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Abstract

Compressed sensing based magnetic resonance imaging (CS-MRI) provides an

efficient way to reduce scanning time of MRI. Recently deep learning has been

introduced into CS-MRI to further improve the image quality and shorten re-

construction time. In this paper, we propose an efficient structurally strength-

ened Generative Adversarial Network, termed ESSGAN, for reconstructing MR

images from highly under-sampled k -space data. ESSGAN consists of a struc-

turally strengthened generator (SG) and a discriminator. In SG, we introduce

strengthened connections (SCs) to improve the utilization of the feature maps

between the proposed strengthened convolutional autoencoders (SCAEs), where

each SCAE is a variant of a typical convolutional autoencoder. In addition, we

creatively introduce a residual in residual block (RIRB) to SG. RIRB increases

the depth of SG, thus enhances feature expression ability of SG. Moreover, it

can give the encoder blocks and the decoder blocks richer texture features. To

further reduce artifacts and preserve more image details, we introduce an en-

hanced structural loss to SG. ESSGAN can provide higher image quality with

less model parameters than the state-of-the-art deep learning-based methods at

different undersampling rates of different subsampling masks, and reconstruct

a 256×256 MR image in tens of milliseconds.
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1. Introduction

Magnetic Resonance Imaging (MRI) is a widely used imaging modality for

clinical diagnosis because of its non-invasiveness and the ability to effectively

depict soft tissue changes. However, the inherently long scanning time not

only causes motion artifacts and discomfort to patients, but also confines its

applications in the time-critical situations like strokes. In order to reduce the

acquisition time, a variety of sparse sampling methods have been proposed,

including partial Fourier imaging, parallel imaging, the well-known Compressed

Sensing based (CS) [1] methods and so on.

Lustig et al. first applied CS [1] theory to MR image reconstruction by en-

forcing sparsity of MR images in wavelet transform domain and gradient domain.

This CS based method has attracted great attention immediately since it was

proposed because it can accurately reconstruct MR images from highly under-

sampled k-space data. Over the last ten years, a number of CS-MRI methods

[2], [3], [4], [5], [6] have emerged, mainly focusing on finding: (1) sparsifying

transforms or low rank decomposition tools; (2) surrogate functions to enforce

sparsity; (3) numerical algorithms to solve optimization problems. The issues

encountered by CS-MRI methods are: (1) applying sparsifying transforms or

decomposition tools cannot preserve fine-scale details and anatomical structure

successfully; (2) the runtime becomes longer as the complexity of the iterative

algorithm increases, which turns the reconstruction not-real-time.

Recently, deep learning has made great progress in visual object recognition,

object detection, image super-resolution, denoising, and many other domains.

ResNet [7] introduced a residual connection which is critical for the training of

very deep networks. Besides, Goodfellow et al. [8] proposed Generative Adver-

sarial Networks (GANs), in which a generator and a discriminator are trained

alternately to play adversarial game. It has received huge attention and has
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been applied in many fields [9],[10],[11],[12],[13],[14] due to its outstanding per-

formance. Over the last three years, researchers started to introduce deep learn-

ing to the field of CS-MRI reconstruction, where GAN-based approaches have

already received impressive results. In [15], Yang et al. proposed DAGAN for

CS-MRI reconstruction, which outperformed most conventional CS-MRI algo-

rithms in terms of reconstruction accuracy and speed. Quan et al. [16] proposed

the RefineGAN, which cascaded two convolutional autoencoders and introduced

a cycle data consistency loss for more accurate CS-MRI reconstruction.

Based on previous studies, we propose, in this paper, a novel efficient struc-

turally strengthened Generative Adversarial Network (ESSGAN) with an en-

hanced structural loss for MRI reconstruction. Compared with the state-of-the-

art deep learning-based CS-MRI methods, the proposed ESSGAN can achieve

more accurate MRI reconstruction with less model parameters. Our contribu-

tions can be mainly summarized as follows:

1. We introduce strengthened connections (SCs) between two SCAEs to im-

prove the utilization of the feature maps.

2. We design a residual in residual block (RIRB), which gives the encoder

and decoder blocks richer texture features and allows SG to efficiently

trade off between model complexity and performance.

3. We introduce an enhanced structural loss which combines the advantages

of multi-scale structural similarity index (MS-SSIM) and gradient loss to

get more texture details for SG.

