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DK-CNNs: Dynamic Kernel Convolutional Neural

Networks

Jialin Liu1, Fei Chao1,2,∗, Chih-Min Lin3, Longzhi Yang4, Changle Zhou1,
Changjing Shang2

Abstract

This paper introduces dynamic kernel convolutional neural networks (DK-
CNNs), an enhanced type of CNN, by performing line-by-line scanning reg-
ular convolution to generate a latent dimension of kernel weights. The pro-
posed DK-CNN applies regular convolution to the DK weights, which rely
on a latent variable, and discretizes the space of the latent variable to extend
a new dimension; this process is named “DK convolution”. DK convolu-
tion increases the expressive capacity of the convolution operation without
increasing the number of parameters by searching for useful patterns within
the new extended dimension. In contrast to conventional convolution, which
applies a fixed kernel to analyse the changed features, DK convolution em-
ploys a DK to analyse fixed features. In addition, DK convolution can replace
a standard convolution layer in any CNN network structure. The proposed
DK-CNNs were compared with different network structures with and with-
out a latent dimension on the CIFAR and FashionMNIST datasets. The
experimental results show that DK-CNNs can achieve better performance
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than regular CNNs.

Keywords: Deep neural networks, convolutional neural networks,
convolution kernel
2010 MSC: 00-01, 99-00

1. Introduction

Deep convolutional neural networks (CNNs) have become the most influ-
ential models of sensory data, such as images, video, and audio [1, 2, 3, 4, 5, 6].
CNNs take advantage of translation variance in perception tasks to use shared
weights in different locations of the feature map. For image data, translation5

invariance exists in both the length and the width directions; therefore, CNNs
can share weights in both of these dimensions. In this way, CNNs reduce the
number of parameters required in the neural network and improve the gener-
alization performance. However, many other transformation-invariant prop-
erties exist among the data features and must be approximated by neural10

networks. Nevertheless, the practical application of CNN models, which ob-
tain state-of-the-art results, requires enormous amounts of clear data [7, 8, 9],
and the datasets must be extended by augmenting them with data [10, 11].

Several studies have attempted to extend other translation-invariant spaces.
The most common way is to convert the convolution operation into rota-
tion and reflection [12, 13]. This extension allows the model to adapt to
rotation- and reflection-invariant features in the data. Bruna et al. de-
signed a wavelet scattering network that can compute translation-invariant
image representation[14]. However, the efficiency of adopting convolution op-
erations in different translation-invariant spaces depends on tasks and prior
knowledge. Therefore, we perform convolution in a dimension that is learned
by itself. The basic operation of each filter in a convolution layer is the el-
ementwise multiplication of a feature map with the kernel weights, which is
given by:

y(r0) =
∑
rn∈R

w(rn) · x(r0 + rn), (1)

where rn enumerates the spatial locations in R; w denotes the weight of the
convolutional kernel; and y and x are the features of two adjacent convolution
layers. Since each element of w is a constant, y(r0) is also a constant. If
unfixed kernel weights given by w(a, rn) are adopted, a new dimension would
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be extended. Eq. (1) can thus be written as:

y(a, r0) =
∑
rn∈R

w(a, rn) · x(r0 + rn), (2)

where a denotes the location in the latent dimension and y(a, r0) depends on
the latent variable a. As a result, convolution operations can be employed in15

this dimension.
If we use learnable parameters to parameterize the function w(a, rn), the

latent dimension is obtained during training. In this work, we use piece-
wise sine curves to define the unfixed kernel weights to make the dynamic
kernel (DK) convolution operation both flexible and straightforward, and20

the unfixed kernel weights w(a, rn) are used as DK weights. In experiments
on the Canadian Institute for Advanced Research (CIFAR) [15] and Fashion-
Modified National Institute of Standards and Technology (MNIST) [16] datasets,
we employ two different DK-CNN structures: one structure extends the di-
mension in the first layer, and another structure extends the dimension fol-25

lowing 3D CNNs and average pooling in the latent dimension. The results
show that both structures exhibit better performance than regular CNNs in
most cases. In addition, because the degree of weight sharing is increased
in the process of obtaining DK weights (see details in the Methods section),
the number of parameters in a DK-CNN is not more than that in a regular30

CNN.
Several previous works have attempted to design a new convolutional net-

work. For example, deep receptive field networks learn the weights of several
filter bases [17]. PCANet employs principal component analysis (PCA) to
construct a deep learning network [18, 19]. Deep eigenfilters are obtained by35

eigendecomposition [20]. In this work, we design a new approach to improve
CNNs. Our contribution is a learnable latent dimension for convolution op-
erations, and the result is called a DK-CNN. In addition, we describe the
initialization of DK-CNNs and perform a complexity analysis. Finally, we
perform experiments to verify that DK-CNNs can achieve better performance40

than regular CNNs.
The remainder of this paper is organized as follows. Section 2 introduces

the related background for the proposed model, including the convolution
units of CNNs. Section 3 describes the proposed kernel convolution oper-
ation. Section 4 details the abovementioned experiments and discusses the45

experimental results. Finally, Section 5 provides a brief conclusion and di-
rections for future work.
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2. Related Work

Previous investigations have demonstrated the performance of CNNs, and
most of those studies focused on network structure. However, research on50

the convolution unit is also necessary to help us understand the principles
governing the high performance of CNNs and to provide a basis and clues
for further improving the convolution unit. To date, most studies on the
convolution unit have been approached from two perspectives: 1) translation
and 2) the receptive field.55

