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Abstract—6DOF camera relocalization is an important com-
ponent of autonomous driving and navigation. Deep learning has
recently emerged as a promising technique to tackle this problem.
In this paper, we present a novel relative geometry-aware Siamese
neural network to enhance the performance of deep learning-
based methods through explicitly exploiting the relative geometry
constraints between images. We perform multi-task learning
and predict the absolute and relative poses simultaneously. We
regularize the shared-weight twin networks in both the pose and
feature domains to ensure that the estimated poses are globally
as well as locally correct. We employ metric learning and design
a novel adaptive metric distance loss to learn a feature that is
capable of distinguishing poses of visually similar images from
different locations. We evaluate the proposed method on public
indoor and outdoor benchmarks and the experimental results
demonstrate that our method can significantly improve localiza-
tion performance. Furthermore, extensive ablation evaluations
are conducted to demonstrate the effectiveness of different terms
of the loss function.

Index Terms—Camera relocalization, Siamese neural network,
relative geometry constraints.

I. INTRODUCTION

AMERA relocalization, or 6 degrees of freedom (6DOF)
estimation, refers to the problem of estimating the pose
(position and orientation) of an image (camera). It is a hot
research topic in structure from motion (SfM), simultaneous
localization and mapping (SLAM) and robotics, and it is also
an essential component of autonomous driving and navigation.
Global Positioning System (GPS) has been widely used for
vehicle localization but its accuracy significantly decreases
in urban areas where tall buildings block or weaken its
signals. Many image-based methods have been proposed to
complement GPS. They provide position and orientation in-
formation based either on image retrieval [1]], [2], [3l, [41],
[5] or 3D model reconstruction [6]. However, these methods
face many challenges, including high storage overheads, low
computational efficiency and image variations, especially for
large scenes.

Recently, rapid progress in machine learning, particularly
deep learning, has produced a number of deep learning-based
methods [7], [8lI, [9], [10, [11], (120, [13], [14], [15]. They
have attained good performances in addressing the aforemen-
tioned challenges but their accuracies are not as good as
traditional methods. Another severe problem of deep learning-
based methods is that they fail to distinguish two different
locations that have similar objects or scenes.

In this paper, we present a novel relative geometry-aware
Siamese neural network, which explicitly exploits the relative

geometry constraints between images to regularize the net-
work. We improve the localization accuracy and enhance the
ability of the network to distinguish locations with similar
images. It is achieved with three key new ideas:

1) We design a novel Siamese neural network that explicitly
learns the global poses of a pair of images. We constrain
the estimated global poses with the actual relative pose
between the pair of images.

2) We perform multi-task learning to estimate the absolute
and relative poses simultaneously to ensure that the
predicted poses are correct both globally and locally.

3) We employ metric learning and design an adaptive metric
distance loss to learn feature representations that are
capable of distinguishing the poses of similar visual
images of different locations thus improving the overall
pose estimation accuracy.

The rest of the paper is organized as follows: Section
reviews the related works in camera relocalization. Section
[] elaborates the basic idea of deep learning-based camera
relocalization methods. Section [V] describes the architecture
of the proposed network and its loss function items. We present
the details of our experiments and evaluation in Section
Finally, we conclude our work in Section

II. RELATED WORK

Camera relocalization methods can be mainly classified into
three categories: image retrieval-based methods, 3D model-
based methods, and deep learning-based methods.

Many approaches and systems are proposed based on image
retrieval technique [[16]], [[17], [18]], [19], [20], [21], [22], [23],
[24], [23]], [26]. They determine the pose of the query image
by matching it with images rendered from 3D scene models.
The key component of the technique is image representation.
Global descriptors are often used, such as colour histogram
[3] and gradient orientation histogram [27]. GIST descriptor
[28]] and GIST-based descriptors [29] are applied to represent
panoramic images in [30], [31]], [L]. SeqSLAM [32] generates
the global descriptor from a sequence of consecutive images
instead of a single image. Global descriptors are fast to
compute, but they are not robust to occlusion and illumination
changes. Local features like SIFT [33] and SURF [34], have
been used in [17] for image representation. Compared with the
global descriptor, they are less sensitive to occlusion and view
variations. However, the storage requirement of the method is
high for large scenes. The pooling features like BoW [35] and
VLAD [36] are able to relieve the challenge. They aggregate
local features and represent the locations with a compact
feature vector instead of a large number of local features [16].



