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Abstract

This paper presents a new artificial neuron model capable of learning its re-

ceptive field in the topological domain of inputs. The model provides adaptive

and differentiable local connectivity (plasticity) applicable to any domain. It

requires no other tool than the backpropagation algorithm to learn its param-

eters which control the receptive field locations and apertures. This research

explores whether this ability makes the neuron focus on informative inputs and

yields any advantage over fully connected neurons. The experiments include

tests of focusing neuron networks of one or two hidden layers on synthetic and

well-known image recognition data sets. The results demonstrated that the fo-

cusing neurons can move their receptive fields towards more informative inputs.

In the simple two-hidden layer networks, the focusing layers outperformed the

dense layers in the classification of the 2D spatial data sets. Moreover, the fo-

cusing networks performed better than the dense networks even when 70% of

the weights were pruned. The tests on convolutional networks revealed that us-

ing focusing layers instead of dense layers for the classification of convolutional

features may work better in some data sets.
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1. Introduction

The structure of the brain is mutable. Neuroplasticity, the ability of neurons

to reorganize and adapt to inner or outer environments, causes the brain to

change through its lifetime [1, 2]. The changes can occur in larger (e.g., cortical

remapping) or in microscopic synaptic scales in which individual cells alter their

connections through activity and learning [2, 3]. The changes allow divisions

and specializations to make the biological brain capable of solving thousands of

sensory, cognitive, and behavioral problems within the same framework [4].

Recent developments in the design and training of artificial neural networks

(ANN) enabled us to solve many pattern recognition problems within an accept-

able range of accuracy. However, artificial networks are not yet comparable to

the self-organizing and multi-functional biological brain. Many biology-inspired

artificial models are unfit for large-scale pattern recognition tasks [5]. Hence,

still, many recent works propose sophisticated artificial network structures op-

timized for solving single-target tasks [6, 7, 8, 9, 10, 11]. Although some ar-

chitectures can deal with multimodal information [10, 12], the typical design

approach is to create a fixed topology (network connection map) to solve a

task. The connection map is pre-determined by an expert, who uses heuristics

or prior knowledge of the domain. Some hard-wired networks are composed of

several interacting sub-networks [7]; however, the fixed network structures still

lack the self-organizing capacity of the brain.

Mimicking the self-organizing brain may be possible with an automated al-

gorithm that can construct a network iteratively or via evolutionary mecha-

nisms [13, 14], yet new models that can self-create a topological structure are

nevertheless required. Though the literature contains examples of architecture

optimizers [15, 16, 17, 18], network growing/pruning algorithms [19, 20, 21, 22],

and evolutionary processes [14], the approach of the current paper is based on

a new artificial neuron type that can learn its receptive field and thereby its

local connections in a topological structure. The new model, termed a “focusing

neuron”, brings an adaptive-wiring ability to artificial neurons.
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Some studies on local learning or local receptive fields [23, 24, 25] interpret

the locality of a neuron as its selectivity in the input value domain. For example,

in an input space formed by two input features (x,y), such a neuron learns to

be active for only a subset of the input space (e.g., [xa < x < xb, yc < y < yd]).

Hence, this localization corresponds to a partitioning (clustering) of the input

(value) space but requires the neuron to be globally connected to observe the

whole space. Instead, the locality of the proposed model here is based on the

input topology.

A focusing neuron has a focus attachment to change its local receptive field

in the topological domain of inputs [26, 27]. It can learn and create unique con-

nection maps for inputs and problems presented by data. Akin to the synap-

tic plasticity guided by biochemical cues between axons and dendritic spines

[28, 29], the new model uses error gradients to guide the receptive field. To that

end, the proposed framework assumes a continuous positional (spatial) space

for the inputs in which the focus function is differentiable. Thus, focusing neu-

rons are made entirely trainable using the gradient descent algorithm with no

additional heuristics.

To summarize, this paper introduces a topology-aware and locally adaptive

neuron model, the focusing neuron. It does not claim the state-of-the-art in a

particular pattern recognition application, nor does it suggest replacing the fully

connected neuron model or convolutional networks. However, the new model

and its components (positional inputs and the training of the locality) can guide

us in reducing structural heuristics and redundancy in neural networks.

The main contributions made by this paper are as follows:

1. It formally describes the focusing neuron model.

2. It devises a scheme for the initialization of weights and focus parameters.

3. It demonstrates that the focusing neuron can seek informative features

and avoid redundant inputs.

4. It presents test results from networks of focusing layers in comparison with

those from networks of fully connected layers, using the popular MNIST
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[30], MNIST-cluttered [31], Fashion [32], CIFAR-10 [33], LFW-Faces [34],

Reuters newswires [35], DNA [36], and Boston Housing data sets [35].

5. It demonstrates that, owing to their (trained) narrower receptive fields,

connections constructed by a focusing neuron layer can be 70% sparser

than those of its dense counterpart, while also performing better.

6. It demonstrates that when used as a classifier after stacked convolutional

layers, focusing layers can provide a better or similar classification perfor-

mance compared to dense layers.

2. Background

The concept of locality is important for neural networks and the motivation

of this work. This section reviews the related literature and examines the fully

and locally connected neuron models from the corresponding perspective.

2.1. Local Learning

Hubel and Wiesel [37] discovered that the simple cells in the primary visual

cortex are selective for the position, scale, orientation, and polarity of inputs.

Further, the complex cells that process signals from these simple cells can be

selective in as much as to activate only in the presence of a particular face or

object [38]. The selectivity (or locality) of a biological neuron thus relies on dif-

ferent cell types, local wiring (selective pooling), and the hierarchical structure

of the neural circuitry [39].

A psychologist, Donald Hebbian [40], was the first to refer to a metabolic

mechanism that strengthens the connection between two neurons: “When an

axon of cell A is near enough to excite cell B and repeatedly or persistently

takes part in firing it, some growth process or metabolic change takes place

in one or both cells such that A’s efficiency, as one of the cells firing B, is

increased”. The description is slightly vague. However, note that the axon of

A (not A itself) is required to be sufficiently close enough to strengthen the

connection with neuron B.
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From the AI perspective, Baldi and Sadowski’s framework [41] maintains

that 1) local learning depends on local information (of pre- and post-synaptic

neurons), and 2) the functional form which operates the learning rule must use

only the local information due to the activations of these neurons. Thus, for a

generic update rule of the form, 4w = f(x,Θ) the input signal x and update

parameters Θ must both be local.

2.1.1. Local Receptive Fields

The discussion of local receptive fields can be traced back to Rosenblatt’s

[42] perceptron, which was the first weighted neuron model devised for feed-

forward networks. Some variations of the perceptron were designed to be locally

connected, i.e., had a limited fan-in in the input space [43]. The perceptron also

included random (stochastic), partially connected neurons. As Minsky [43] had

also noticed, non-overlapping local receptive fields limit the (spatial) scale of

information that can be extracted from the input. Fukushima [44] subsequently

tackled this problem with a hierarchical network structure (aka neocognitron),

which later inspired convolutional neural networks [30].