The translation-invariant property of a CNN can eliminate the effect of
the recognition error caused by the target position within an image. Other
transformations that have invariant properties can also be used in CNNs; the
most common is the rotation transformation. For instance, rotation symme-
try was employed to predict the morphology of galaxies by Dieleman et al.60

[12], whose work was later extended to computer vision tasks [21]. Other
transformations, such as scaling, shear, and reflection transformations, were
introduced recently. For example, Gens et al. introduced symmetry group
theory and proposed deep symmetry networks (symnets) [22], which utilize
rotation, scaling, and shear transformations to enable the model to capture65

a wide range of invariances. Furthermore, Taco et al. used the concepts of
symmetry groups to develop the 2D integer translation, which is one example
of a symmetry group, and introduced group-invariant CNNs (G-CNNs) [13].
Invariant properties depend on data; thus, it is possible to design convolu-
tional networks for different tasks. Hoogeboom et al. extended G-CNNs to70

produce a CNN capable of analyzing hexagonal tiling called HexaConv [23],
and spherical CNNs were proposed to analyse 3D spherical tiling [24].

The receptive field of a regular CNN with one layer is the same size as
the weight of the kernel and is generally rectangular for image data. Most
studies on the receptive field have focused on the application of convolution75

units with different sizes or shapes. For example, dilated convolution [25]
was proposed for a sparse convolution unit to increase the receptive field size
with the same number of parameters. The effective receptive field (ERF) was
discussed by [26], whose conclusions indicate that if the number of parameters
is squared, the ERF increases linearly. According to ERF analysis, the size80

of the ERF for dilated convolution is larger than that of a regular receptive
field. ERF theory not only explains the effectiveness of dilated convolution
but also leads to another idea: changing the shape of the receptive field
filter. Nevertheless, ERF theory is based on the rectangular receptive field;
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therefore, if a receptive field with a different shape is adopted, its ERF size85

may not be restricted by ERF theory. For example, an active convolution
unit (ACU) [27] applies a convolution unit with no fixed shape. However,
the receptive field of an ACU changes its shape during training; then, during
testing, the shape is set to a fixed shape. Deformable convolution [28] extends
the unfixed shape of a receptive field to be dynamic.90

3. Methods

We extend a latent dimension of kernel weights beyond simply rotating
and reflecting the kernel. The proposed kernel convolution operation consists
of three steps: 1) convert the fixed kernel weights into DK weights; 2) im-
plement a convolution operation with the DK weights; and 3) discretize the95

continuous latent dimension. We summarize the frequently used notations
in Table 1.

3.1. Dynamic Kernel

The whole process of DK convolution is illustrated in Fig. 1. We estab-
lish a latent dimension of kernel weights by defining the kernel weights as100

functions of a latent valuable; in this work, we use sine functions. Choosing
sine functions is based on the following considerations: 1) the sine function
is a period function, and thus, we need to focus on its property only in one
period other than along the whole axis; and 2) a function obtained by adding
sine functions with the same period is still regarded as a sine function with105

the same period.
The weights of each channel are denoted by the weighted sum of sine

curves. Therefore, the form of the DK weights is defined by:

w(a) = ŵ [G� sin(a+ B) + D] , a ∈ (−π, π], (3)

where a denotes the latent variable; w(a) denotes the kernel weights depend-
ing on a and is a c × k2 matrix; k is the filter size of a 2D CNN; c denotes
the number of input channels; and � denotes elementwise multiplication. ŵ
is a c × h matrix, whereas G, B, and D are h × k2 matrices, and h is the110

number of hidden variables in each channel, all of which are learnable during
training.

The weight tensor, w(a), consists only one output channel; therefore,
the size of the weight tensor is set to c × k2 rather than c2 × k2. This
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Notation Description Notation Description

w(a) dynamic kernel weights a latent variable

ŵ weights of sine curves k filter size

G amplitudes of sine curves w(cn, a) cthn line of w(a)

B phases of sine curves ŵ(cn) cthn line of ŵ

D constant items in sine curves x features matrix

Tm(a,Θ) transformation matrix y output feature

c number of input channels y(a) output curve

h number of hidden variables a1, · · · , aM sample points

x(cn) cthn line of features matrix x Np number of pieces

Table 1: Notations and descriptions.

representation is common in previous studies, such as [29]. Furthermore, h115

is a hyperparameter that needs to consider both the number of parameters
and the abilities of the model; we set h to 4 in all experiments herein.

3.2. DK Convolution

Any transformation matrix Tm(a,Θ) can be adopted as w(a) = ŵTm(a,Θ).
In this work, the transformation matrix is given by:

Tm(a, {G,B,D}) = G� sin(a+ B) + D. (4)

These properties of the sine function provide convenience for linear trans-
formations; therefore, w(a) is defined as:

w(a) = wcos sin(a) + wsin cos(a) + wcons, a ∈ (−π, π], (5)


wcos = ŵG� cos(B),

wsin = ŵG� sin(B),

wcons = ŵD,

(6)

where w(a) is still a sine curve with a period of 2π. This idea is similar
to the traditional Fourier transform. However, we use only sine functions
with the same period because this approach is easy to implement; in the
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ŵ w(a)

x
y(a)

Discretize

y

Input feature Output feature

Figure 1: A typical DK convolution operation for an image with one channel, where x
denotes the features matrix in the receptive field, presented as a black block. The black
cuboid denoted by y(a) is the sum-product between x and w(a). The black blocks in the
output feature denoted by y are the discretization of y(a).