Another type of methods solve the problem by utilizing
camera projection geometry between 2D pixels and 3D mod-
els. They estimate the pose by constructing the correspondence
between 2D pixels and 3D points of the scene [37]], [38], [39],
[40], [41]]. Local point features, like SIFT [33]], SURF [34]
and ORB [42], are frequently used to describe the detected
2D points. 3D points, generated using the SfM technique, are
also described with local features to perform 2D-3D matching.
It can achieve accurate results when enough correct pairs are
provided. The main challenge is to establish enough correct
2D-3D correspondences, which is difficult for two reasons.
Firstly, local feature descriptor fails when a scene has repetitive
texture or texture-less surface; and secondly, the process is
inefficient for large scenes.

To increase the efficiency of the 2D-3D matching, priori-
tized search approaches [39]], [40] are proposed to construct
enough matching pairs instead of matching all detected 2D
points. Scene coordinate random forest (SCRF) [43]], [44]
utilizes machine learning techniques to directly predict 3D
coordinates of image pixels by training a random forest.
Similar to SCRF, deep learning technique is employed to
predict 3D coordinate of the center point of an image patch
in [45]. However, these methods require 3D model for the
network training ,which limits their application. To filter out
the wrong matches, co-visibility information is exploited in
(38, [39].

Deep learning has achieved extraordinary performance in
image classification, object detection, and image retrieval
tasks. Many researchers have employed it to solve the camera
relocalization problem [7]], [8]], [9], [10], [LL1], [12]], [13], [L14],
[15]. PlaNet[7] regards the problem as a classification task. It
divides the map into grids and predicts the grid in which the
query image belongs to through deep learning technique. Many
other researchers consider it as a regression problem instead.
They directly estimate the pose through a convolutional neural
network. PoseNet [8]], built on the Googl.eNet model [9], is
the first to adopt this paradigm in an end-to-end manner. It
is further extended to Bayesian PoseNet [10] to estimate the
confidence of the result as well. HourglassNet [[11] utilizes the
encoder-decoder network structure with skipped connections
to aggregate features from both lower and higher layers for
pose regression. It achieves better performance than PoseNet.
LSTM-Net [12] believes that high dimensional output of fully
connected layer in PoseNet is not optimal. It adds a LSTM
network after the last fully connected layer in PoseNet to
reduce information redundancy. VidLoc [13] exploits smooth
constraints of a video to address the perceptual aliasing
problem. It takes a video clip as input instead of a single
image and proposes a bidirectional recurrent neural network
structure to fuse the previous and next images information to
increase predicted pose accuracy. Laskar [46] proposes a new
triangulating strategy that predicts the pose by estimating the
relative pose between the query image and the images in the
database. Its main drawback is low efficiency since the relative
pose of all the images in the database have to be computed.
PoseNet2 [14] introduces the re-projection error with global
pose error and improves the performance. However, 3D points
are required in their method. MapNet [15] fuses the inertial

information with image information through deep learning to
enhance the network performance.

The proposed method in this paper is also based on convolu-
tional neural networks. However, it has a number of distinctive
features. For example, we use an innovative Siamese network
architecture to exploit the relative geometry of images in
addition to predicting the absolute poses. Unlike [14] and
[15], we only rely on the 2D images for training. Compared
to [LO], [0}, [11], [12], we take a pair of images as input
and utilize their relative pose error for training. In contrast to
[46], we directly regress the image pose instead of performing
triangulation.

A very recent work that also uses multi-task learning and
explicitly models relative poses of two frames appears in [57],
[58]. However, our system architecture differs from that of
[57], [S8] in a number of significant ways. Whilst we use a
Siamese network and metric learning loss to model the relative
geometrics of two frames, [S7]], [S8]] use two separate networks
to model the relative geometrics of two consecutive frames
(although [57], [58] refer their two networks as Siamese net-
work, strictly speaking it is not a Siamese network architecture
because the two networks do not share weights). Furthermore,
while our method can model the relative geometrics of two
arbitrary frames, [57], [58]] can only model two consecutive
frames.

III. DEEP LEARNING-BASED CAMERA RELOCALIZATION

Deep learning-based camera relocalization methods use
an end-to-end learning strategy to predict the positions and
orientations directly. They do not perform image matching
or solve 2D-3D correspondence as traditional methods do.
Instead, they regard the task as a regression problem and utilize
convolutional neural networks to model the hidden mapping
function between the images and their corresponding poses.
The networks are supervised by the distance between the
predicted poses and the ground truth. This section focuses
on discussing the pose representation and describing the loss
function formulation.