2.2. Fully Connected Neuron

The conventional fully connected neuron model [45, 46] is often used in

feedforward neural networks. The neuron multiplies the inputs (x1, x2, ...xm)

by the connection weights (w1, w2, ...wm) and then sums the weighted inputs,

adding a bias term (b) to calculate a net/total input. It then passes the net

input (net) through a non-linear transfer function (f) to produce the output

(a) of the neuron (1).

a = f

(
m∑
i=1

wixi + b

)
(1)

The receptive (or input) field covers every input or neuron in the backward

connected layer and is thus defined as being “fully connected”. A layer formed of

such neurons is commonly referred to as a “dense layer”. For a fully connected

5



neuron of m inputs, there can be 2m permutations (of the input), which are

equivalent since the positioning (ordering) of the inputs (here the index i) is

unimportant. The free parameters of the model are the weight values (and the

bias) which are updated (trained) using the delta rule (3):

ŵi = wi − η
∂E

∂wi
= wi − η

∂E

∂a

∂a

∂net

∂net

∂wi
(2)

ŵi = wi − η
∂E

∂a
f
′
(net)xi (3)

2.2.1. Redundant Connections

At first glance, a fully connected neuron should be able to zero-out some

of its weights through updates and thence become locally, or at least partially

connected. However, no matter how redundant the inputs or connections, the

training cannot cancel any connection, partly due to the learning rule and the

ordinary cost functions such as minimum squared error or cross-entropy.

To understand this phenomenon, let us examine the delta rule for a neuron

with two inputs and two connections. Assume that one connection (w1) is

attached to a constant, non-informative, and non-zero input (x1 =c), where the

other connection is attached to an informative and changing input (x2). Since

x1 is constant, let us set the corresponding weight to zero, i.e., w1 = 0, which

results in a broken connection. In the first (next) update, w1 cannot remain

at zero unless either the error term ∂E
∂a or the derivative term f

′
(net) is also

zero (η > 0). Both terms are shared in the update of both weights (w1, w2).

Hence, the error term cannot be zero unless the training is completed. The

derivative term depends on the activation function (f) in the form of sigmoid,

tanh, or relu, which have positive (or zero) derivative values. A zero derivative

value can keep the weight w1 at zero, yet this prevents the update of w2 as well.

Even if the weight value reaches zero via an update, it would change at the

next update unless the error term had also reached zero in the same iteration.

The induction is similar for a neuron with a greater number of inputs or a truly

random (non-informative) redundant input. I have prepared a python notebook
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to demonstrate this phenomenon experimentally on the MNIST data set [47].

The problem of network redundancy in terms of the number of neurons and

connections was a popular theme of early studies [20, 48, 49]. Subsequent in-

creases in computational power or excitement around novel, deeper architectures

may have temporarily overshadowed the problem. However, research into the

issue of redundancy has recently regained its momentum with the development

of resource-critical applications [18, 50, 51, 52, 53].

It is possible to reduce network redundancy through the simple strategy of

adding a regularization factor to the loss calculation. Typical examples are the

L1 or L2 norms of weights in a network or layer [54]. Such a regularization term

creates a penalty for the weight magnitudes, pushing them toward zero, and ul-

timately making the network sparser and less redundant. However, the penalty

term is applied to all connection weights in a layer (or whole network); it does

not explicitly target redundant connections. Therefore, adding a regularization

penalty to a cost function requires attention because it may compete with the

target loss of a network.

2.2.2. Locally Connected Neuron Model

A locally and partially connected model may refer to various structures

[49, 55, 56]. Local implies a connected and bounded group (subset) of con-

nections, whereas partial may refer to any subset of all input connections [49].

For example, connecting a random subset of neurons will create a partially

connected structure. Therefore, partial includes local, but not vice versa.

The fully connected model (1) can express a partially connected neuron by

setting some weights at zero. However, it neither generates nor maintains a

partially connected structure during the training due to the gradient updates

deriving from the backpropagation learning rule. Therefore, to create locally

(and partially) connected structures in practice, some designers have used do-

main knowledge or assumptions to partition the input space and create manual

wirings for specific problems [57, 58, 59, 60]. The fixed local connection maps

(or layers) constrain the neurons to receive signals from a fixed subset of inputs,
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i.e., a region in the input domain. In contrast, the proposed model allows a

neuron to learn its local connections by trainable parameters.

2.2.3. Convolutional Layers

Several attempts to create adaptive local connections for convolutional neu-

rons are reported in the literature. In locally smoothed neural networks [61],

convolutional filter weights were factorized into smoothing and kernel parts.

The smoother part was modeled by a 2-D Gaussian function, and a regression

network dynamically generated the parameters of the Gaussian smoothers. The

Gaussian smoothing of the input space can be seen as a particular case of (dy-

namic) focusing neurons for two-dimensional input spaces. In [62], a Gaussian

envelope was used to guide convolution kernels to create an adaptive receptive

field size and orientation.

2.2.4. Clustering based locality

Further studies have implemented the locality of a neuron as its selectivity

(specialization) in the input value domain [23, 24, 25, 63]. The selectivity is built

by partitioning/clustering the input (feature) density space. A well-known ex-

ample of clustering-based approaches is the radial basis function (RBF) network

[63]. In an RBF network, each neuron localizes itself in the input value domain

using the center and spread of Gaussian kernels. RBF neurons cluster or par-

tition the input value domain instead of the inputs’ spatial domain. Likewise,

learning in vector quantization networks involves competition between individ-

ual neurons to gain control of a cluster in the input domain [64]. RBFs (and

LVQ neurons) are invariant to input topology, meaning that an RBF neuron

must receive all inputs to localize itself in the input value domain.

A self-organizing map (SOM) projects the input feature space to a two-

dimensional lattice [65]. Hence, SOM neurons can be described as neurons with

spatial dimensions; however, the spatial dimension of inputs is ignored.

In a hierarchical network structure, the neurons are activated selectively for

different inputs. For example, in the primate brain, one can find individual
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neurons activating for particular faces [38]. The neural hierarchy naturally

induces a specialization (localization) in the input space. Some research aims at

manipulating or guiding this selectivity (and specialization) to create orthogonal

and sparser receptive fields and thence representations [23, 24, 25].

2.2.5. Adaptive locality in the topological space

This section describes how locality involves local connections/wiring of the

neurons, as in our model. The biological name for adaptive local connectivity

is plasticity (neuroplasticity). While relatively less-explored in the artificial

domain, plasticity has long been an active area of neurobiology research [66],

as well as in spiking artificial neuron models [67, 68, 69]. Nevertheless, some

studies in artificial neural networks have directly aimed to reproduce Hebb’s

rule or other plasticity models [70, 71, 72]. For instance, Miconi’s [71] neuron

model includes a fixed weight wij (as in a fully connected neuron), a plasticity

coefficient αi,j and a recursively calculated Hebbian trace (Hebbij):

aj(t) = f

(
N∑
i=0

−1 [wijxij + αi,jHebbij(t)ai(t− 1)]

)
(4)

Thus, the model requires a recurrent calculation of Hebbian Hebbij(t) trace

using Oja’s rule [70]; however, the non-plastic weight component must be set at

zero wij = 0 to ensure complete plasticity.

Locality has been frequently investigated in the context of visual attention

models where the objective is to interpret or exploit the information in various

locations of an input image [73, 74]. Recently proposed deep neural network

architectures of visual attention models [11, 10] have shown impressive results in

multiple object recognition, image captioning and similar tasks. The common

strategy in these models is to process an input image in n steps where, at each

step, the recurrent layer examines the current input and then decides on the

next location to process.

