance (Accuracy/Mean average precision(MAP)) comparison on
NBA&CBA dataset.

.. . . Ours Ours Ours
Group Activity GCMP Mixed Motion Global Motion | Local Motion Two Stream
3-point 0.600/0.564 0.747/0.612 0.726,/0.590 0.779/0.536 0.863/0.651
Free Throw 0.214/1.000 0.428/1.000 0.500/1.000 0.214/1.000 0.286,/1.000
Layup 0.509/0.293 0.526,/0.319 0.561/0.317 0.596,/0.400 0.702/0.400
2-point 0.267/0.564 0.295/0.485 0.232/0.433 0.217/0.434 0.274/0.604

Slam Dunk 0/0 0/0 0/0 0/0 0/0
Steal 0.909/0.233 0.909/1.000 0.909/1.000 0.909/1.000 0.909/1.000

| Mean | 0.417/0.442 | 0.484/0.569 | 0.488/0.557 | 0.453/0.557 | 0.506,/0.609 |

only employ the data from NCAA dataset (event-occ) for both group activ-
ity recognition and success/failure prediction and outperform [46] by 8.8%
on semantic event recognition.

4.5. Generalization Ability of the Proposed Method

In order to better verify the generalization ability of our proposed method,
we further conduct experiments on NBA&CBA dataset. We do not fine-tune
on NBA&CBA dataset and treat it as a testing set. The performance of
our method reported in Table 4 is achieved by fusing the global and local
stream network with weight of 1 : 1. For fair comparison, we reimplement
the GCMP method @] with the NCAA training set. Our method achieves
50.6% accuracy and 60.9% MAP on NBA&CBA dataset which outperform
GCMP method by 8.9% and 16.7%.

In NBA&CBA dataset, the camera position during free throw activity
is farther away from the court that in NCAA dataset resulting in different
representations of local motions as shown in Figure 12. However, the global
motion is similar that the camera stays almost motionless during the free
throw activity. It is difficult to predict free throw activity by mixed motion
thus both our method and GCMP do not work well on this category. Our
method obtains 28.6% accuracy which is mainly owing to the contribution of
the separated global motion stream. As shown in Figure 13, we can observe
some failure cases in layup activity, which is probably due to the similar
motion regulations among layup, 2-point and 3-point activities. The perfor-
mance can be improved by fine-tuning on data from NBA or CBA basketball
games. Both methods get poor performance on slam dunk activity due to
the data imbalance problem that there is small amount of slam dunk clips in
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Figure 12: Visualization results of motions from free-throw activity. The first row is the
video frames of free-throw from NBA&CAB dataset and the second row is inter-frame
motion fields. The third row is the video frames of free-throw from NCAA dataset and
the last row is the corresponding inter-frame motion fields.
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Figure 13: Confusion matrix for the NBA&CBA dataset obtained using our two-stream
framework.
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Table 5: Runtime of each module in our framework.

Motion Motion Group Activity Succ. /Fail.
Module Estimation | Separation Classification Classification Total
Runtime (ms) 7.14 11.2 6.3 17.2 41.8

training set, failing to learning robust representations. From the experimen-
tal results, by separating global and local motion from the original motion,
our scheme is able to explore more competitive feature representations from
the dynamic scenes for group activity recognition.

4.6. Runtime Analysis

We test the runtime (ms) of each module on Titan X GPU as reported in
Table 5. Motion estimation and motion separation modules work on parallel
on frames in a video clip. Group Activity and success / failure classification
module work on the batch of frames in a video clip. For each video clip,
about 42 ms is needed which almost satisfies the real time application.

5. Conclusion

We have proposed a novel approach to fuse the global and local mo-
tion pattern separation and key visual information for semantic event recog-
nition in basketball videos. Through a two-pipeline framework, MPs and
KVT are extracted for group activity recognition and for success/faillure pre-
diction, respectively. Results from the two pipelines are further integrated
using Kronecker product for semantic event recognition. Experimental re-
sults demonstrate that our proposed method is effective for semantic event
recognition in basketball videos and obtain state-of-the-art performance on
the NCAA dataset. The superior performance of cross dataset testing on
NBA&CBA dataset further demonstrates the generalization ability of our
proposed method. In this work, we just separate the global and local mo-
tion, the local motion is still constrained by the camera movement. In future
work, we will focus on completely removing the global motion and mapping
the local motion to the real court.
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