A. Pose Representation

The image (camera) pose is comprised of the positional
component and the orientational component. The position is
denoted by a 3-dimensional vector x of the arbitrary coordinate
space. Orientation can be represented in 3 forms: Euler angle,
transformation matrix, and quaternion. Euler angle is not a
good choice because it suffers from the gimbal lock problem.
Transformation matrix is over-parameterized for orientation
because it contains 9 parameters to represent the orientation
of 3D space, while the orientation only has 3 degrees of
freedom. Previous works [8], [13], [11], [12] choose the
quaternion to represent orientation, because it is a smooth and
continuous representation. The quaternion is a 4-dimensional
unit vector q and is easy to perform back-propagation. The
main concern for the quaternion is that each orientation has
two different quaternion representations. This can be addressed
by constraining the quaternion to one hemisphere.



One simple and obvious way to represent pose is to form
a 7-dimensional vector, combining position and orientation
together. However, previous works demonstrate that the 7-
dimensional vector representation does not achieve good per-
formance due to the difference of scale between position
and orientation. Therefore, two pose components are usually
regressed separately. In this paper, instead of training two sep-
arate convolutional neural networks to estimate position and
orientation, we train one model to predict the two components
simultaneously. This is reasonable because both position and
orientation come from the same image content.

B. Loss Function

The loss function (GlobalLoss) is normally designed based
on the distance between the predicted pose and the ground
truth, serving as the optimization objective for training the
networks. It consists of two components, i.e. position loss and
orientation loss, as shown in equation (EI)

Lg = Lgy + Lay, (1

where Lg, is the position loss and L, denotes the orientation
loss. Here, Euclidean distance is chosen to calculate the
position loss and orientation loss as it is continuous and
smooth. The two components are computed by equations (2)
and (B) respectively.

Laa = |z — &5, ©

where x represents the real position and & denotes the pre-
dicted one.
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where ¢ is the ground truth orientation, § denotes the predicted
orientation and ||g|| represents the length of the predicted
orientation quaternion. ﬁ is performed to normalize the
predicted quaternion to the length of 1 since the network
prediction does not guarantee it.

Due to the quantity and scale difference between the po-
sition loss and the orientation loss, a hyperplane parameter
[ is introduced to balance the influence of the two loss
components. The loss function is represented as equation (@).

L= Lgz+ B x Lag, “4)

Previous works choose to set S manually and achieve good
performance in their experiments. However, fine tuning f3
for different scenes is labour-intensive. PoseNet2 addresses
this issue by introducing two learnable variables, i.e. 5, and
54, which correspond to the loss of position and orientation
respectively. Then equation (@) is transformed into equation

(R)E

L = Lgy X exp(—8,) + 8 + Laq X exp(—54) + 84.  (5)

IV. RELATIVE GEOMETRY-AWARE SIAMESE NETWORK
FOR CAMERA RELOCALIZATION

Our network is built on Siamese network originally intro-
duced by Bromley and LeCun in [47]. A traditional Siamese
neural network architecture consists of twin networks which
accepts distinct inputs. The loss function computes a metric
between the highest-level feature representation on each side
given certain threshold. We utilize this structure to learn
a robust feature representation for mapping positions and
orientations by introducing relative geometry constraints of the
training images. The process is supervised by both global pose
and relative pose constraints. The proposed network architec-
ture is illustrated in Figure [I] Compared to the conventional
Siamese network structure, it has an additional component
for relative pose prediction and performs multi-task learning.
In the following subsections, we will present the network
architecture and the relative geometry losses for the network
training in detail.

A. Network Architecture

Each of the twin networks consists of a modified ResNet50
[48] and a global pose regression unit (GPRU). The modified
ResNet50 consists of 5 residual blocks and an average pooling
layer. Each residual block has multiple residual bottleneck
units that are comprised of three convolutional layers with
kernel sizes of 1 x 1, 3 x 3, and 1 x 1 in sequence. Each
convolutional layer is followed by rectified linear unit (ReLU)
and batch normalization operation. The average pooling layer
is used to aggregate the feature information from the previous
layers. The GPRU contains 3 fully connected layers. The first
fully connected layer has 1024 neurons and the followed two
has 3 and 4 neurons respectively for regressing the position
and orientation. For the relative pose of the two inputs, we
design a relative pose regression unit (RPRU). It has a similar
structure as the GPRU. The difference lies in their inputs.
While the GPRU takes the output vector of the modified
ResNet50 as input, the RPRU takes the concatenation of the
two modified ResNet50 output vectors as input. The dropout
technique is applied after each fully connected layer to reduce
feature redundancy. The parameter of dropout layer is set to
be 0.2 empirically.