Cheung et al. [75] proposed a retinal glimpse model (for visual attention)

employing Gaussian kernels to control sampling locations and scales. Similarly,
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Figure 1: The focusing neuron model. The focus attachment φ allows the neuron to change
its receptive field and adjust the aperture size. It generates coefficients which are multiplied
by inputs and connection weights to collect the net input. The sum of net input and bias b is
mapped to the output by the activation transfer function f .

the focusing neuron model introduced in this paper employs Gaussian kernels

to control and learn the location and scale of the local receptive field. The

focusing neuron model is generic and hence may be used for any task without

being limited to visual attention.

The capsule architecture proposed by Sabour et al. [76] performs dynamic

routing, which is an example of adaptive locality. A capsule is a group of neurons

with a routing function that selectively and jointly directs the output vector of

the group to only one of the several groups in the forward layer. The routing

function is iteratively calculated per input. In contrast, the focusing model is

static (learned during training) however, it can be made dynamic (calculated

per input). Interestingly, the focusing neuron model can be made forward-faced,

thus enabling it to adaptively focus the output transmitting field for the next

layer. However, the backward focusing model is more compatible with the back-

propagation algorithm and runs more efficiently on current graph computation

frameworks such as Theano [77] or Tensorflow [78].
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3. Method

3.1. Focusing neuron

A focusing neuron is an adaptive, locally connected neuron. Figure 1 depicts

the new model as a neuron with a backward focus attachment. The role of the

focus is to suppress the connection weights for some inputs to allow signals from

the rest. The name is motivated by the fact that the neuron can change both

its local receptive field location and its size (aperture). The new model assumes

a topological (positional) continuous input space where the focus function is

differentiable.

The following describes a focus mechanism for a one-dimensional input topol-

ogy which can be simply generalized to further dimensions. Let τ(i) ∈ < denote

a mapping for the position of the input indexed with i. The focusing model has

the following functional form:

a = f

(
m∑
i=1

wiφ (τ (i) ,Θ)xi + b

)
(5)

The focus function φ with its parameters (Θ) generates a focus coefficient

for each input i at position τ(i). This may resemble the addition of a second

weight for the connection. However, the coefficient values are dependent and

controlled by the neuron’s Θ value. With the appropriate functional form and

parameters, the neuron can change its input subset by moving or resizing its

receptive aperture. This model complies with the popular tensor processing

libraries which perform layer-wise operations. The effective (product) weight

matrixK is computed by an element-wise multiplication of the focus coefficients
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Φ with weights W (see Algorithm 1).

Algorithm 1: Compute the output of a focused layer
Input: X: b×m input matrix (b: batch, m: features), Φ: m× n (n:

neurons) focus coefficent matrix, W : m× n weight matrix, b:

n× 1 bias vector (broadcasted into b× n), f : activation function

Output: Y : b× n layer output.

◦: element-wise Hadamard product; .: tensor dot

begin

K = Φ ◦W

Y = f (X.K + b)

3.1.1. Focus control function

A Gaussian form is the first candidate for the focus control function because

it is continuous and differentiable, and it neither creates nor enhances extrema

[79]. Some of these properties also exist in discrete space if the sample size is

sufficiently large. For simplicity, it can be assumed that τ(i) = i/m, so that the

input position is taken as its normalized index overm neurons in the input layer.

In a multi-dimensional topology, both the control function and position are

multivalued, e.g., τ(i, j) = (i/m, j/n). Nevertheless, a Gaussian focus φ(i,Θ)

for single-dimensional input topologies can be defined in the following way:

φ(i, µ, σ) = s e−
(i/m−µ)2

2σ2 (6)

where µ represents the center of the field and σ acts as the aperture control

(6). The form includes the scaler (s) in order to equalize the norm of φ to the

norm of a fully connected equivalent model. The scaler s maintains the norm

with respect to the neuron’s receptive field (7). When σ is very large, the scaler

converges to 1.0 (s u 1), which makes the neuron fully connected.

sj =

√
m√√√√ m∑

i=1

(
e
−

(i/m−µj)2

2σ2
j

)2
(7)
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Algorithm 2 shows the procedure for computing Gaussian focus coefficients

for all neurons in a layer. The procedure must be invoked prior to each calcu-

lation of the layer output in order to obtain the layer coefficient matrix.

Algorithm 2: Compute the Gaussian Focus Coefficient Matrix of a Layer
Input: Layer with m inputs and n neurons, µ: vector of n focus centers,
σ: vector of n focus apertures, τ : vector of m constant input locations
(the paper experiments used m linearly spaced points in range [0.0, 1.0]).
Output: Φ: m× n focus coefficent matrix
begin

for j ← 0 to n− 1 do
sum ← 0
for i← 0 to m− 1 do

d← (τ [i]− µ[j])
2
/(2σ[j]

2
)

Φ[i, j]← e−d

sum ← sum + Φ[i, j]

//Normalize the coefficients
for i← 0 to m− 1 do

Φ[i, j]←
√
m×Φ[i, j] /sum

Note that the Gaussian is nearly non-zero over the input positional domain.

This is desirable since the neuron must receive inputs and corresponding gra-

dient cues (however small) from the positions that are farther from the focus

center. However, at run-time, the out-of-focus coefficients can be neglected

(or pruned) if desired, which is different from pruning the smaller weights of a

trained network. Since the product of the trained focus coefficients and weights

form the effective weights, the focus function is not necessary at run-time, unless

online learning is in progress.

The partial derivatives of the Gaussian focus function for µ and σ are well

defined (8). They can therefore into the chain rule easily (9) and can be trained

with the backpropagation learning rule and common cost functions:

∂φ

∂µ
=

(i/m− µ)

σ2
φ ,

∂φ

∂σ
=

(i/m− µ)2

σ3
φ (8)

13



µ̂ = µ− η ∂E
∂a

∂a

∂f

∂f

∂φ

∂φ

∂µ
, σ̂ = σ − η ∂E

∂a

∂a

∂f

∂f

∂φ

∂φ

∂σ
(9)

There can be many alternatives to the Gaussian focus. A simple negation of

Gaussian (i.e., 1 − φ) or the derivative of Gaussian is a good candidate. How-

ever, one can design different focus control functions using various differentiable

forms. For example, one can sample focus coefficients from a distribution such

as Bernoulli or use a piece-wise linear function in the shape of a triangle.

3.1.2. Initialization of parameters

Recent studies have shown that the initialization of weights in a neural net-

work is crucial for improving its training and generalization capacity [80, 81].

The focus coefficients scale the weights and change the variance of the propa-

gated signals (see Appendix A). Moreover, since the total fan in (or the number

of inputs) of a focusing neuron is usually larger than its effective fan in, a scaler

(7) ensures the total norm to be equivalent to the norm of a fully connected

neuron. However, in general, the weights of an individual focusing neuron (j)

can be sampled with respect to the squared norm of its focus coefficients vector:

w0 ∼ U

[
−

√
6√∑m

i=1 φ
2(i)

,

√
6√∑m

i=1 φ
2(i)

]
(10)

To initialize the receptive fields, one must also initialize µj and σj for the

Gaussian control function φ(i/m, (µj , σj)). The centers of the foci µj can be

spread out or randomly initialized in the range [0, 1], while the aperture controls

must be initialized to positive non-zero values, σj > ε. Distributing the foci

centers works more effectively than initializing them all in the center. Initializing

σ to a value in the range ([0.02, 0.2]) enables the neuron to receive farther inputs.