future, we will use other functions and test their performance. Here, we
establish dependencies between the kernel weights and the latent variable a
by performing convolution operations in pixel and input channel dimensions,
and y(a) is given by:

y(a) =
∑
cn∈C

w(cn, a)x(cn)T

= ycos sin(a) + ysin cos(a) + ycons,

(7)



ycos =
∑
cn∈C

wcos(cn)x(cn)T,

ysin =
∑
cn∈C

wsin(cn)x(cn)T,

ycons =
∑
cn∈C

wcons(cn)x(cn)T,

(8)

where w(cn, a) denotes the cthn line of w(a) and x(cn) denotes the cthn line of
features matrix x with size c× k2.120

The parameters of curve y(a) are obtained by performing the convolution
operation with wcos, wsin, and wcons. From another perspective, the motion of
kernel weights is equivalent to relative motion in the feature map; therefore,
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Algorithm 1 DK convolution.

Require: Parameters of DK ŵ, {Gi,Bi,Di}i; Features matrix in the recep-
tive field x; Sample points {a1, a2, · · · , aM}; Output feature y

1: y← {}
2: for all G,B,D ∈ {Gi,Bi,Di}i do
3: \\ Obtain DK weights:
4: w(a)← ŵ [G� sin(a+ B) + D]
5: \\ Convolution with DK weights:
6: y(a)←

∑
cn∈C w(cn, a)x(cn)T

7: \\ Discretize the latent dimension:
8: for all a ∈ {a1, a2, · · · , aM} do
9: y← y ∪ {y(a)}

10: end for
11: end for
12: return vector(y)

y(a) is defined by:

y(a) =
∑
cn∈C

w(cn, a)x(cn)T

=
∑
cn∈C

ŵ(cn)Tm(a,Θ)x(cn)T =
∑
cn∈C

ŵ(cn)x(cn, a)T,
(9)

where x(cn, a)T = [G� sin(a+ B) + D] x(cn)T.
The motion of the convolution kernel is equivalent to the relative move-

ment of x in the feature space, which is given by:

y(a+ q) =
∑
cn∈C

ŵ(cn) [G� sin(a+ p+ B) + D] x(cn)T

=
∑
cn∈C

ŵ(cn)x(cn, a+ p)T.
(10)

where q denotes the translation distance. Then, the convolution process is
employed in the latent dimension.

3.3. Discretization of the Continuous Dimension

The latent variable, a, is continuous, so the latent space is also continuous.
This would make the latter operation inconvenient because the convolution
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Figure 2: An example of a 3×3 kernel in a DK-CNN representing a weight matrix between
a single input and output channel. Each row represents the weight of the kernel for the
potential variables a = − 7

8π,−
5
8π, · · · ,

7
8π in the 2 pieces.

operation in the latent space is an integral operation from π to −π. If a
nonlinear function, such as the rectified linear unit (ReLU) function [30], is
used to process the feature map, the operation becomes max(0, y(a)), which
is a piecewise function, and the process is given by:∫ π

−π
w′(a) max(0, y(a))da =

∫
a∈A

w′(a)y(a)da, (11)

where w′(a) is the weight in the next layer andA = {a|y(a) > 0, a ∈ (−π, π]}.125

Graphics processing units (GPUs) are not suitable for calculating integrals
in the integral A. Even if we wish to choose a different nonlinear function, it
is difficult to find a function with a performance similar to that of the ReLU
function and whose integral is easy to calculate. Therefore, we discretize the
curve y(a) in (−π, π] to form a feature vector, [y(a1), y(a2), · · · , y(aM)]T (M130

denotes the number of points), and the points {a1, a2, · · · , aM} are sampled
on the same intervals. In this way, the convolution operation is easy to
perform regardless of which nonlinear function is applied. The whole process
is illustrated in Algorithm 1. In addition, since the ReLU function is currently
the most popular option, we choose to utilize ReLU in our experiment.135

3.4. Multi-Piecewise Curves

If a nonlinear function such as ReLU is adopted, ReLU merely truncates
one minimum value from the curve since only one maximum and one min-
imum exist within one period. To increase the expressive capacity of the
latent dimension, multiple transformation matrices are used in this work.140
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2π 2π

piece 1 piece 2

Connection

ReLU

Discretization

Figure 3: An example of the discretization process applied to multi-piecewise curves with
2 pieces of a sine curve. ReLU is applied as a nonlinear function.
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ŵ

w3(a)

w2(a)
w1(a)

x

y1(a)

y2(a)

y3(a)Discretize

y

Input feature Output feature

Figure 4: A typical process of DK convolution for an image with 1 channel, where x denotes
the features matrix in the receptive field, presented as a black block. The black cuboids
denoted by y1(a), y2(a) and y3(a) are the sum-products between x and w1(a), w2(a) and
w3(a), respectively. The black blocks in the output feature denoted by y represent the
concatenated discretizations of y1(a), y2(a) and y3(a).

Each transformation matrix Tm(a,Θ) is used to calculate one DK weight
matrix w(a). The curves in each w(a) within a single period connect to the
curves in other w(a). Then, the elements in the final DK weight matrix
compose a multi-piecewise sine function.

A model with a larger number of pieces has a better ability but more145

parameters. Therefore, we limit the number of pieces to Np = 2 to prevent
the number of parameters in the DK-CNN from exceeding that in a standard
CNN to ensure fairness in the experiments. As an example, we demonstrate a
3×3 kernel with 2 pieces of a sine curve in Fig. 2. Since 3 points are sufficient
to determine a sine curve, 3 points at {−2

3
π, 0, 2

3
π} are chosen for each piece150

in our experiments. Note that the intervals between the two adjacent points
are identical. The experimentation also applies the same three points of one
piece as {−2

3
π, 0, 2

3
π}.