B. Relative Geometry Losses

We design three relative geometry losses based on the rela-
tive geometry constraints of the training images including the
relative pose loss (RelLoss), the relative pose regression loss
(RelRLoss) and the adaptive metric distance loss (MDLoss).
They function in both the feature and the pose spaces to
regularize the network. They will be discussed in detail in
the following sections.

1) Relative Pose Loss: Previous deep learning-based pose
estimation methods train the network on the global poses of
the images, i.e. given an input image, they estimate its global
(absolute) position and orientation while the relative pose
between two training images is ignored. However, the relative
pose information of two images is important. In this paper,
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Fig. 1: Relative Geometry-Aware Siamese neural network architecture for 6DOF camera relocalization. Units of the same color
share the same weights. The silver and grey unit represent the outputs of the modified ResNet50. G, G, denote the positional
and orientational components of the predicted global pose, and R,, R, denote two components of the predicted relative pose.
The global pose regression unit (GPRU) and the relative pose regression unit (RPRU) are represented with dashed-boundary

boxes.

the network not only explicitly estimates the global pose of
the input image but also explicitly requires that the difference
between the estimated global poses of two images is consistent
with their actual (ground truth) difference. The relative pose
loss (RelLoss) is designed to preserve the relative geometry
in the pose space by comparing the distance between two
predicted global poses, and the actual distance of the global
poses of the two images. RelLoss is able to keep the relative
pose of paired images consistent with their ground truth. It
works in the pose space and constrains the pose error of two
images.

Suppose that the position and orientation of the current
image I and a reference image I,.r are (x, q) and (T,.f,
gref), respectively. The relative position ,¢; and orientation
¢rer can be computed with equations (6) and (7).

Trel =X — Tpef, (6)

Qrel = Q:cf X q, (7

where g7, represents the conjugate quaternion of ¢y.r. Note
that when calculating the relative orientation from the pre-
dicted orientation quaternion with equation (7)), the quaternion
has to be normalized. The RelLoss also contains the positional
loss component and the orientational loss component as shown
in equation (8).

Lc = Loy + Leyg, ®)

where Lc, denotes the RellLoss positional component, and
L¢, is the orientational component.

The two loss components are formulated with Euclidean
distance as shown in equations (9) and (T0).

LCx = ||-'i'rel - xrel”gy (9)

LCq = ||qArel - QTelHQ 5 (10)

where ¢, §re; are the predicted relative position and orien-
tation, and ¢, ¢re; denote the ground truth.

2) Relative Pose Regression Loss: Whilst RelLoss captures
the relative geometry of two images through estimating their
global poses, we here introduce another loss to estimate the
relative pose distance of a pair of images directly from the
input images. The relative pose regression loss (RelRLoss) is
defined as shown in equation (TI).

Lr = Lry + Lpg, (11)

where Lpg, denotes the positional component, and Lg, de-
notes the orientational component. The two component loss
functions are computed by equations (12) and (T3).

LRz = ”xrel - 5T€lH27 (12)
arel
L = ||9rel — 7= ) (13)
" ‘ [l [,

where x,;, qre; Tepresent the ground truth relative position
and orientation, and Z,.;, g represent the directly predicted
relative position and orientation. The ground truth relative
position and orientation can be obtained using equation (6)



, (7). Note that g,.; needs to be normalized as it is directly
regressed by the network.

It should be noted that Ly in equation (II) and L¢ in
equation (8) are different. One is computed from the difference
of two predicted global poses while the other is predicted
directly by regression. Furthermore, it is the Ly that joins the
twin networks together (please refer to Figure[I]). The purposes
of introducing RelRLoss is to ensure that the features extracted
by the ResNet50 network will not only enable an accurate
estimate of the global pose but also an accurate relative pose
estimation.