The rest of this paper is organized as follows. Section II surveys different

deep learning-based CS-MRI reconstruction methods and Generative Adversar-

ial Networks. Section III describes the proposed ESSGAN in detail. In section

IV, the datasets, masks and training details are introduced. Besides, we show

comparison results between our method and the state-of-the-art deep learning-

based CS-MRI methods, and analyze the experimental results. Further, we

experimentally demonstrate that each proposed novel component plays an im-

portant role in improving the performance of the proposed ESSGAN. In section
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V, we make a summary of this paper.

2. Related Work

2.1. Deep Learning-Based CS-MRI Methods

Deep learning has been introduced to the field of CS-MRI relatively later

than that to other fields. It was not applied to MRI reconstruction until 2016. At

the beginning, researchers tried to find ways to combine deep learning with the

optimization problems in CS-MRI. Wang et al. [17] proposed a two-phase CS-

MRI reconstruction method. The neural network was part of classic CS-MRI

and was trained to initialize the conventional CS-MRI or to generate images

which used as an additional regularization term. Yang et al. [18] proposed a

deep ADMM-Net which unrolls the alternating direction method of multipliers

(ADMM) algorithm. Some parameters of the ADMM algorithm are learned

in the process of training, such as penalty parameters and shrinkage functions.

Schlemper et al. [19] introduced the data consistency layer into a cascaded

CNN to make the reconstruction faster and more accurate than DLMRI [20].

Recently, Generative Adversarial Networks (GANs) were first applied to CS-

MRI reconstruction called as DAGAN by Yang et al. [15]. The generator of

DAGAN used a U-net [21] based architecture, the total loss function was com-

posed of a generative adversarial loss, a normalized mean square error (NMSE)

loss in image domain, an MSE loss in frequency domain and a perceptual VGG

loss. DAGAN improved the quality of reconstructed images dramatically, and

outperformed most of classic CS-MRI methods. Quan et al. [16] proposed the

ReconGAN, where a variant of the fully-residual convolutional autoencoder was

used as the generator and a cycle data consistency loss was introduced. To fur-

ther improve reconstruction accuracy, the RefineGAN was proposed, in which

the generator was formed by concatenating the generators of ReconGAN.

The successful applications of deep learning in CS-MRI reconstruction are

due to the facts that: (1) MR images lie on or are close to a low dimensional

manifold, while deep learning methods can learn MR image manifold from mas-
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sive amount of data; (2) the end-to-end deep convolutional neural networks

mentioned above are capable of learning a mapping between zero-filling (ZF)

image manifold and fully-sampled image manifold. In the classic CS-MRI meth-

ods, it is very difficult to learn the MR image manifold. However, deep learning

makes it possible and can establish a mapping between two image manifolds.

Therefore, deep learning-based CS-MRI methods can obtain better reconstruc-

tion results than the classic CS-MRI methods.

2.2. Generative Adversarial Networks

Generative Adversarial Networks [8] are composed of a generator (G) and

a discriminator (D), which play a two-player minimax adversarial game. G

manages to generate a data distribution to fool D whereas D avoids being fooled.

In the CS-MRI reconstruction task, G aims to map the zero-filling image x0 to

the fully-reconstructed image G(x0) to fool D, and D aims to distinguish the

real fully-sampled image from the fake fully-reconstructed image G(x0). The

minimax adversarial game can be formulated as:

min
G

max
D

LGAN (G,D) = Ex∼Pdata(x)[logD(x)] + Ex∼Pzf (x)[log(1−D(G(x)))],

(1)

where Pdata(x) represents the distribution of the real data samples and Pzf (x)

represents the distribution of the zero-filling reconstruction samples. Assume

Pg(x) is the generated data distribution. If the G is fixed, D can derive the

optimal result Dop(x):

Dop(x) =
Pdata(x)

Pdata(x) + Pg(x)
. (2)

When the optimal D is obtained, the minimax adversarial game will turn to de-

termine a generator by solving a minimization problem. It can be reformulated

as:

min
G

LGAN (G,Dop)

= Ex∼Pdata
[logDop(x)] + Ex∼Pg

[log(1−Dop(x))]

= 2JSD(Pdata ‖ Pg)− 2 log 2,

(3)
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where JSD denotes the Jensen-Shannon (JS) divergence. The goal of G is to

minimize the JS divergence between the real data distribution Pdata and the

generated data distribution Pg. The closer Pg is to Pdata, the smaller the JS

divergence is between them. This adversarial mechanism can make G generate

images that are quite close to the fully-sampled images.

3. Method

3.1. Problem Formulation

Let x ∈ CN denote a fully-sampled MR image, y ∈ CM represent the mea-

surements in k-space where M << N , and x0 = FHy represent the zero-filled

reconstruction in which F and superscript H denote the Fourier operator and

the Hermitian transpose operation respectively. The aim of CS-MRI recon-

struction is to reconstruct x from y. The relationship between y and x can be

formulated as:

y = Ax+ b, (4)

where A ∈ CM×N represents the under-sampled Fourier operator, b ∈ CM is

the unavoidable noises during the imaging process.