A smaller σ value generates overly narrow apertures which may cause neurons to

be stick in their initial position. On the other hand, a larger σ generates a wider

aperture which may cause the neurons to be indifferent and fully connected. In

fact, the ideal µ and σ initializations depend on the intended role of the neuron.

In addition, one can apply L1 or L2 regularization on σ to encourage locality,
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if the σ=0 case is handled explicitly.

4. Experiments

The experiments address two fundamental questions about the new model.

First, can focusing neurons steer away from redundant inputs towards informa-

tive inputs? Second, how do focusing neurons perform in comparison to fully

connected neurons? The code is shared online [47].

4.1. Learning to Focus

First, a synthetic (Gaussian blob) classification data set of two classes and

20 dimensions was constructed. Then 20 additional Gaussian random input

columns of normal distribution N(0, 1.0) were sampled and added to the left

side or both sides of the data to form two separate data sets of 40 dimensions.

Next, each data column was normalized for zero-mean and unit variance.

A single hidden layer network with four hidden focusing neurons, 2 output

neurons, rectified linear activations, and batch normalization was constructed.

For the focusing layer, all σs were initialized to 0.08. For the left-noised case,

µs were initialized in the center with a small random margin; for the sides-

noised data set, µs were initially spread out over the input space ([0.2 − 0.8]).

The focusing neurons’ weights w and µ used a learning rate of ηµ,w = 1e − 3,

whereas the apertures σ used a lower rate of ησ = ηµ ∗ 0.1 to train the network

with stochastic gradient descent with momentum (0.9) for 250 epochs with a

batch size of 128. Figures 2a and 2b show the initial foci and learned foci

after 250 epochs for the sides- and left-noised data sets respectively. In the

former, since the informative features were in the center, the foci moved in this

direction. In the latter, the features were on the right, and the foci accordingly

shifted rightwards.

In both cases, most foci were enlarged and migrated towards informative

inputs. The apertures were enlarged because only four focusing neurons were

used to partition the whole input field. Figure 2c shows the changes in foci

parameters for the left-noised data set during the training epochs.
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Table 1: Synthetic data set, network and training parameter sets

#Input Samples: N={100,200,2000,10000}
Input Length: nL={4,40,400}
Noisy Dimensions: nL*{0.0,0.5,1.0}
Noise Position: {Sides,Left}
#Clusters: {1,2,4}
#Classes: {2,4,8}
#Hidden Neurons: {4,40,100}
Batch Size: N*{0.1,0.05}
Learning rate: {0.01,0.001}
L2 Penalty: {True,False}

In some cases, when the neurons were initialized in pure noise regions (not

shown); they could become stuck when the initial aperture was narrow. There-

fore, while demonstrating that focusing neurons can seek and focus on infor-

mative inputs, this experiment also showed how the same neurons can become

jammed in noisy input regions with a narrow aperture. Similar results were

observed with larger synthetic input domains and with different settings. Fig-

ure 2d shows the initial and final focused weights (φi ∗wi) for each neuron (for

the left noise-added data set). The final non-zero weights are apparent on the

right and cleaner half of the input space. In the following experiments, the

question of whether the demonstrated adaptivity yields an advantage over fully

connected neurons was investigated.

To gain more insight, a script was prepared which repeatedly sampled a ran-

dom synthetic data set, created matching focusing and dense networks, selected

random training parameters, and then trained and tested the resulting accuracy

of classification in an independent test set of the same distribution. The set of

parameters and conditions of the experiment is shown in Table 1. Figure 3

shows the test set classification accuracy from 750 runs. Regardless of the data

set or training parameters, the focusing networks performed better in the noisy

data sets and similar to the dense networks in the clean data sets. A python

notebook reproducing and visualizing these results can be found in [47].
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(a) (b)

(c) (d)

Figure 2: Locating informative features: a) Input with noise on the sides; foci were initially
spread and during the training they shifted to the center. b) Input with noise on the left; foci
were initialized in the center and during the training they shifted to the right. c) Trajectory
of the foci parameters during training (�: start, .: end). d) Final weights for b).

Figure 3: Scatter of test classification accuracies of two-layer focusing layer networks (x-axis)
versus dense networks (y-axis) obtained in 750 random trials. The parameters for the random
data sets and training parameters are given in Table 1.
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Table 2: Test classification performance in spatial 2D data sets. The first part compares the
simple (2-hidden) Dense and Focused networks. The second part compares Dense (CNN+Dns)
and Focused (CNN+Fcs) layers placed after the flattened convolutional layers. In each
case, two tailed t-test results included. N (repeats)=5, p: p-value, highlights indicate *
:p-value<0.05.

MNIST CLT CIFAR-10 Fashion LFW-Faces Spoken-Digits

Simple Two Hidden Layer Networks
Mn±std Max Mn±std Max Mn±std Max Mn±std Max Mn±std Max Mn±std Max

Dense 99.02±1e-3 99.14 60.26±0.01 60.5 61.7±2e-3 62.2 90.26±3e-3 90.98 69.85±4e-3 70.5 97.6±1e-3 97.9

Fixed-s 99.25±6e-5 99.28 73.86±0.02 74.17 63.47±1e-3 63.87 89.83±7e-4 89.96 69.76±6e-3 70.86 97.74±2e-3 97.6

Focus-c 99.11±2e-3 99.14 67.18±3e-3 67.5 64.08±2e-3 64.34 90.9±2e-4 90.91 74.14±5e-3 75.11 98.18±1e-3 98.4

Focus-s 99.25±2e-4 99.27 72.1±0.08 72.22 64.96±3e-3 65.2 91.16±0.07 91.25 74.42±8e-3 75.43 98.5±1e-3 98.7

T-Tests t p t p t p t p t p t p

Dense-
Focus-s -6.26 2e-4* -93.94 2e-13* -16.1 2.2e-7* -5.89 3e-4* -10.1 7.8e-6* -7.9 4.8e-5*

Convolutional Networks
Mn±std Max Mn±std Max Mn±std Max Mn±std Max Mn±std Max Mn±std Max

CNN+Dns 99.59±2e-4 99.63 94.32±6e-3 94.88 77.06±1e-3 77.69 94.09±0.01 94.28 88.5±5e-3 89.29 98.84±1e-3 99.0

CNN+Fcs 99.59±0.02 99.63 96.28±0.01 96.47 78.71±0.4 79.34 94.06±0.08 94.19 89.07±4e-3 89.60 98.4±1e-3 98.6

T-Tests t p t p t p t p t p t p

Cnn+Dns-
Cnn+Fcs +0.52 0.61 -6.4 2e-4* -6.52 1.8e-4* +0.33 0.74 -1.58 0.15 +2.4 0.04*

4.2. Comparison with Fully Connected Neuron

4.2.1. Spatial 2D Data

To test the focusing model in a real data scenario, the popular gray-scale

MNIST character recognition data set [30] (MNIST) was the first place to start.