3) Adaptive Metric Distance Loss: Deep learning-based
methods often fail to accurately predict the poses of similar
images of different locations. Distinguishing similar inputs
belonging to different classes is one of the major difficulties
in computer vision. Here, we take advantage of the Siamese
network architecture of Figure [I| and propose the adaptive
metric distance loss (MDLoss) to address the problem. It
is inspired by metric learning [49], [SO0], [S1]. The basic
idea of metric learning is to learn a metric distance adaptive
to the problem of interest. For many problems, including
camera relocalization, hand-crafted representations fail badly
in capturing the notion of similarity. Deep learning regression-
based camera relocalization approaches are based on the visual
contents of the input image to estimate its pose, therefore
simple metrics measuring the visual content similarity fails to
capture the pose dissimilarity in the above cases. In the case
of our Siamese architecture in Figure |I} the 6DOF camera
pose is estimated by the GPRU. The input to the GPRU
unit (the output of the ResNet50) should reflect the pose
difference rather than the visual similarity of the images. We
therefore introduce the adaptive metric distance loss (MDLoss)
to address this issue.

The MDLoss is built on the contrastive loss, which employs
semantic information (data label) to force the convolutional
neural network to learn an embedding representation that
complies with a notion of similarity of the problem domain. In
our scenario, we define the metric distance loss by embedding
the relative pose of two images. The relative information is
used to define the margin of feature representation. The loss
function is shown in equation (T4).

N
1
Lyp = oN ;{max(dw +axd, —d,0)}?, (14)

where N denotes the number of the training samples, d = || f—
frefll2, f and fr.¢ are the outputs of the modified ResNet50
network taken for the current image and the reference image
respectively, d, = ||z —y¢f||2 is the Euclidean distance of the
actual relative position while dy = [|g—gycf||2 is the Euclidean
distance of the actual relative orientation of the current image
and the reference image, o is a positive constant to balance
the influence of the relative position and orientation. It is set
equal to 10 empirically.

An explanation of Lp;p is that, if d is smaller than
d; + o x dg, we want to make it as large as d, + a x d;.
On the other hand, if d is larger than d, + a X dg, this cost
function is not utilized and other cost functions will function

to ensure f and f,.s to take the appropriate values. This is
a reasonable strategy because the reference image is always
taken at a different location from that of the current image.

C. Comprehensive Loss

We train the proposed neural network jointly with Glob-
alLoss, RellLoss, RelRLoss and MDLoss. The comprehensive
loss can be represented by equation (13).

L=Lg+Lc+Lr+ Lyp (15)

Equation (T3) can also be written in the form of equation

L=L,+Ls+ Lyp, (16)

It consists of three components: position loss L, orientation
loss L, and metric distance loss L,;p. Positional loss and
orientational loss each has three components and can be
written as equations and (I8) respectively.

L:E = LGm + LCz + LR17 (17)

Ly=Lag+ Log+ Lig. (18)

We choose a learning strategy to balance the position loss
L, and orientation loss L, similar to PoseNet2. Therefore, the
comprehensive loss can be further reformulated as equation

(19):

L =L, xexp(—8;)+8;+Lyxexp(—34)+84+Lmp- (19)

where 5, and 5, are learnable coefficients.

V. EXPERIMENTS

In this section, we test our method on two publicly available
camera relocalization benchmark datasets, one indoor and one
outdoor, to demonstrate its effectiveness. Experimental results
are presented and compared with state-of-the-art methods
in the literatures. We also investigate the role of various
components of the loss function and analyze how the choice
of reference image affects the performance of the proposed
method.

A. Datasets

The two public datasets we used are: 7Scene [43] and Cam-
bridge Landmarks [8]]. To make our results exactly comparable
to previous methods, we use the same split of training set and
testing set as in the original datasets.

7Scene is an indoor image dataset for camera relocalization
and trajectory tracking. It is collected with a handhold RGB-D
camera. The ground truth pose is generated using the Kinect
Fusion approach [52]. The dataset is captured in 7 indoor
scenes. For each scene, it contains several image sequences,
which has already been divided into training and testing sets.
The images are taken at the resolution of 640 x480 with known
focal length of 585. The dataset is quite challenging as motion
makes the images blur. Besides, the indoor scenes are usually



texture-less, which makes the localization problem even more
difficult.

Cambridge Landmarks is an outdoor dataset collected in
4 sites around Cambridge University. It is collected using a
Google mobile phone while pedestrians walk. The images are
captured at the resolution of 1920 x 1080 and the ground truth
pose is obtained through VisualSFM software [53]. The dataset
is also very challenging as it is taken in different weather
and lighting conditions. Besides, the occlusion of moving
pedestrians and vehicles further increases the difficulty.