The deep learning-based CS-MRI reconstruction is to train a deep convolu-

tional neural network (CNN) using massive amount of training data to map a

ZF image to a fully-reconstructed image, which can be formulated as:

arg min
Θ

L(x, xg); (5)

xg = fCNN (x0,Θ), (6)

where xg ∈ CN denotes the fully-reconstructed MR image, fCNN is the end-to-

end mapping of a CNN, Θ represents the hidden parameters in the CNN, L is

the loss function of the CNN.

3.2. Total Loss Function

In the reconstruction scenario, the introduction of GANs aims to generate

an image as close as possible to its corresponding fully-sampled image rather
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than any other real images. However, in the original adversarial process, the

adversarial loss allows G to map the input image x0 to any real image in the

dataset as long as D cannot distinguish G(x0) from the real one. In addition,

although GANs can preserve some structural and texture features of MRI images

in the adversarial process, G may still produce some unrealistic image details or

miss some important diagnostic information. Therefore, in order to achieve more

accurate MRI reconstruction, an additional and efficient loss function suitable

for reconstruction scenario is in need.

3.2.1. L2 Loss

As mentioned in the recent studies [22] [23], L2 loss has many advantages,

such as convexity, differentiability and symmetry. Therefore, L2 loss is usually

used as a default loss function. However, L2 loss has following shortcomings:

(1) L2 loss is easy to make generated images blurry and unnatural; (2) L2 loss

is more inclined to penalize large errors, but it is difficult to penalize small

differences, regardless of the structure information of the image; (3) L2 is easy

to stuck in a local minimum. L2 loss can be expressed as:

L2 =
1

HW
‖G(x0)− x‖22 , (7)

where H and W represent the height and the width of a 2D MR image respec-

tively, G denotes the function of the generator.

3.2.2. L1 Loss

Compared to L2 loss, L1 loss can avoid some of the shortcomings of L2 loss:

(1) L1 loss can suppress image blur; (2) L1 loss has the same tolerance for large

errors and small errors; (3) according to [22], L1 loss can get a lower minimum

than L2 loss. L1 loss can be formulated as:

L1 =
1

HW
|G(x0)− x| . (8)

3.2.3. Enhanced Structural Loss

One goal of MRI reconstruction is to preserve texture details. Therefore,

a loss function which can penalize the perceptual and structural difference be-
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tween the fully-reconstructed images and the fully-sampled images is needed.

As revealed in [22] [23], the structural similarity index (SSIM) [24] and the

multi-scale structural similarity index (MS-SSIM) [25] are the two most ad-

vanced perceptually motivated metrics, which can be used to generate visually

high-quality images.

The SSIM is formulated as follows:

SSIM(x, xg) =
2µxµxg

+ C1

µ2
x + µ2

xg
+ C1

·
2σxxg

+ C2

σ2
x + σ2

xg
+ C2

, (9)

= l(x, xg) ∗ cs(x, xg), (10)

where µx, µxg , σx, σxg represent means and standard deviations of the fully-

sampled image x and the fully-reconstructed image xg respectively, σxxg de-

notes the cross-covariance between x and xg, C1 and C2 are constants. l(x, xg),

cs(x, xg) are the first term and the second term in Eq. (9).

The MS-SSIM is formulated as follows:

MS-SSIM(x, xg) = lαM (x, xg) ·
M∏
j=1

cs
βj

j (x, xg), (11)

where lM and csj are the terms defined in Eq. (10) at scale M and j respectively.

According to [25], MS-SSIM outperforms SSIM under an appropriate parameter

settings. We add a penalty related to MS-SSIM in the loss function of the

generator by using the following form:

LMS-SSIM = 1−MS-SSIM(x, xg). (12)

Using structural loss function alone may not preserve texture details well.

However, the combination with different structural loss functions which express

image details in different ways makes it possible for the generator to maintain

image texture features better. For instance, as revealed in [26], the gradients

of an image depicting the edges can be used as a loss function to preserve its

gradient information, which can be defined as:

Lgrad =
1

HW
‖∇x−∇xg‖22 , (13)
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where ∇ denotes the gradient operator, Lgrad represents the gradient loss.

Therefore, we propose an enhanced structural loss LES which combines

LMS-SSIM and Lgrad. It can be expressed as:

LES = LMS-SSIM + Lgrad. (14)

The enhanced structural Loss LES can extract richer texture detail information.