More challenging data sets were also used: a cluttered version of MNIST data

(CLT), comprised of randomly transformed MNIST samples superimposed on

cluttered 60x60 backgrounds [31]; the CIFAR-10 general object classification

data set which is composed of 32x32x3 RGB images of ten concrete categories

such as car, plane, bird, horse, etc. [33]; and the (FASHION) clothes data

set which is arranged similarly to MNIST [32] to include 10 categories such

as t-shirt, pullover, and coat. These almost standard data sets had already

been separated into training (60000) and test instances (10000). The tests also

included the “Faces in the Wild” data set (LFW-Faces) [34] as a benchmark

for face verification. The LFW-Faces set contains 13233 images of 5749 people;

in order to reduce the number of output classes, for the current experiments,

individuals with less than 20 images were excluded, resulting in a data set of 3023

(2267 train, 756 test) images of 62 people. Finally, the free spoken-digits data

set (Spoken-Digits) [82] was also deployed. This set includes 2500 audio files of
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digits spoken by 5 people (50 of each digit per speaker) which was randomly

split into 1250 training and 1250 test instances.

A fully connected neural network of two hidden layers was then built accord-

ing to the following structure: Input - Hidden (800) - BatchNorm - DropOut

(0.2) - Hidden (800)- BatchNorm - DropOut (0.25) - Output (10 or 62 for Faces

data). The network configuration for this structure can be found in the sup-

plementary figures. For the purposes of comparison, the dense hidden layers

were replaced by focused layers, and three different focusing network configu-

rations were compared: 1) A focused layer network (Focus-s) with foci were

initially spread out (µ=[0.2, 0.8]) over the input; 2) Foci initialized at the center

(Focus-c), and 3) Foci were initially spread out (µ=[0.2, 0.8]) however not up-

dated during training epochs (Fixed-s). The Fixed-s σ was set at 0.1, whereas

for other networks, the σs were initialized to 0.025.

The learning rate for each data set was manually tuned to elicit the best

performance from the dense network. Then, with the exception of the learning

rate, all focusing network hyper-parameters were manually tuned to get the best

performance from the focused networks. The learning rates for MNIST, CLT,

and CIFAR-10 were ηg = 0.1, ηµ = 0.01, and ησ = 0.01 for the general (non-

focus), focus center and aperture learning rates, respectively. For the Fashion

data set, the rates were ηg = 0.1, ηµ = 0.01, and ησ = 0.0005, respectively.

Finally, for the LFW-Faces data set the networks used a single learning rate of

ηg = 0.01 for all parameters.

All networks were trained for 200 epochs. The training and test cycle was

repeated five times. The averages of the best test accuracies that were calculated

using Algorithm 3 over five repeats and their maxima are shown in Table 2.

Other details can be found in the source code provided [47].

MNIST : For the MNIST data set, all three focused networks performed

slightly better than the dense network. Fixed-s was the best performing, with

the Focus-s performance almost as effective, and the Focus-c slightly better than

the dense network. Figure 4a shows the training and test errors that occurred

during training iterations (for the top performed dense and Focus-s networks).
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Algorithm 3: Train, test, and optimization procedure
Input: network, dataset, Nrepeats, Nepochs, Lrrates={ηg, ηµ, ησ}:

learning rates for global variables, µ and σ respectively
Mmrate={mg = 0.9}: momentum rate.

Output: BestTestResults: list of best test accuracies.
begin

BestTestResults = []
for r ← 0 to Nrepeats − 1 do

EpochAccuracyList = []
trainX,trainy,testX,testy = randomsplit(dataset)
for e← 0 to Nepochs − 1 do

for each batch (Xinputs, targets) in (trainX, trainy) do
params ← network.trainableparams
pred ← network.output(Xinputs)
loss ← categoricalrossentropy(targets, pred)
updates ← SGD(loss, params, Lrrates, Mmrate)
//SGD: stochastic gradient descent with momentum
if type(network) == focused then

updates.append(clip(params.sigma, 0.01, 1.0))
updates.append(clip(params.mu, 0.0, 1.0))

network.update(updates)
score ← accuracyscore(network, testX,testy)
EpochAccuracyList.append(score)

maxscore ← max(EpochAccuracyList)
BestTestResults.append(maxscore)
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The dense network reduced the training error rate better; however, the test

error rate increased gradually.

To inspect the locality of the connections, Figure 5a details the focused

weights (wi ∗ φi) of all neurons from the first layer of the trained Focused-

s network with three example focus functions and focused weights shown in

Figure 5b. Figures 5c and 5d present 2D projections of the focus functions

and the focused weights of the same three neurons. It can be seen that the

receptive fields of the first-layer neurons formed overlapping bands in the 2D

input domain.

Figure 7a shows the distribution of the focus apertures (σ) of the first and

second layers of the network after training for 200 epochs. Although all neurons

were initialized with a relatively narrow σ value (0.025), the average σ was close

to 0.1 at the end of the training. A video sequence showing the change of the

foci during the training can be found in the supplementary materials.

MNIST-Cluttered (CLT): Compared to the original MNIST collection, the

images in this data set feature strong background clutter and positional varia-

tions inside the 60x60 frame. Table 2 shows that all three configurations of the

focused network performed 5-10% better than the dense network on this set.

Surprisingly, the best result was obtained by Fixed-s, which performed slightly

better on the task than Focus-s. By checking the validation error rate in Fig-

ure 4b, one can see that both the dense network and its focused counterpart

overfitted, though this was more prominent in the former case. The Fixed-s

network performed slightly better than the trainable focus although it should

be noted that the focus parameters (µ=spread, σ=0.1) were manually tuned for

Fixed-s.

CIFAR-10 : All three configurations of the focused networks performed bet-

ter than the dense network with the Focus-s network obtaining the highest level

of accuracy. Again, the training and validation errors in Figure 4c indicate

overfitting in the dense model.

Fashion: The highest accuracy was obtained by the Focus-s network. The

Focus-c network performed slightly better than the Fixed-s and dense networks.
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As before, the dense network reduced the training error rate more effectively; but

started overfitting earlier than the focused network, as shown by the increased

errors in the validation set (Figure 4d).

LFW-Faces: In the training of this data set, a data augmentation composed

of instance mirror and random xy-translation was used. Again, the Focused-

s performed the best, followed by the Focus-c and dense networks. Figure 4e

demonstrates that both training and validation errors were reduced further than

the Dense network was able to achieve.

Spoken-Digits: Due to the limited size of the samples in this data set, 10-fold

cross-validations were performed. The audio samples were transformed into Mel

frequency cepstral coefficients using the Librosa library. Table 2 shows that the

Focused-s network test set performance was the best followed by the Focus-c

network. Figure 4e shows lower training and validation errors for Focused-s.

T-Tests: To test the significance of the difference in the mean test accuracies

two sample t-tests were performed. Table 2 presents the difference between the

Focus-s and Dense network mean accuracies. Across all data sets, there were

statistically significant differences in favor of the Focused-s network (highlighted

green). The improvements recorded across the more challenging data sets were

particularly remarkable: CLT ≈ 12%, CIFAR-10 ≈ 3.4%, LFW-Faces ≈ 4.5%.