B. Setup

Training phase: in this phase, all parts of the proposed
network are involved. It takes in a pair of images and outputs
the corresponding global poses of them. It is important to
note that, the twin networks are identical. One takes the
current image as input and produces its global 6DOF pose
information, while the other takes the reference image as input
and outputs its corresponding pose.

Testing phase: in the testing phase, only one of the twins is
necessary. Since they are identical, any one can be used. The
middle part that linking the twins is no longer necessary in
this stage. Once training is completed, an image is fed to one
of the twin networks and the 6 degree global pose information
of the camera can be estimated.

We use the same image pre-processing approaches as pre-
vious methods [8]. We firstly resize the image to 256 pixels
along the shorter side and normalize it with the mean and
standard deviation computed from the ImageNet dataset. For
the training phase, we randomly crop the image to 224 x 224
pixels. For the testing phase, images are cropped to 224 x 224
pixels at the center of the image. Training images are shuffled
before they are fed to the network.

The modified ResNet50 is initialized with pre-trained
weights of ImageNet dataset. The GPRU component and
the RPRU are initialized with the Xavier initialization [54]].
We choose the Adam optimizer to train the network with
parameters 31 = 0.9 and 85 = 0.999. The weight decay is
107°. We train the network with a learning rate of 10~5 and
the batch-size is set to be 32. We initialize the 5, and 3, with
0 and -3.0 respectively in our experiments. We implement the
network with PyTorch and train the network on an Ubuntu
16.04 TS system with a NVIDIA GTX 1080Ti GPU. Training
is stopped until the network is converged.

C. Results

We compare the results of the proposed method with that of
state-of-the-art deep learning-based methods such as PoseNet,
Bayesian PoseNet, PoseNet2, Hourgrlass-net, LSTM-Net and
RelNet on the 7Scene dataset, and with PoseNet, Bayesian
PoseNet, PoseNet2 and LSTM-Net on the Cambridge Land-
marks dataset. Similar to others, we report each scene’s median
error. We also compare the average median accuracy over all
scenes in each dataset. The comparative results are shown in
Table [l and Table [[1l Table [l shows the results for the 7Scene
dataset. It is seen that compared with 7 state-of-the-art deep
learning-based camera relocalization methods, the proposed

method achieves the best performance on positional accuracy
in all 7 scenes. Our method improves the average median
positional accuracy by 16% over the best reported result. It
is interesting to note that our method has obtained even better
result than PoseNet2, which utilizes 3D reference as additional
constraints.

For orientational accuracy, we achieve the best result com-
pared to methods based on direct regression. It is not surprising
that the results are not as good as PoseNet2 and RelNet
since PoseNet2 requires additional 3D models and RelNet
triangulates the pose with all referencing images by estimating
the relative poses instead of directly regressing results.

Table [lI| shows the results for the Cambridge Landmarks
dataset. It can be seen that our method obtains the best
positional accuracy on the KingsCollege and the ShopFacade
scenes, reaching accuracies of 0.865m and 0.834m respec-
tively. We improve the state-of-the-art orientational accuracy
of the OldHospital and the StMarysChurch scenes from 3.29°
and 3.32° to 2.42° and 2.98°, achieving 26% and 10%
improvement respectively. The average positional accuracy
over all scenes is improved from 1.30m to 1.24m. The average
orientational accuracy over all scenes is only a little worse than
that of PoseNet2, which is trained with 3D model constraints.

It is interesting to note that of all the methods presented
in the two tables, some did better in positional accuracy and
some did better in orientational accuracy, none of them seems
to comprehensively beat the others in both measures. Our
method achieves the best average positional accuracy amongst
all methods in both datasets. For orientational accuracy, our
method achieves competent results, which is only slightly
worse than the best method (PoseNet2) but better or at least
as good as the other methods.

D. Discussion

In this section, we perform analysis on the influence of
various loss function components and the reference image
selection strategy. The experiments are also done on the
7Scene and Cambridge Landmarks.

1) Loss Analysis: We perform ablation analysis on the loss
function. Recall from equation (T3)), the overall loss function
is L =Lg+ Lo+ Lr + Lyp, consisting of the the global
loss L, the relative pose loss L¢, the relative pose regression
loss L, and the adaptive metric distance loss Ljsp. In order
to assess the role these loss components play, we formulate 4
loss functions based on the following combinations:

(1) G: GlobalLoss;

(2) G+C: GlobalLoss + RellLoss;

(3) G+C+R: GlobalLoss + RelLoss + RelRLoss;

(4) Ours: GlobalLoss + RelLoss + RelRLoss + MDLoss.