In Fig. 3, we depict the discretization process for a multi-piecewise sine
curve. First, we connect the curves of two sine functions within one period.155

Then, we exclude the parts of the curve with values less than zero. Finally,
we remove the continuous curve, leaving only discrete points.
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3.5. Normalization of the Transformation Matrix

In the proposed DK-CNN, an element of the DK matrix is defined as:

wj(cn, a) = ŵ(cn) [gj � sin(a+ bj) + dj] , (12)

where gj, bj and dj are the jth columns of G, B and D, respectively. Tm(a,Θ)
can be used only to indicate the proportion between the sine curve and
constant, and the scale is determined by ŵ. Therefore, the calculation of
wj(cn, a) is rewritten as:

wj(cn, a) = ŵ(cn)
[√

2ĝj � sin(a+ bj) + d̂j

]
, (13)

where ĝj and d̂j are obtained by:
ĝj =

gj√
‖gj‖2 + ‖dj‖2

,

d̂j =
dj√

‖gj‖2 + ‖dj‖2
.

(14)

The principle of weight normalization [31] is to balance the gradients of
gj and dj. If the gradient variances of gj and dj are large, 1/

√
‖gj‖2 + ‖dj‖2

might decrease quickly, thereby reducing the effects of noise in the gradient.
A coefficient of

√
2 is applied to lead the gradient variances of gj and dj,

making them equal to each other. t, ĝ, b, and d̂ represent the elements of
Tm(a,Θ), ĝj, bj and d̂j, respectively. ∆t is assumed to obey a probability
distribution with an expectation of zero, b is assumed to obey the uniform
distribution of (−π, π], and ∆t and b are independent of each other. Then,
we have:

V ar[∆ĝ] = V ar[∆t]V ar[
√

2 sin(a+ b)]

= V ar[∆t] = V ar[∆d̂].
(15)

Finally, we rewrite Algorithm 1 as Algorithm 2.

3.6. Complexity Analysis160

Converting a fixed kernel into a DK is conducted by performing matrix
multiplication between ŵ and Tm(a,Θ); therefore, the time complexity is
O(Npchk

2) with parallel computations between Np pieces. Since wcos, wsin

and wcons need to be calculated, the computational cost of convolution with a
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Algorithm 2 DK convolution.

Require: Parameters of DK ŵ, {Gi,Bi,Di}i; Features matrix in the recep-
tive field x; Sample points {a1, a2, · · · , aM}; Output feature y

1: y← {}
2: for all G,B,D ∈ {Gi,Bi,Di}i do
3: Ĝ, D̂← normalize G,D by Eq. (14) and
4: \\ Obtain DK weights
5: wcos = ŵ [G� cos(B)]
6: wsin = ŵ [G� sin(B)]
7: wcons = ŵDi

8: \\ Convolution with DK weights
9: ycos, ysin, ycons ← Eq. (6) with wcos,wsin,wcons

10: \\ Discretize the latent dimension
11: for all a ∈ {a1, a2, · · · , aM} do
12: y(a)← ycos sin(a) + ysin cos(a) + ycons
13: y← y ∪ {y(a)}
14: end for
15: end for
16: return vector(y)

DK requires is thrice that of standard convolution, but their time complexity165

is the same, O(ck2).
For discretization, the same operation is repeated M times, and the time

complexity of discretizing the continuous latent dimension is O(M) with par-
allel computations between M points. Next, we analyse the time complexity
of normalizing the transformation matrix. Except for the extraction of a170

root, all operations are conducted one time for each element in gj and dj;
thus, the time complexity of the normalization process is proportional to the
combined size of gj and dj, O(hk2).

Finally, we analyse the number of learnable parameters in the DK-CNN.
The learnable parameters of DK-CNNs include the ŵ of each channel and175

the parameters of the transformation matrix, {G,B,D}. We assume that
the numbers of input channels and output channels are equal, namely, c.
Moreover, the number of parameters in all ŵ is c2 × h. In addition, G, B,
and D all have a size of h× k2, and thus, the overall number of parameters
in one DK-CNN layer is c2 × h+ 3h× k2.180
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3.7. Network Structure

The proposed method extends a new dimension for 2D images; therefore,
the convolution layers after the DK-convolution layers need to handle 3D
features. Thus, in this work, we evaluate the proposed method in two cases
of alternating 1) reducing and 2) extending the dimension in the first layer.185

Average pooling should be used in the first case. The second case is easy to
understand, so we provide additional details regarding the first case in the
context of ResNet [32], DenseNet [33], and CNN4.

When DK convolution is applied to ResNet [32], each block contains two
convolution layers: a 3D CNN layer with a 3 × 3 × 1 kernel size and a 2D190

DK-convolution layer with 3 × 3 kernel size. Furthermore, global average
pooling is performed in the extended new dimension prior to the 2D DK-
convolution layer. In ResNet, when either the number of channels or the
size of the feature map changes, a 2D CNN layer with a 1× 1 kernel size is
required in the cross-layer connection; hence, we use the 3D CNN layer with195

a 1× 1× 1 kernel to replace the 2D CNN layer with a 1× 1 kernel.
Since we utilize h < k2 to reduce the number of parameters within the

model, we do not use the DK-convolution layer for the convolution layer with
a 1× 1 kernel size. In DenseNet, each block contains a 3D CNN layer with a
kernel size of 1× 1× 1 and one 2D DK-convolution layer with a kernel size200

of 3× 3. We perform global average pooling in the extended new dimension
before the 2D DK-convolution layer.