To the best of our knowledge, this is the first work to combine LMS-SSIM and

Lgrad for MRI reconstruction.

3.2.4. Total Loss Function

Based on the above analysis, the total loss function Ltotal consists of the

generative adversarial loss, L1 loss and the enhanced structural Loss LES , which

can be expressed as:

Ltotal = LGAN (G,D) + αL1(G) + βLES(G), (15)

where α and β are the weights that control the balance each other.

3.3. Overall Architecture of ESSGAN

The overall architecture of ESSGAN is presented in Fig. 1, which is com-

posed of a structurally strengthened generator (SG) and a discriminator. Note

that the shortcuts between the decoder blocks in the first SCAE and the cor-

responding encoder blocks in the second SCAE are termed as strengthened

connections (SCs, the solid red lines in Fig. 1), while the shortcuts between the

encoder blocks and the corresponding decoder blocks in each SCAE are termed

as typical connections (TCs, the solid blue lines in Fig. 1). SG is a combination

of two SCAEs in which the SCs are introduced to improve the utilization of

the feature maps between two SCAEs. Besides, in order to further enhance the

overall performance of SG, we design a residual in residual block (RIRB) and

embed it in SG. In the forward propagation process, the zero-filling reconstruc-

tion images are forwardly propagated along the solid black line to generate the

fully-reconstructed MR images. The process is expressed as follows.
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Assume SCAE n denotes the nth SCAE and xn stands for the output of the

SCAE n. The feature maps xoutC(1,n) are extracted from the xn−1, which can be

formulated as:

xoutC(1,n) = C(xn−1), (16)

where C represents a convolution operator, the subscripts C(1, n) denotes the

function of the first convolution operation (blue circle in Fig. 1) in the SCAE

n, and the superscripts out stands for the output of the convolution operator.

Then, xoutC(1,n) is propagated to M encoder blocks and M decoder blocks in

turn. For each encoder block and decoder block, their input and output can be

formulated as:

xinE(1,n) = xoutC(1,n) +R(xinC(2,n−1)); (17)

xinE(m,n) = xoutE(m−1,n) +R(xinD(M−m+2,n−1)),m = 2, 3, · · · ,M ; (18)

xoutE(m,n) = E(xinE(m,n)); (19)

xinD(1,n) = xoutE(M,n) +R(xinD(1,n−1)); (20)

xinD(m,n) = xoutD(m−1,n) +R(xinE(M−m+2,n)),m = 2, 3, · · · ,M ; (21)

xoutD(m,n) = D(xinD(m,n)), (22)

where Eq. (17) and Eq. (18) denote the input of the encoder block, Eq. (19)

denotes the output of the encoder block, Eq. (20) and Eq. (21) denote the

input of the decoder block and Eq. (22) is the output of the decoder block.

The subscripts E(m,n) and D(m,n) respectively denote the mth encoder block

and the mth decoder block in the SCAE n. The subscripts C(2, n) represents

the function of the second convolution operator (magenta circle in Fig. 1) in

the SCAE n. The superscripts in and out respectively stand for the input and

output of the encoder block, the decoder block or the convolution operator. E,

D and R respectively represent the functions of the encoder block, the decoder

block and the RIRB. Here, one thing that should be paid attention to is that if n

equals 1, the xinC(2,n−1), x
in
D(M−m+2,n−1) and xinD(1,n−1) will equal 0 in Eq. (17),

Eq. (18) and Eq. (20). The final output xn of the SCAE n can be expressed

10
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Figure 1: The overall architecture of the proposed ESSGAN: the proposed strengthened gen-

erator maps a zero-filling MR image to the reconstructed image to fool the discriminator,

however, the discriminator avoids being fooled by distinguishing the fully-sampled image from

the reconstructed image.

as:

xn = xn−1 + xoutC(2,n). (23)

In this paper, the final output of the proposed SG can be formulated as:

x2 = x0 +

2∑
n=1

xoutC(2,n). (24)

The discriminator uses the encoding part of the SCAE to distinguish the

fully-reconstructed image from the fully-sampled image. In the training process,

the discriminator and the generator are trained alternately until a stopping

criterion is met.