4.3. Number of Hidden Layer Neurons

The next experiment sought to compare the networks when the number of

neurons in the hidden layers was changed. To this end both networks (Focus-s

and Dense) were reconstructed with different numbers of neurons in the hidden

layers {64, 128, 256, 512, 800, 1024} when classifying the MNIST and CIFAR-10

sets. For both networks, the train-test cycle was repeated 5 times for each size.

The average test accuracies shown in Figure 6 revealed that, except for the lowest

size (64), the Focus-s networks outperformed their dense counterparts, which

used the same number of neurons. Moreover, the Focus-s networks with 256 or

more neurons in the hidden layers outperformed any Dense network tested on

the data sets.
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(a) MNIST (b) MNIST-CLUTTERED (c) CIFAR-10

(d) FASHION (e) LFW-FACES (f) FSDD-Audio

(g) REUTERS (h) BOSTON (i) DNA

Figure 4: Training (Trn) and Validation (Val) categorical cross entropy (mean squared error
for BOSTON) per training epoch of Dense and Focused-s networks for different data sets.
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(a) (b)

(c) (d)

Figure 5: Locality of the Focus-s network after the MNIST training. a) Focused weights of all
neurons in the first layer, b) Foci and focused weight values for three different neurons. c) 2D
projection of the focus functions of the same three neurons, d) 2D projection of the focused
weights of the same three neurons. + indicates focus center and s denotes σ value.
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(a) MNIST

(b) CIFAR-10

Figure 6: Comparison of the mean test accuracies of the Focus-s and Dense networks with
different number of hidden neurons (64, 128, 256, 512, 1024).
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4.4. Sparsity

As mentioned earlier, the focus function is only necessary during training. At

run-time, the product of the focus coefficients and weights can be used instead.

Moreover, eliminating out-of-focus weights in a trained network would produce

a simplified and sparser network. For the sake of brevity, let us write φi for

the focus coefficient i. If out-of-focus weights are removed by thresholding φi

the trained network can be pruned. Removing out-of-focus weights as described

above differs from dropping smaller weights in a network as it was done in [51].

This was demonstrated on a focused network (Focused-s) trained on the

MNIST data set. Figure 9a shows the distribution of the number of non-zero

connections per neuron in the first and second hidden layers achieved by the

setting φi[φi<1e-7] = 0 and φi[φi<1.0] = 0. With the first pruning, the test

accuracy was unaffected. In the latter case, the accuracy was increased, although

on average, most neurons were connected to a quarter of the inputs.

In order to establish the tolerance of the network to pruning, accuracy was

examined against increased pruning or sparsity. Sparsity was calculated as the

ratio of the number of zero weights to the number of total weights. Figure 9b

plots the test set classification accuracy for increasing sparsity obtained by prun-

ing with an increasing threshold value t (φi[φi < t] = 0). The accuracy of the

pruned network was still above the dense network even when more than 70% of

the connections were dropped. Notably, it was also possible to improve accuracy

to a level slightly above that of the base level. Blundel et al. [83] showed that it

is possible to remove 98% of 2.4M weights in a two hidden layer network while

maintaining 1.39% test error on the MNIST set. In the current case, 0.74% test

error was achieved while removing ≈70% of 1.2M weights.

4.5. Use as a classification layer

4.5.1. Convolutional Networks

Currently, the most popular use for dense layers is in the classification of

deep representations computed by convolutional feature extractors. Here, the

role of the dense neuron is different from the ones facing the input in simple
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(a) (b)

Figure 7: Histogram of σ values after the training a) for the focused layers in Focus-s and b)
in the focused classification layer of the CNN+Fcs network.

2-hidden layer networks. Therefore, there are two main questions. First, how

would a convolutional network perform in the experimental setup with the same

data? Second, how would the focusing neuron layers perform in classifying

convolutional features? To address these questions, a minimal convolutional

network (CNN+Dns: Conv (32) - Conv (32)- Pool (2,2)- Dropout (0.5)- Dense

(256) - Dropout (0.5) - Dense (10)) was set up. The network had one more layer

than the previously compared networks, however had less parameters (structure

provided in supplementary figures). In the MNIST, CIFAR-10, Fashion, CLT

tests the learning rates were set as {ηg = 0.1, ηµ = 0.01, ησ = 0.01} respectively

for global variables, µ, and σ. The LFW-Faces and Spoken-Digits tests used

single learning rates for all variables: ηg = 0.01 and ηg = 0.05, respectively.

As before, the training and test cycles were repeated five times. Averages

of the maximum test accuracies were calculated as shown in Algorithm 3. The

CNN+Dns row in Table 2 summarizes the results. As expected, the CNNs were

superior to both the simple focused and dense networks previously tested. The

gain was most prominent in the MNIST cluttered set and LFW-Faces, thanks

to the translation invariance provided by the convolutional layers and pooling.

In the counter network a focusing layer replaced the dense layer immediately

following the convolutional layers (CNN+Fcs: Conv (32) - Conv (32)- Pool (2,2)-

Dropout (0.5)- Focus (256) - Dropout (0.5) - Dense (10)). As the Cnn+Fcs row
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of Table 2 indicates, the results were almost equal in the MNIST set, in favor

of the CNN+Dns in Fashion and Spoken-Digits data sets, and in favor of the

focused the CNN+Fcs in the MNIST-cluttered, CIFAR-10, and LFW-Faces.

The distribution of apertures in the focused layer (for CIFAR-10) is shown in

Figure 7b. Due to the classification role, the focus apertures opened wider than

the ones in the simple network case.

T-Tests: T-tests part of Table 2 compares the mean accuracy scores achieved

by CNN+Dns with those of CNN+Fcs. A significant difference (highlighted

orange) was observed in the MNIST-cluttered and CIFAR-10 data sets in favor

of CNN+Fcs and Spoken Digits in favor of the dense counterpart.

4.5.2. Aperture regularization

It is possible to encourage focusing neurons to learn narrow apertures. The

effect of L2 regularization of aperture σ on the test accuracies on four of the

data sets was tested. Figure 10 shows that the same or better results can

be obtained by applying regularization coefficients such as 1e-5 or 1e-3 on the

aperture parameter σ, which may promote even sparser networks.

4.5.3. Transfer Learning

Recently, using the pre-trained network weights of successful network ar-

chitectures (e.g., VGG from Visual Geometry Group [84] or Resnet [85]) as

a starting point to learn new data sets has become a feasible approach when

training data and/or computational resources are limited, as was the case in

this research. Hence, in this study, a focusing layer (40 neurons) was compared

against a dense layer (40 neurons) to replace the top classifier layer (CL) of

the pre-trained VGG-16 network (VGG16-CL-Output) in the CIFAR-10 and

Cats&Dogs (from Kaggle) data sets. The Cats&Dogs set includes 19000 train-

ing and 6000 test instances of two categories. The images were resized into

125x125 frames, and the training data was augmented with random horizontal

flip, random shear and zoom operations. A global average pooling layer was

employed to summarize deep convolutional features, which was then fed to the
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Table 3: Comparison of Focused (Vgg+Fcs) vs. Dense layer classification (Vgg+Dns) in
transfer learning in CIFAR-10. Mn: mean, std: standard deviation, p: p-value (*significance).