One linear layer calculates the class score after processing the convolu-
tion layers. CNN4 with DK convolution contains two processes for extending
dimensions, i.e., the DK-convolution layer, a nonlinear ReLU function, 3D205

convolution, another nonlinear ReLU function, and average pooling. Identi-
cal to a standard CNN, CNN4 batch normalization is applied before ReLU.
The kernel size in the 3D CNN layer is 3× 3× 1, and the kernel size in the
2D DK-CNN is 3×3. Max-pooling is performed after the 2nd and 3rd layers
in the height and width dimensions.210

3.8. Initialization of Filter Weights for DK-CNNs

Several existing studies have confirmed the importance of parameter ini-
tialization for deep networks [34, 29, 31, 35, 36]. Good initialization can
improve the convergence of deep networks and prevent the model from reach-
ing a local optimum. “Xavier” initialization [37] was proposed by Glorot and215

Bengio for filter weight initialization [34]. Xavier initialization can obtain
good performance if the activation function is symmetric to 0; therefore,
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this approach is unsuitable for the ReLU function. Alternatively, He et al.
proposed an initialization approach for ReLU called “Kaiming” initializa-
tion [29]. In this work, we follow the principle of parameter initialization in220

[34, 29] to ensure that the inputs of all layers have the same variance.

3.8.1. Forward Propagation Case

Based on the work of He et al. [29], if the ReLU function is applied, then
the parameter initialization must guarantee the following:

V ar[yl] =
1

2
nlV ar[wl]V ar[yl−1], (16)

where yl, yl−1, and wl denote the random variables of each output element
in the l-th and (l-1)-th layers and the elements in the weight matrix of the
l-th layer, respectively. To guarantee V ar[yl] = V ar[yl−1], we must have
V ar[wl] = 2/nl. Within DK-CNNs, we have:

wl(a) =
∑
i

ŵil

[√
2ĝil sin(a+ bil) + d̂il

]
, (17)

where wl(a), ŵil , ĝ
i
l , b

i
l and d̂il are the elements in w(a), ŵ, G, B, and D,

respectively.
In particular, we must ensure that any points in the latent dimension have

the same variance as the points in the last layer, i.e., V ar[yl(a)] = V ar[yl−1].
This condition is defined as:

V ar

[∑
i

ŵil

[√
2ĝil sin(a+ bil) + d̂il

]]
= 2/nl, (18)

where ŵil and
√

2ĝil sin(a + bil) + d̂il are independent of each other. ĝil and225

d̂il are initialized first. Then, ŵil and bil are initialized on the basis of ĝil
and d̂il. The random variable bil obeys the uniform distribution of [−π, π] to

ensure E
[√

2ĝil sin(a+ bil) + d̂il

]
= d̂il, and ŵil obeys a distribution with an

expectation of 0.
Eq. (18) is transformed to the following:∑

i

V ar
[
ŵil
] [

2(ĝil)
2V ar

[
sin(a+ bil)

]
+ (d̂il)

2
]

= 2/nl. (19)
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For each i, V ar [ŵil ] is equal, and we use V ar [ŵl] to simplify V ar [ŵil ].230

In addition, V ar [sin(a+ bil)] = 1
2

and
∑

i

[
(ĝil)

2 + (d̂il)
2
]

= 1. Thus, we

ensure V ar[ŵl] = V ar[wl] = 2/nl to guarantee V ar[yl(a)] = V ar[yl−1], where
nl = k2l cl and kl and cl are the filter size and the number of input channels
in the l-th layer, respectively. Note that there are no requirements for the
initialization of ĝil and d̂il, so we simply initialize ĝil and d̂il by a mean of zero235

and a variance of 1/(hk2l ).

3.8.2. Backward Propagation Case

In the backward propagation case, if the nonlinear ReLU function is once
again applied, the parameter initialization must satisfy the following equa-
tion:

V ar[∆xl] =
1

2
n̂lV ar[wl]V ar[∆xl+1], (20)

where ∆xl and ∆xl+1 are the random variables of the gradient for each input
element in the l and l+1 layers, respectively. To ensure that the gradients in
all layers have the same variance, we must have V ar[wl] = 2/n̂l and n̂l = k2l dl,
where kl and dl are the filter size and number of the output channels of the l-
th layer, respectively. However, we extend a new dimension in the DK-CNN;
thus, Eq. (20) changes to:

V ar[∆xl] =
1

2
n̂l
∑
i

V ar[wl(ai)]V ar[∆xl+1(ai)], (21)

where i = 0, 1, · · · , plsl, in which pl and s1 denote the number of pieces and
number of points, respectively, in a piece in the l-th layer. Similar to the for-
ward propagation case, V ar[wl(ai)] = V ar[ŵl] = V ar[wl], i = 0, 1, · · · , plsl;240

therefore, the condition guaranteeing V ar[∆xl] = V ar[∆xl+1(ai)] is V ar[ŵl] =
V ar[wl] = 2/(n̂lplsl).