3.4. Architecture Details

In the design of the ESSGAN architecture, we innovatively introduce two

important components into the proposed strengthened generator: the SC and

the RIRB. In addition, we introduce a SCAE by embedding the RIRBs to the

TCs. Details about each proposed component of ESSGAN will be discussed as

follows.
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3.4.1. Strengthened Connection

Recently, the network performance has been improved by cascading the same

CNN architectures (e.g., [16]) in a head-to-tail connection style. However, the

utilization between the corresponding feature maps of two adjacent CNN archi-

tectures is insufficient. To solve this problem, inspired by [27], we introduced

SCs into the proposed SG. Thus, these SCs dramatically increase the utilization

of the corresponding feature maps between two SCAEs. Different from [27], the

proposed ESSGAN do not share the same weights. To the best of our knowl-

edge, this is the first work to apply SCs to MRI reconstruction. In fact, the

SCs can be applied to any other CNN architectures cascaded in a head-to-tail

connection style, which is of great significance for improving the utilization of

the feature maps.

3.4.2. Residual in Residual Block

As shown in Fig. 1, the residual in residual block (RIRB) is composed of four

2D convolution operators (CBL 1, CBL 2, CBL 3 and CBL 4), in which each

stride of all convolution operators equals 1. From left to right, The filter sizes of

the four 2D convolution operators are 3× 3, 1× 1, 1× 1 and 3× 3 respectively,

and the number of filters is fnum/2, fnum/2, fnum/2 and fnum respectively.

Inspired by [7], we introduce two residual connections to the RIRB in order

to avoid gradient vanishing and thus make training more efficient. Besides, we

alternately use 1 × 1 filter and 3 × 3 filter to exact different texture features.

The use of 1×1 filter can dramatically reduce the amount of model parameters.

Therefore, introducing RIRBs to SG allows it to efficiently trade off between

model complexity and performance. The RIRBs are distributed in four places

of the ESSGAN architecture, and play a key role in improving network perfor-

mance. Embedding the RIRBs in the encoder blocks and the decoder blocks can

greatly increase the depth of the proposed SG, thus provide higher-level feature

maps and increase the expression ability of SG. In addition, besides the feature

information from the previous layer, the encoder or decoder can obtain different

feature information from the RIRB by embedding the RIRBs in the TCs and
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SCs. In other words, the RIRB can give the encoder and decoder blocks richer

texture features, thus enhance the feature extraction ability of the proposed SG.

In general, the RIRB not only enhances the expression ability of the proposed

SG efficiently, but also allows the proposed SG and the discriminator not to suf-

fer from the gradient vanishing problem, making training more efficient. To the

best of our knowledge, this is the first work to embed the RIRBs in the short-

cuts (TCs and SCs) for MRI reconstruction. More importantly, the method

embedding an efficient convolutional block (like RIRB) in the shortcuts can be

applied to any CNN architectures, which is of great significance for improving

the feature expression ability of the CNN.

3.4.3. Strengthened Convolutional AutoEncoder

We introduced RIRBs into the typical convolutional autoencoder to form the

strengthened convolutional autoencoder, dubbed SCAE. Each SCAE contains

M encoder blocks (purple circle in Fig. 1), M decoder blocks (orange circle in

Fig. 1), two 2D convolution operators (blue and magenta circles respectively in

Fig. 1) and the RIRBs. In the encoder block, the conv i and conv o perform the

2D convolution with the stride 2 and 1 respectively, in which the filter sizes are

all 3× 3 and conv i performs a down-sampling operation. In the decoder block,

the deconv i and deconv o perform the convolution transpose with stride 1 and

2 respectively, in which the filter sizes are all 3× 3 and deconv o can complete

an up-sampling operation. The first 2D convolution (blue circle in Fig. 1) is

performed with filter size 3 × 3, the number of filters is fnum and the stride

equals 1. The second 2D convolution (magenta circle in Fig. 1) is performed

with filter size 3×3, and the stride equals 1. To match the channel of the input,

the number of filters is set to 1.
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(a) Radial 30% (b) Cartesian 30% (c) Spiral 30%

Figure 2: The different subsampling masks with an undersampling rate of 30%.

4. Experimental Results

4.1. Basic Settings

4.1.1. Datasets

We used an MICCAI 2013 grand challenge dataset 1 to train and test all

methods. In the training phase, the 100 T1-weighted MRI datasets were se-

lected, which were divided into two groups: 15839 training images (70%) and

5050 valid images (30%) including brain tissues. In the testing phase, we ran-

domly selected 50 images out of 10438 testing images to test the performance. It

should be noticed that the training images, valid images and testing images are

real-valued MR images, which are obtained through preprocessing the complex-

valued k -space data. Furthermore, they are all independent samples, allowing

no overlap among different image sets.

4.1.2. Masks

The measurement data y was obtained by undersampling k-space data using

three different subsampling masks: radial mask, cartesian mask and spiral mask,

each being used for various undersampling rates of 10%, 20%, 30%, and 40%,

corresponding to 10, 5, 3.3, and 2.5 factors of acceleration respectively.