CIFAR-10 Cats&Dogs

Mn±std Max t(p) Mn±std Max t(p)

Vgg+Dns 91.77±.08 91.92 -0.28 (0.78) 97.6±.02 97.85 0.74 1(0.47)Vgg+Fcs 91.8±9e-4 91.9 97.46±3e-3 97.88

focused or dense layer, followed by an output softmax layer. All the weights,

including VGG-16’s, were trained using the stochastic gradient descent.

For CIFAR-10, the learning rates of all parameters (including VGG-16’s)

were set at 1e-3, with the exception of the rate for σ which was set at 1e-4.

The network was trained in 32 batches for 250 epochs. The focusing layer was

initialized with focus centers initially spread out and σ = 0.025. For Cats&Dogs,

the learning rate for σ was set at 1e-2; and the network was trained using 64

batches for 50 epochs.

Table 3 demonstrates that the results for both data sets were similar. With

p-values 0.38 and 0.47 for CIFAR-10 and Cats&Dogs respectively, the results

could not confirm the statistical significance of the differences.

4.5.4. Where do neurons focus?

Focusing neurons are static, meaning they do not change their focus per

input, and foci are learned from the training data over many iterations. Nev-

ertheless, it remains legitimate to inquire which parts or regions of a particular

input contributed most to the network decision. To this end, Shapley additive

explanations (SHAP) [86], which are generalizations of decision explanatory

tools such as class activation maps [87], were calculated for several inputs. Fig-

ure 8 shows SHAPs for Focus-s in MNIST, for CNN+Fcs in CIFAR-10, and

for VGG+Fcs in CIFAR-10, demonstrating that the Focus-s network localized

regions in MNIST characters, CNN+Fcs used local textures in CIFAR-10 in-

stances whereas Vgg+Fcs was able to localize entire objects. The difference

between SHAP outputs in separate networks shows that the ability to localize

the entire object depends mostly on the power of the deep convolutional stacks

(VGG) rather than the focusing layers.
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(a) MNIST

(b) CIFAR10

(c) CIFAR10

Figure 8: Shap value images for different networks and datasets. a) Focus-s (simple 2-hidden
layer) at MNIST classification). b) CNN+Fcs at CIFAR-10 classification, c) VGG+Fcs net-
work at CIFAR-10 classification.
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4.6. Other Data

The next question was how the model would function when dealing with

non-spatial or non-image inputs. To test this, the Boston House price regres-

sion, Reuters newswire classification and IMDB sentiment classification data

sets (available in Keras [35]) were used, along with the DNA sequence (1D

spatial) data set from the OpenML [36]. The setup and results were as follows.

Boston: The house price data set includes 506 real house price values with

13 features. A two hidden-layer network with 64 neurons in the hidden layers

was constructed. Both networks were trained with RmsProp [35] for 200 epochs

with a batch size of 16. Table 4 shows the minimum squared errors achieved

over 10-fold cross-validation, and Figure 4e shows training and validation errors

from one of the runs. While the dense network achieved the minimum error,

the mean error rates were almost identical and t-tests confirmed no statistical

significance between the results (t=-0.47, p=0.64).

Newswires: There are 11,228 newswire instances in this data set. The input

sequences of word indices were converted to vectors of 1000 elements (following

the steps in Keras Reuters example in [35]). Then, a single hidden-layer network

of 150 hidden neurons was constructed. The networks were trained for 30 epochs

with a stochastic mini-batch gradient descent of batch size 64 and a learning

rate of 0.01. The foci were initially spread out with σ = 0.25. The average of

the accuracies in 10 cross-validations presented in Table 4 shows that the dense

network performed marginally better than Focused-s (see Figure 4e for training

and validation errors from one of the runs). However, t-tests did not confirm

statistical significance of the difference between the results (t=1.02, p=0.33).

DNA: The problem in the DNA data set is to recognize particular junction

codes in gene sequences. The data includes 3186 instances of 60 binary triples

which encode nucleotides (A, C, G, T). Three classes indicate the middle of

the sequence as one of the following, EI: exon-intron boundary; IE: intron-exon

boundary; None: not a boundary. The OpenML description states that using

the middle-right of the feature vector leads to more successful results, making

this an appropriate challenge for focusing neurons. For this experiment, a net-

31



(a) (b)

Figure 9: Focus-s network sparsity after MNIST training. a) Distributions of non-zero
connection counts in layer1/layer2 neurons by removing out-of-focus weights with (base:
φi[φi < 1e − 7] = 0) and (max acc: φi[φi < 1.0] = 0) b) Test set accuracy for increasing
sparsity obtained with increasing out-of-focus threshold t in range [0, 1.5]. The unpruned
focused network (base) performance was 99.24 in the MNIST test set.

work consisting of a single hidden layer with 60 hidden units was set up. The

foci were initially spread out with σ = 0.025. The networks were then trained

for 200 epochs in 32 batches with a learning rate of 1e-3 for all parameters.

Table 4 shows that the focused network was marginally better than its dense

counterpart, however the difference was not confirmed as significant by t-test.

IMDB : The data set (available in Keras [35]) contains 25000 movie reviews

labeled as positive/negative. In order not to repeat the Newswires test, the

Fasttext architecture [88], based on bi-gram enhanced word input vectors, was

employed. This architecture is composed of an embedding layer (400,50) fol-

lowed by a global average pooling layer which computes a reduced hidden repre-

sentation (50). Then, a single sigmoid neuron computes the output probability

of positive/negative classes. The dense output neuron was replaced with a sin-

gle focused neuron for the comparison. Although there was not much room for

adaptive focusing, the neuron would nonetheless adjust the position of its re-

ceptive field. Thus the single neuron was initialized with the focus at the center

µ = 0.5 with σ = 0.5. The networks were trained for seven epochs (as in the

Keras example) with the Adam optimizer [89]. Table 4 indicates that the results

were similar, with no statistical significance in the difference.
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(a) MNIST-Focus-s (b) MNIST-CNN+Fcs

(c) CLT-Focus-s (d) CLT-CNN+Fcs

(e) CIFAR-Focus-s (f) CIFAR-CNN+Fcs

(g) FASHION-Focus-s (h) FASHION-CNN+Fcs

Figure 10: Regularization of focus aperture σ vs test accuracy in different datasets.
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Table 4: Test classification performance in other data sets. N (repeats)=5, T-tests results
shown by t (p) * :significance.

Housing Newsgroups DNA IMDB

Mn+std Min t (p) Mn±std Max t (p) Mn±std Max t (p) Mn±std Max t (p)

Dense 2.2±0.21 1.77 2e-3 (0.99) 81.48±7e-3 82.68 1.02 (0.33) 95.2±0.01 96.23 -1.5 (0.14) 88.98±1e-4 89.15 0.06 (0.94)Focus-s 2.21±0.26 1.93 81.05±6e-3 82.1 96.2±8e-3 97.02 88.97±2e-3 89.17

4.7. Training and test time

In the synthetic random experiments, a training epoch of the focusing net-

work took ≈1.3 times longer than the dense network. In MNIST, for the two

hidden layer configuration, a single batch iteration of 512 instances took ≈24us

for the focusing network and ≈21us for the dense network while training on

an NVIDIA Tesla K40 GPU. A similar ratio was observed for CIFAR-10 (49us

vs 42us). The overhead was due to the additional gradient computations and

parameter updates. The testing time difference for 10000 inputs (≈0.056s vs

≈0.053s) was negligible, as the only overhead was the calculation of the focus

function, which does not change from input to input.