We train the proposed network by the 4 aforementioned loss
functions separately. The results are shown in Table [[1I| for the
7Scene dataset and in Table [[V] for Cambridge landmarks. It
is seen that as more loss terms are added to the loss function,
both positional error and orientational error decrease for all
scenes of the 7Scene dataset and the Cambridge Landmarks
dataset. The average positional error and orientational error
for the 7Scene dataset and Cambridge Landmarks dataset are



TABLE I: Comparison of median errors with other

deep learning-based methods on the 7Scene dataset.

Scene PoseNet Bayesian PoseNet LSTM-Net Vidloc HourglassNet PoseNet2 Relnet Ours

Chess 0.32m, 8.12° 0.37m, 7.24° 0.24m, 5.77°  0.18m, N/A  0.15m, 6.53°  0.13m, 4.48°  0.13m, 6.46°  0.099m, 5.19°
Fire 0.47m, 14.4° 0.43m, 13.7° 0.34m, 11.9°  0.26m, N/A  0.27m, 10.84°  0.27m, 11.3°  0.26m, 12.72°  0.253m, 11.64°
Heads 0.29m, 12.0° 0.31m, 12.0° 0.21m, 13.7°  0.14m, N/A  0.19m, 11.63°  0.17m, 13.0°  0.14m, 12.34°  0.126m, 13.20°
Office 0.48m, 7.68° 0.48m, 8.04° 0.30m, 8.08°  0.26m, N/A  0.21m, 8.48°  0.19m, 5.55°  0.2Im, 7.35°  0.161m, 7.71°
Pumpkin 0.47m, 8.42° 0.61m, 7.08° 0.33m, 7.00°  0.36m, N/A  0.25m, 7.01°  0.26m, 4.75°  0.24m, 6.35°  0.163m, 6.61°
Redkitchen  0.59m, 8.64° 0.58m, 7.54° 0.37m, 8.83°  0.31m, N/A  0.27m, 10.15°  0.23m, 5.35°  0.24m, 8.03°  0.174m, 8.24°
Stairs 0.47m, 13.8° 0.48m, 13.1° 0.40m, 13.7°  0.26m, N/A  0.29m, 12.46°  0.35m, 12.4°  0.27m, 11.82°  0.26m, 13.13°
Average 0.44m, 10.4° 0.47m, 9.81° 03Im, 9.85° 0.25m, NA  0.23m, 9.53° 0.23m, 8.12° 0.21m, 9.30°  0.177m, 9.39°

TABLE II: Comparison of median errors with other deep learning-based methods on the Cambridge Landmarks dataset.

Scene PoseNet Bayesian PoseNet LSTM-Net PoseNet2 Ours

KingsCollege 1.92m, 5.40° 1.74m, 4.06° 0.99m, 3.68°  0.88m, 1.04°  0.865m, 1.96°
OldHospital 2.31m, 5.38° 2.57m, 5.14° 1.51m, 4.29°  3.20m, 3.29° 1.617m, 2.42°
ShopFacade 1.46m, 8.08° 1.25m, 7.54° 1.18m, 7.44°  0.88m, 3.78°  0.834m, 5.56°
StMarysChurch ~ 2.65m, 8.46° 2.11m, 8.38° 1.52m, 6.68° 1.57m, 3.32° 1.650m, 2.98°
Average 2.08m, 6.83° 1.92m, 6.28° 1.30m, 5.52° 1.62m, 2.86° 1.24m, 3.23°

TABLE III: Comparison of different loss combinations with median error on 7Scene dataset.

Scene G G+C G+C+R Ours
Chess 0.135m, 7.62° 0.118m, 5.10° 0.116m, 6.50° 0.099m, 5.19°
Fire 0.285m, 13.13° 0.258m, 12.93° 0.258m, 12.48°  0.253m, 11.64°
Heads 0.185m, 14.01° 0.140m, 14.77° 0.144m, 13.82°  0.126m, 13.20°
Office 0.180m, 8.18° 0.173m, 7.65° 0.175m, 8.19° 0.161m, 7.71°
Pumpkin 0.215m, 7.77° 0.226m, 7.87° 0.214m, 6.80° 0.163m, 6.61°
Redkitchen ~ 0.266m, 8.21° 0.253m, 9.20° 0.201lm, 8.24° 0.174m, 8.24°
Stairs 0.345m, 13.51° 0.324m, 12.07° 0.279m, 13.18° 0.260m, 13.13°
Average 0.230m, 10.34° 0.213m, 9.94° 0.198m, 9.89° 0.177m, 9.39°
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The loss analysis over the average errors on 7Scene

shown in Figure 2] and in Figure [3|respectively. We can see that
average position and orientation errors show a decreasing trend
by adding more constraints. This demonstrates the usefulness
of each loss component combinations.