1https://my.vanderbilt.edu/masi/workshops/
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4.1.3. Comparison Methods and ESSGAN Variants

Due to the strong performance of the deep learning models, many deep

learning-based CS-MRI methods have surpassed most of the classical CS-MRI

methods, for example, DAGAN [15] has better performance than most conven-

tional CS-MRI algorithms (e.g., TV [28], SIDWT [29], RecPF [30], DLMRI [20],

PBDW [31], PANO [32], Noiselet [33], and BM3D [34]). Besides, RefineGAN

[16] surpasses many deep learning-based CS-MRI methods (e.g., DeepADMM

[18], DeepCascade [19], SingleGAN [35], [36]). Therefore, we just compared

the proposed ESSGAN with the state-of-the-art deep learning-based CS-MRI

methods. In this study, DAGAN and RefineGAN were chosen to compare with

our method in terms of both visual and quantitative quality. Pixel-Frequency-

Perceptual-GAN-Refinement (PFPGR) was selected in DAGAN. In addition,

in order to ensure the fairness of the comparison, the ZF images were chosen as

the inputs for the all methods in the training process.

To test the effectiveness of the proposed novel components including SC,

RIRB and LES , the following ESSGAN variants were compared: (1) ESSGAN:

the full model containing all novel components; (2) ESSGAN-A: the model

containing all novel components but SCs; (3) ESSGAN-B: the model containing

all novel components but RIRBs embedded in the SCs and TCs; (4) ESSGAN-C:

the model containing all novel components but LES .

4.2. Network Training

To partly solve the mode collapse problem and enhance network perfor-

mance, we adopted data augmentation as [15] for training, such as image flip-

ping, elastic distortion, rotating, shifting, zooming, and brightness adjustment.

In the encoder block, the stride is set to 2 to perform a down-sampling operator

instead of using an extra max-pooling layer. In the training process, the initial

learning rate is 0.0001, and the learning rate is halved every 10 epochs. The

Adam optimizer is used with the first-order momentum 0.9 and the second-

order momentum 0.999. We adopted the early stopping as the stopping crite-

rion, where the training would stop when the NMSE in the validation set kept
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increasing 10 times in a row. The proposed ESSGAN was trained by using the

following hyperparameters: M=4, α=200, β=100, fnum=64. In addition, we

trained and tested the ESSGAN by using tensorflow 2 and tensorlayer 3 on Intel

Xeon CPU E5-2630 v4 at 2.2 GHz and a NVIDIA Geforce GTX 1080Ti with

11GB memory. Due to GPU memory constraints, the proposed ESSGAN was

trained with a mini-batch size 8. As for the implementations of DAGAN and

RefineGAN, we use the source code provided by the authors on GitHub.

Table 1 Quantitative results (NMSE / PSNR) of the comparison methods

using different undersampling rates of radial subsampling mask.

Method
10% 20%

NMSE PSNR NMSE PSNR

Zero-Filling 0.246±0.049 30.75±5.71 0.137±0.040 36.12±6.43

DAGAN 0.085±0.025 40.17±5.34 0.044±0.014 45.97±5.47

RefineGAN 0.056±0.016 43.82±4.58 0.031±0.015 49.17±3.61

ESSGAN 0.052±0.015 44.50±6.20 0.027±0.009 50.32±6.44

Method
30% 40%

NMSE PSNR NMSE PSNR

Zero-Filling 0.084±0.026 40.48±6.45 0.053±0.016 44.47±6.26

DAGAN 0.032±0.011 48.69±4.88 0.027±0.008 50.13±4.42

RefineGAN 0.022±0.015 52.27±2.87 0.019±0.015 53.83±2.48

ESSGAN 0.015±0.006 55.47±7.04 0.010±0.004 59.55±7.24

4.3. Result Analysis

In order to evaluate the reconstructed image quality quantitively, three main

image quality metrics are applied: normalized mean-square error (NMSE), peak

signal-to-noise ratio (PSNR) and structural similarity (SSIM). Note that NMSE,

2https://www.tensorflow.org
3http://tensorlayer.readthedocs.io
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Table 2 Quantitative results (NMSE / PSNR) of the comparison methods at

an undersampling rate of 30% under different subsampling masks.

Method
Cartesian Spiral

NMSE PSNR NMSE PSNR

Zero-Filling 0.188±0.049 33.23±6.13 0.106±0.030 38.26±6.22

DAGAN 0.106±0.025 38.12±5.67 0.034±0.011 48.32±4.98

RefineGAN 0.078±0.021 40.81±4.13 0.023±0.015 51.80±3.12

ESSGAN 0.055±0.013 43.89±5.71 0.018±0.007 54.53±7.65

Table 3 Comparison of the number of parameters between different methods.