The initialization of ĝil and bil is not effective for the gradient and input
in each layer; therefore, a distribution with a mean of zero and a variance of
1/(hk2l ) is used for the initialization.245

4. Experiments

The purpose of the following experiments is to determine whether DK-
CNNs have better performance than regular CNNs. Therefore, the exper-
iments are designed to compare the performance between DK-CNNs and
regular CNNs with the same network structures. We evaluate all models in250

the format of “mean±std” based on 5 runs on top-1 error rates.
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4.1. Datasets

CIFAR. The CIFAR dataset [15] contains 60k natural colour images,
each of which has 32 × 32 pixels. CIFAR-10 consists of 10 categories of
images, while CIFAR-100 consists of 100 categories of images. There are 50k255

and 10k images for the training and testing sets, respectively. We separate
5k training images from the training set for use as a validation set, and all
categories within the validation set have the same number of images. To
augment the data, we follow Krizhevsky et al. [38] by horizontally flipping
and randomly cropping the images, which are padded by four pixels along260

each border. Accordingly, the missing pixels are filled with the reflection of
the image.

Fashion-MNIST. The Fashion-MNIST dataset [16] contains 60k train-
ing and 10k testing grayscale images of different merchandises, and each
image comprises 28× 28 pixels. Fashion-MNIST consists of 10 categories of265

images. Similar to the procedure employed for CIFAR, we separate 5k train-
ing images for use as a validation set, and all categories within the validation
set have the same number of images. To augment the data, we follow Zhong
et al.’s work [39]: we randomly crop the images that are padded by 4 pixels of
zeros along each border, and we horizontally flip the images and performing270

random erasing. The hyperparameters of the random erasing step are the
same as those in Zhong et al.’s work [39].

4.2. Comparison Model

For a method to be useful, we postulate that such a method must be
effective for popular models, both those in use currently and those developed275

in the future. To develop a useful CNN model that may have potential future
applications, we use CNN4, ResNet [32] and DenseNet [33] as basic model
frameworks to compare regular CNNs and DK-CNNs. All DK-CNN layers
use 2 piecewise sine functions, and the number of transformation matrices h
is equal to 4.280

The structure of a ResNet block with DK convolution is shown in Table 2.
Each block contains two convolution layers: one is a 3D standard convolution
layer with a kernel size of 3 × 3 × 1, and the other is a 2D DK-convolution
layer with a kernel size of 3× 3 that performs global average pooling in the
extended new dimension prior to the 2D DK-CNN layer. When either the285

number of channels or the size of the feature map changes, the 3D CNN layer
with a 1 × 1 × 1 kernel size replaces the 2D CNN layer with a 1 × 1 kernel
size, which is required in the cross-layer connection.
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CNNs DK-CNNs

way-1 way-2 way-1 way-2

identity

conv1 3× 3

identity

conv1 3× 3× 1

bnorm1 2D bnorm1 3D

relu - relu -

- - avgpool 1× 1× all
conv2 3× 3 kconv2 3× 3

bnorm2 2D bnorm2 3D

relu - relu -

+ +

Table 2: The structure of a ResNet block with DK convolution and standard convolution.
Way-1 and way-2 are the two forward passageways within a layer.

The DenseNet structure contains bottleneck layers and compression [33].
The number of initial channels and growth rate of DenseNet are 24 and 12,290

respectively. The structure of a DenseNet block with DK convolution is
shown in Table 3. Each block contains one 3D standard convolution layer
with a kernel size of 1×1×1 and one 2D DK-convolution layer with a kernel
size of 3× 3.

The CNN4 model with regular convolution has 4 convolution layers with295

a 3 × 3 kernel and 64 filters. In addition, the structure of the CNN4 model
with DK convolution is shown in Table 4. Two standard convolution layers
are replaced by DK-convolution layers. The number of parameters in CNN4
is larger than that in ResNet20 since we do not use pooling between the
last convolution layer and the linear layer. The parameters are concentrated300

mainly within the last layer of CNN4, but the number of parameters in the
convolution layer in CNN4 is less than that in ResNet20 or in other neural
networks.

In the structure that uses DK convolution only in the first layer, the
2D convolution layer with kernel sizes of 3 × 3 and 1 × 1 are replaced by305

C3D3 and C3D1, respectively. This structure is denoted as DK-CNN(OF) in
Tables 5∼10.

No that, we choose the value of hyperparameters based on the number
of learnable parameters. The number of learnable parameters of DK-CNNs
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CNNs DK-CNNs

way-1 way-2 way-1 way-2

identity

bnorm1 2D

identity

bnorm1 3D

relu - relu -

conv1 1× 1 conv1 1× 1× 1

bnorm2 2D bnorm2 3D

relu - relu -

- - avgpool 1× 1× all
conv2 3× 3 kconv2 3× 3

Concatenate Concatenate

Table 3: The structure of a DenseNet block with DK convolution and standard convolution.
Way-1 and way-2 are the two forward passageways within a layer.

should be close to the number of learnable parameters of comparative model.310

4.3. Training

The same training configuration is used for both the proposed DK-convolution
layer and the regular convolution layer to control the variables. ResNet and
DenseNet are trained by stochastic gradient descent (SGD) on both the CI-
FAR and the Fashion-MNIST datasets. The minibatch size is set to 64. The315

initial learning rate is 0.1 and decays by 10 at 150 and 225 epochs. Similar
to Huang et al.’s work [33], we adopt 0.9 as the Nesterov momentum [40]
and 1.0 × 10−4 as the weight decay. In contrast, the CNN4 models both
with and without DK convolution are trained by Adam [41] on the CIFAR
and Fashion-MNIST datasets. The minibatch size is set to 128. The initial320

learning rate is 1.0 × 10−3 and decays by 2 at 100 and 150 epochs. Weight
decay is not used in CNN4 (both with and without DK convolution).