5. Discussion

The experiments demonstrated that focusing neurons can adapt and learn

their local receptive field locations and sizes. This capacity enables the neurons

to focus on informative features and steer away from the redundant inputs.

When placed after inputs in standard image recognition data sets, the focus-

ing layers demonstrated significantly better performance than the dense layers.

However, in relatively noisy and challenging data such as the MNIST-cluttered,

CIFAR-10, and LFW-Faces the difference was remarkable. Moreover, the ex-

periments showed that a focused network with 256 neurons in the hidden layers

could work more effectively than a dense network with 256, 800 or 1024 neurons

in the hidden layers. However, in 1D data sets the focusing network performed

better than the dense network only in the (spatial) DNA data set.

The focusing neuron model is not designed for feature extraction. It is not

translation invariant. It is not expected to compete with convolutional kernels

which share weights for translation equivariant feature extraction. However,
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the experiments demonstrated that when used for classification of convolutional

features, focusing layers may work similar to or in some cases better than dense

layers (see CNN+Fcs results for MNIST-CLT and CIFAR-10). In transfer-

learning, employed as a classification layer, the focusing layers used the flattened

output of the convolution stacks as the input. It is perhaps, due to the highly

refined feature representation or the reduced input length that no advantage

could be observed over the dense layers.

Focusing neurons can establish local connections, but, their view is still a

part of the whole input field. They contribute to the minimization of global

errors by adapting to the local cues given by the local gradient. Though the

focus parameters are only updated at the neuron level, they could collectively

partition the whole input domain in many cases. In addition, they would form

narrow or wider apertures according to different roles (feature extraction or

classification). However, adapting to the best input positions can cause neurons

to become sensitive to the positional information and overfit. For example,

in the MNIST-cluttered set, the manually tuned fixed focused model (Fixed-s)

worked better than the trained model (Focused-s).

Nevertheless, from a biological perspective, it may be irrelevant to compare

the different neuronal models because the brain has almost 10000 different types

of nerve cells [45, 90]. Brain networks are formed of many local clusters with

dense and short-path connections and few long-range connections linking those

clusters [4]. Hence, the role of a focusing neuron can be different from the ones

that are usually assigned to a fully connected neuron. For example, focusing

neurons can be used to partition and distribute input spaces. To test this

capacity, it is possible to design experiments in which the input is complex

(multi-domain), for example, a concatenation of visual and spoken signals.

5.1. Limitations of the Study

The current implementation of the focusing neuron was one-dimensional

because the initial aim was to produce a core module that is compatible with all

settings/domains. One can speculate that a 2D implementation would perform
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better with 2D image inputs because it would take better advantage of the

spatiality. In addition, the architectures tested in the experiments were shallow

compared to the state-of-the-art deep networks such as residual networks [85].

The next step will be to test the performance of focusing neurons in deeper

networks on larger data sets, and on different tasks.

6. Conclusion

This paper has presented a new neuron model capable of learning its local

receptive field region and size in the topological domain of its inputs. The new

model comes with a differentiable receptive field, which is named here as a focus.

Though our choice of Gaussian focus was aimed at creating locally connected

receptive fields, other differentiable functions could also be selected.

In synthetic and real data sets, the experiments demonstrated that focusing

neurons can train their local receptive fields, thereby providing better gener-

alization performance and sparser networks. Using focusing neuron layers as

the top-level classifier in convolutional networks achieves better performance

in some data sets such as MNIST-cluttered and CIFAR-10. However, as the

convolutional stack gets deeper and features get refined (as in VGG-16), the

advantage is lost.

This work can be extended by exploring 2D-3D focusing neurons/layers, dif-

ferent focus control functions, recurrent neurons, dynamic focusing, applications

in attention-based models, and modeling of multi-problem input domains.
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Appendix A. Weight Initialization

An important aspect of the weight initialization is to sustain the variance of

the signals that propagate through the layers [80, 81, 91, 92]. Hence, the objec-

tive is to have the variance of the output y equal to the variance of the input xi,

Var(y)=Var(x). Kumar’s [92] approach and notation can be used to derive an

appropriate weight initialization scheme for the focusing neuron model. Here,
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the activation-transfer function can be omitted, because the focusing model has

no extra effect on it. Assume xi and wi are both independent and identically

distributed (i.i.d) variables and φ(τ(i, θ)) (shortly φ(i)) is a deterministic func-

tion of i. The weights will be identically sampled from a zero mean distribution;

hence the expected value is zero E [wi] = 0. However, a second initialization

scheme is possible if non-identical distributions are used. Let us start by writing

the variance of the output y in terms of the weights, inputs, and φ(i).

y =

m∑
i=1

wiφ(i)xi + b (A.1)

Var(y) = E
[
y2
]
− E2 [y] (A.2)

Var(y) = E

[( m∑
i=1

wiφ(i)xi

)2]
− E2

[
m∑
i=1

wiφ(i)xi

]
(A.3)

Since xi and wi are independent and E [wi] = 0, the second term on the right

reduces to 0. If the first term is examined,

Var(y) = E

[( m∑
i=1

wiφ(i)xi
)2] (A.4)

Var(y) =

m∑
i=1

φ2(i)E
[
w2
i

]
E
[
x2i
]

+ (A.5)

2

m∑
i=1

m∑
k=i+1

φ(i)φ(k)E [xixkwiwk]

Again since xi, wi, xk, wk, are all independent and since E [wi] = 0, the double

summation in (A.5) reduces to 0. Therefore,

Var(y) =

m∑
i=1

φ2(i)E
[
w2
i

]
E
[
x2i
]

(A.6)

Now, the notation can be simplified by writing s2wi , s
2
xi , s

2
y for the variances of

the weight i, input i, and output y, respectively. In addition, µxi denotes the

mean for input i. Remember that weights are sampled from zero mean µwi = 0.

46



Let us rewrite (A.6) as

s2y =

m∑
i=1

φ2(i)(s2wi)(s
2
xi + µ2

xi) (A.7)

Now, set constant variance for y (e.g., s2y = 1) to solve the weight variance in

two different ways. Remember that xi are identical, so µxi = µx and sxi = sx.

First, assume identical distribution and equal variance for the weights (i.e.,

s2wi = s2wk = s2w). Thus, the variance of each weight can be expressed as:

s2w =
1

(s2x + µ2
x)
∑m
i=1 φ

2(i)
(A.8)

If we set s2x = 1 and µ2
x = 0, s2wi reduces to one over the squared norm of the φ

coefficient vector. However, instead of equal variance weights, one can sample

the weights non-identically from different distributions to create equal variance

in the products wi ∗ φ(i). For example, if each term in the summation (A.7)

receives 1/m variance, for a total variance of 1, it is possible to initialize the

independent weights with the following variance:

s2wi =
1

m(s2x + µ2
x)φ2(i)

(A.9)

The different transfer functions require different scalers to provide the expected

output variance [80, 92]. The current implementation used (A.8) and sampled

the weights uniformly with U
[
−
√

6/sw,
√

6/sw
]
for the RELU activations.
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