Method DAGAN RefineGAN ESSGAN

Params 146.73M 156.24M 35.71M

Table 4 Quantitative results (NMSE / PSNR / SSIM) of ESSGAN and its

variants at an undersampling rate of 30% under radial subsampling mask.

Method ESSGAN-A ESSGAN-B ESSGAN-C ESSGAN

NMSE 0.049±0.018 0.018±0.006 0.016±0.006 0.015±0.006

PSNR 45.07±4.18 53.80±6.50 55.24±6.98 55.47±7.04

SSIM 0.992±0.004 0.999±0.001 0.999±0.001 0.999±0.001

Table 5 Quantitative results (NMSE / PSNR / SSIM) of the comparison

methods at an undersampling rate of 30% under radial subsampling mask with

additive Gaussian noise (µ = 0, σ = 1).

Method Zero-Filling DAGAN RefineGAN ESSGAN

NMSE 0.093±0.035 0.038±0.012 0.024±0.015 0.023±0.007

PSNR 39.45±4.43 47.25±4.41 51.65±2.99 51.54±4.18

SSIM 0.880±0.057 0.997±0.002 0.999±0.001 0.999±0.001
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PSNR and SSIM represent respectively average NMSE, average PSNR and av-

erage SSIM in this paper. The subsampling masks are presented in Fig. 2.

4.3.1. Comprehensive Quantitative Analysis

Table 1 presents the quantitative results of all methods at different under-

sampling rates under radial subsampling mask, all results are displayed in the

form of mean ± std (standard deviation). We mark the overall best results

in red. It can be seen that the proposed ESSGAN shows better performance

with lower NMSE and higher PSNR than any other comparison methods. In

Table 2, the quantitative results are presented at an undersampling rate of 30%

under cartesian and spiral subsampling masks to further test the performance

of all these methods. From Table 2 we can observe that significant perfor-

mance improvement of ESSGAN. It generates better results than DAGAN and

RefineGAN under different undersampling patterns. Noticeably, the PSNR val-

ues of the proposed ESSGAN are more than 2.7dB higher than those of the

most advanced RefineGAN under cartesian and spiral subsampling masks. In

addition, the improved performance is not at the expense of a heavier model

architecture. In Table 3, in terms of the total number of parameters includ-

ing the parameters in generator and discriminator, the proposed ESSGAN has

35.71M parameters, which is far less than that of DAGAN and RefineGAN ow-

ing mainly to the embedding of the proposed RIRB. In Table 4, we show the

quantitative results of ESSGAN variants at an undersampling rate of 30% under

radial subsampling mask. ESSGAN presents better performance than its vari-

ants, which illustrates that the removal of any proposed component will affect

the performance of the proposed ESSGAN. SCs, RIRBs and LES play various

roles in improving the performance of ESSGAN. In particular, we find that the

performance of ESSGAN-A is the worst, which illustrates that SCs are essential

for the performance improvement of ESSGAN.

18



0 10 20 30 40 50 60 70
epoch

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Av
er

ag
e 

NM
SE

10%
20%
30%
40%

(a)

0 10 20 30 40 50 60 70
epoch

40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0

Av
er

ag
e 

PS
NR

 (d
B)

10%
20%
30%
40%

(b)

0 10 20 30 40 50 60 70
epoch

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Av
er

ag
e 

NM
SE

radial
cartesian
spiral

(c)

0 10 20 30 40 50 60 70
epoch

40

42

44

46

48

50

52

54

56

Av
er
ag

e 
PS

NR
 (d

B)

radial
cartesian
spiral

(d)

Figure 3: (a) and (b) denote the test results (NMSE / PSNR) of the convergence and stability

for ESSGAN at different undersampling rates of the radial mask. (c) and (d) denote the test

results (NMSE / PSNR) of the convergence and stability for ESSGAN at an undersampling

rate of 30% under radial, cartesian and spiral subsampling masks.
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Figure 4: Image quality comparison using radial subsampling mask with an undersampling

rate of 10%: Reconstructed MR images (in the first line), the corresponding zoomed-in ROIs

(in the second line) and the corresponding error maps (in the third line).
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Figure 5: Image quality comparison using radial subsampling mask with an undersampling

rate of 20%: Reconstructed MR images (in the first line), the corresponding zoomed-in ROIs

(in the second line) and the corresponding error maps (in the third line).
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Figure 6: Image quality comparison using cartesian subsampling mask with an undersampling

rate of 30%: Reconstructed MR images (in the first line), the corresponding zoomed-in ROIs

(in the second line) and the corresponding error maps (in the third line).
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Figure 7: Image quality comparison at an undersampling rate of 30% of radial subsampling

mask with additive Gaussian noise (µ = 0, σ = 1): Reconstructed MR images (in the first

line), the corresponding zoomed-in ROIs (in the second line) and the corresponding error

maps (in the third line).