For the preprocessing phase on CIFAR-10 and CIFAR-100, we use 45k
images for the training set and 5k images for the validation set. For the final
run, all 50k training images are used, and we report the test error on the test325

set with the highest accuracy on the validation set during preprocessing. On
Fashion-MNIST, we train only one time and report the test error on the test
set with the highest accuracy on the validation set.
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CNNs DK-CNNs

way-2 way-2

conv1 3× 3 kconv1 3× 3

bnorm1 2D bnorm1 3D

relu - relu -

conv1 3× 3 conv2 3× 3× 1

bnorm2 2D bnorm2 3D

relu - relu -

- - avgpool 1× 1× all
maxpool 2× 2 maxpool 2× 2

conv3 3× 3 kconv3 3× 3

bnorm3 2D bnorm3 3D

relu - relu -

maxpool 2× 2 maxpool 2× 2× 1

conv4 3× 3 conv4 3× 3× 1

bnorm4 - bnorm4 -

relu - relu -

- - avgpool 1× 1× all
linear classes linear classes

Table 4: The structure of CNN4 with DK convolution and standard convolution.
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Figure 5: The averages Top-1 error rates (%) of DK-CNN(OF) on CIFAR-100 based on
five runs with the varying number of discretization M-points and the varying number of
pieces Np.

4.4. Results

We evaluate the influence of hyerparameters on the performance of the330

DK-convolutions. The results shown in Fig. 5 are the top-1 error rates of DK-
CNN(OF) based on five runs on ResNet32 on CIFAR-100 with the varying
number of discretization M-points and the varying number of pieces Np. In
the figure, the error is decreasing when the number of discretization points
is reducing. However, the number of pieces has not significantly affected on335

the performance of DK-convolutions.
The results of the experiments on Fashion-MINST, CIFAR-10 and CIFAR-

100 are summarized in Tables 5, 7 and 8, respectively. We also compare the
numbers of parameters in each model in Tables 6, 9 and 10. Most of the mod-
els with DK-CNNs have higher accuracy. The results show that DK-CNNs340

are effective not only for small CNNs but also for deeper CNN structures,
such as ResNet and DenseNet. Since all of our results are based on five runs,
our approach displays a steady improvement in performance.

In addition, since the number of hidden variables, h, is less than the ker-
nel size, k2, and several groups of G, B, and D are shared between different345

input channels, most of the models with DK-CNNs do not have more param-
eters than regular CNNs; in fact, some models with DK-CNNs have fewer
parameters. These results illustrate that the proposed method is effective.

In Fig. 6, we plot the 3D feature maps of ResNet20 with DK convolution.
The 3D feature map of the turtle is sparser than those of the otter and350

lawnmower. Comparing the 3D feature maps of the otter, lawnmower, and
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Model
Fashion-MNIST

Baseline DK-CNN DK-CNN(OF)

CNN4 5.96±0.06 5.86±0.13 5.66±0.14
ResNet20 5.08±0.16 4.78±0.23 4.66±0.15
ResNet32 4.79±0.24 4.78±0.13 4.77±0.12

DenseNet40 5.11±0.16 4.95±0.22 4.79±0.07
DenseNet52 4.83±0.16 5.02±0.20 4.78±0.23

Table 5: The error rates (%) on Fashion-MNIST. All results are produced by our research
group. The highlighted results indicate the DK-CNN results that are better than the
regular CNN results.

Model
Fashion-MNIST

Baseline DK-CNN DK-CNN(OF)

CNN4 0.14M 0.15M 0.16M

ResNet20 0.27M 0.27M 0.28M

ResNet32 0.47M 0.46M 0.47M

DenseNet40 0.18M 0.18M 0.18M

DenseNet52 0.26M 0.26M 0.27M

Table 6: The numbers of parameters in each model on Fashion-MNIST.

Model
CIFAR-10

Baseline DK-CNN DK-CNN(OF)

CNN4 11.43±0.22 11.36±0.20 11.01±0.31
ResNet20 7.12±0.09 6.85±0.16 6.76±0.27
ResNet32 6.16±0.17 6.21±0.15 6.12±0.33

DenseNet40 6.92±0.26 6.66±0.18 6.61±0.21
DenseNet52 5.92±0.20 5.97±0.17 5.90±0.20

Table 7: The error rates (%) on CIFAR-10. All results are produced by our research group.
The highlighted results indicate the DK-CNN results that are better than the regular CNN
results.
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otter

lawn_mower

turtle

Figure 6: Examples of 3D features in DK-CNNs. These plots represent the output features
of the last DK-CNN layer in ResNet20. The pictures corresponding to the 3D features on
the left originate from CIFAR100 [15]. We project the 3D features into two dimensions and
show the projections on the right. The X-axis is the latent dimension of kernel weights.
For each image, we show the feature map of only one channel, where the maximum and
minimum of each channel correspond to the deepest and lightest colours, respectively.

Model
CIFAR-100

Baseline DK-CNN DK-CNN(OF)

CNN4 38.14±0.30 37.26±0.26 37.20±0.36
ResNet20 30.52±0.25 29.85±0.58 29.79±0.26
ResNet32 29.02±0.50 28.16±0.50 28.18±0.17

DenseNet40 28.64±0.41 28.70±0.48 28.21±0.44
DenseNet52 26.71±0.28 26.86±0.32 26.52±0.37

Table 8: The error rates (%) on CIFAR-100. All results are produced by our research
group. The highlighted results indicate the DK-CNN results that are better than the
regular CNN results.
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Model
CIFAR-10

Baseline DK-CNN DK-CNN(OF)

CNN4 0.52M 0.53M 0.54M

ResNet20 0.28M 0.27M 0.28M

ResNet32 0.47M 0.46M 0.48M

DenseNet40 0.19M 0.19M 0.19M

DenseNet52 0.28M 0.28M 0.27M

Table 9: The numbers of parameters in each model on CIFAR-10.

Model
CIFAR-100

Baseline DK-CNN DK-CNN(OF)

CNN4 0.52M 0.53M 0.54M

ResNet20 0.28M 0.27M 0.28M

ResNet32 0.47M 0.46M 0.48M

DenseNet40 0.19M 0.19M 0.19M

DenseNet52 0.28M 0.28M 0.27M

Table 10: The numbers of parameters in each model on CIFAR-100.
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turtle, the distributions of the maximum feature values are different on the
x-axis, namely, the latent dimension. This finding indicates that the latent
dimension is effective for distinguishing classes. More examples are shown in
the Appendix A.355

Note that the results on Fashion-MNIST are different from those pre-
sented by Zhong et al. [39]. The various versions of the dataset account for
this discrepancy. In the earlier versions of this dataset, overlapping images
existed between the training and test sets. Random erasing is still an effec-
tive method, but the accuracy shown herein should be slightly lower than360

that reported in Zhong et al.’s work.

5. Conclusion

We proposed DK-CNNs, which represent an extension of the convolution
operation to a latent dimension without increasing or reducing the number of
parameters. Experiments were performed, and the results demonstrate that365

DK-CNNs can achieve better performance than regular CNNs; moreover, the
convolution operation can be effectively extended into a parameter-related
space. Additionally, since the new extended dimension does not exist in the
data, the proposed method is not a task-dependent technique.

The proposed DK-CNN used in this work was a particular example of370

a CNN. In the future, we will use functions other than the sine function;
alternatively, we will choose another approach to construct the dependencies
between the kernel parameters and the latent variable. In addition, DK-
CNNs can be extended to any model that can build dependencies between
the latent variable and the parameters. Therefore, it will be interesting to375

apply DK-CNNs to fully connected networks for nonimage datasets. Further-
more, it will be very interesting to add more comparisons with regular CNNs
structures, e.g. the series of MobileNet and InceptionNet, to demonstrate
the significance of the proposed work.
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motorcycle

road

shark

Figure A.7: Examples of 3D feature in DK-CNNs. These are the output features of the
last DK-CNNs layer in ResNet20. The pictures corresponding to 3D features on the left
come from CIFAR100 [15]. We project 3D features to 2D and show the projections on the
right. X-axis is the latent dimension of kernel weights. For each image, we only show the
feature map of one channel, and the maximum and minimum of each channel correspond
to the deepest and lightest colors.
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cattle

Figure A.8: Examples of 3D feature in DK-CNNs. These are the output features of the
last DK-CNNs layer in ResNet20. The pictures corresponding to 3D features on the left
come from CIFAR100 [15]. We project 3D features to 2D and show the projections on the
right. X-axis is the latent dimension of kernel weights. For each image, we only show the
feature map of one channel, and the maximum and minimum of each channel correspond
to the deepest and lightest colors.
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worm
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lion

Figure A.9: Examples of 3D feature in DK-CNNs. These are the output features of the
last DK-CNNs layer in ResNet20. The pictures corresponding to 3D features on the left
come from CIFAR100 [15]. We project 3D features to 2D and show the projections on the
right. X-axis is the latent dimension of kernel weights. For each image, we only show the
feature map of one channel, and the maximum and minimum of each channel correspond
to the deepest and lightest colors.
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trout

Figure A.10: Examples of 3D feature in DK-CNNs. These are the output features of the
last DK-CNNs layer in ResNet20. The pictures corresponding to 3D features on the left
come from CIFAR100 [15]. We project 3D features to 2D and show the projections on the
right. X-axis is the latent dimension of kernel weights. For each image, we only show the
feature map of one channel, and the maximum and minimum of each channel correspond
to the deepest and lightest colors.
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Figure A.11: Examples of 3D feature in DK-CNNs. These are the output features of the
last DK-CNNs layer in ResNet20. The pictures corresponding to 3D features on the left
come from CIFAR100 [15]. We project 3D features to 2D and show the projections on the
right. X-axis is the latent dimension of kernel weights. For each image, we only show the
feature map of one channel, and the maximum and minimum of each channel correspond
to the deepest and lightest colors.
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Figure A.12: Examples of 3D feature in DK-CNNs. These are the output features of the
last DK-CNNs layer in ResNet20. The pictures corresponding to 3D features on the left
come from CIFAR100 [15]. We project 3D features to 2D and show the projections on the
right. X-axis is the latent dimension of kernel weights. For each image, we only show the
feature map of one channel, and the maximum and minimum of each channel correspond
to the deepest and lightest colors.

35


	Introduction
	Related Work
	Methods
	Dynamic Kernel
	DK Convolution
	Discretization of the Continuous Dimension
	Multi-Piecewise Curves
	Normalization of the Transformation Matrix
	Complexity Analysis
	Network Structure
	Initialization of Filter Weights for DK-CNNs
	Forward Propagation Case
	Backward Propagation Case


	Experiments
	Datasets
	Comparison Model
	Training
	Results

	Conclusion
	