21



4.3.2. Comprehensive Analysis of ESSGAN in Convergence and Stability

In the training phase, convergence and stability are very important for the

applications of deep learning-based CS-MRI methods. Therefore, we tested the

convergence and stability of the proposed ESSGAN. The testing results are

presented in Fig. 3. Note that NMSE and PSNR in Fig. 3 are the average

NMSE and PSNR in the validation set. (a) and (b) of Fig. 3 respectively

present the quantitative results of NMSE and PSNR at different undersampling

rates under radial mask. From NMSE and PSNR curves of (a) and (b), we

observe that ESSGAN keeps on converging at different undersampling rates

under radial mask, and the convergence process is quite stable. (c) and (d) in

Fig. 3 respectively present the quantitative results of NMSE and PSNR at an

undersampling rate of 30% under different masks. From (c) and (d) of Fig. 3

we can still find that the NMSE and PSNR curves continually converge to a

minimum value steadily.

4.3.3. Qualitative Visual Analysis

The qualitative experimental results which demonstrate visual qualities are

given in Fig.4-6, which present the reconstructed MR images, the zoomed-in

ROIs and the corresponding error maps. Fig. 4 and Fig. 5 illustrate the results

from radial subsampling at undersampling rates of 10% and 20% respectively.

From the zoomed-in ROIs in Fig. 4 and Fig. 5, we observed that ESSGAN can

remove more artifacts and reconstruct higher quality images than other compar-

ison methods. From the error maps we see more clearly that the generated MR

images reconstructed by the proposed ESSGAN is closer to the ground truth

than the comparison methods. Fig. 6 illustrates the results from cartesian sub-

sampling at an undersampling rate of 30%. Like our findings in Fig. 4 and Fig.

5, we observed from the zoomed-in ROIs in Fig. 6 that the proposed ESSGAN

can reconstruct more texture details. More importantly, the texture details re-

constructed by the proposed ESSGAN is more realistic and closer to the ground

truth. From the error maps we can find that the proposed ESSGAN can achieve

more accurate MRI reconstruction with smaller reconstruction errors.
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4.3.4. Anti-noise Performance Analysis

In Table 5, the quantitative results are presented with additive Gaussian

noise at an undersampling rate of 30% of radial subsampling mask. Fig. 7 shows

the comparison images with additive Gaussian noise. The additive Gaussian

noise is chosen with µ = 0, σ = 1, where µ and σ represent mean and standard

deviation respectively. The additive Gaussian noise is complex-valued because

the MRI data in k -space is complex-valued. From Table 5 we can find that the

quantitative results of ESSGAN and RefineGAN are very close, both of which

are better than those of DAGAN. However, from the zoomed-in ROIs of Fig.

7 we can see that the image reconstructed by the proposed ESSGAN is more

natural and has less artifacts than that of the most advanced RefineGAN.

In general, the proposed ESSGAN obtains the best results in most cases

compared with other comparison methods. Moreover, ESSGAN has lightest

network architecture, and in the training phase it has excellent convergence

and stability. The reasons for the significant performance improvements are:

(1) the introduction of SCs further exploits the advantages of shortcuts, which

increases the utilization of the corresponding feature maps; (2) RIRB takes full

advantage of the residual connection; (3) Embedding the RIRBs in the encoder

blocks, the decoder blocks, the SCs and the TCs enhance the feature expression

ability of the proposed SG; (4) L1 loss and the enhanced structural Loss LES

help ESSGAN get a lower minimum and preserve more texture details.

5. Conclusion

In this paper, we proposed an efficient structurally strengthened Genera-

tive Adversarial Network (ESSGAN) with an enhanced structural loss for more

accurate MRI reconstruction. The proposed ESSGAN effectively integrates

the state-of-the-art deep learning methods: the convolutional autoencoder, the

residual network, and GANs. More importantly, we introduced three main in-

novative components including the SCs, the RIRBs and the enhanced structural

loss. The experimental results demonstrated that the proposed ESSGAN can re-
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construct more image texture details and remove more artifacts with less model

parameters than the state-of-the-art deep learning-based methods.
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