2) Comparison of Relative Geometry Losses : We have
designed three relative geometry-based losses. In order to
evaluate their performance separately for pose prediction, we
formulate new losses by combining each of them with the
global pose loss. We also use global pose loss and our compre-
hensive loss as baselines. The details of the loss combinations
are listed as follows:

(1) G : GlobalLoss;

(2) G+M: GlobalLoss + MDLoss;
(3) G+C: GlobalLoss + RelLoss;
(4) G+R: GlobalLoss + RelRLoss;
(5) Ours: GlobalLoss + RelLoss + RelRLoss + MDLoss.
For each loss function, we repeat experiments using the
same training setup in previous experiments. The results on
7Scene and on Cambridge Landmarks are shown in Table [V]
and in Table [V]] respectively. The average localization errors
of the two datasets are shown in Figure ] and Figure
As shown in the two Figures, relative geometry-related
losses (G+M, G+C, G+R) achieve better accuracy than global
pose alone in every scene of the two datasets. This further
demonstrates their effectiveness on global pose prediction.
It can also be seen that G+M obtains a larger average ac-
curacy increase compared with the other two. In addition,
G+C acquires the smallest accuracy improvement on both
datasets, lower than G+R. This implies that relative geometry



TABLE IV: Comparison of different loss combinations with median error on Cambridge Landmarks dataset.

Scene G G+C G+C+R Ours

KingsCollege 1.07m, 4.22° 0.932m, 2.69° 0.97m, 2.14° 0.865m, 1.96°
OldHospital 1.76m, 4.97° 1.650m, 3.38° 1.67m, 3.01° 1.617m, 2.42°
ShopFacade 1.00m, 6.65° 0.930m, 6.23° 0.858m, 5.92° 0.834m, 5.56°
StMarysChurch 1.76m, 4.03° 1.720m, 4.06° 1.684m, 4.83° 1.615m, 2.98°
Average 1.396m, 4.97° 1.308m, 4.09° 1.296m, 3.98° 1.242m, 3.23°

TABLE V: Evaluation of each relative loss function with median error on 7Scene dataset.

Scene G G+M G+C G+R Ours

Chess 0.135m, 7.62° 0.116m, 4.82° 0.118m, 5.10° 0.117m, 5.05° 0.099m, 5.19°
Fire 0.285m, 13.13° 0.271m, 11.91° 0.258m, 12.93° 0.262m, 12.64° 0.253m, 11.64°
Heads 0.185m, 14.01° 0.128m, 13.37° 0.140m, 14.77°  0.147m, 13.21°  0.126m, 13.20°
Office 0.180m, 8.18° 0.177m, 7.17° 0.173m, 7.65° 0.189m, 7.13° 0.161m, 7.71°
Pumpkin 0.215m, 7.77° 0.198m, 6.26° 0.226m, 7.87° 0.196m, 5.82° 0.163m, 6.61°
Redkitchen  0.266m, 8.21°  0.217m, 7.55°  0.253m, 9.20° 0.218m, 7.79° 0.174m, 8.24°
Stairs 0.345m, 13.51° 0.265m, 11.98° 0.324m, 12.07° 0.281m, 11.49° 0.260m, 13.13°
Average 0.230m, 10.34° 0.196m, 9.01° 0.213m, 9.94° 0.201m, 9.02° 0.177m, 9.39°

TABLE VI: Evaluation of each relative loss function with median error on Cambridge Landmarks dataset.

Scene G G+M G+C G+R Ours

KingsCollege 1.07m, 4.22° 0.960m, 2.79° 0.932m, 2.69° 0.980m, 2.31°  0.865m, 1.96°
OldHospital 1.76m, 4.97° 1.650m, 3.31° 1.650m, 3.38° 1.615m, 3.77° 1.617m, 2.42°
ShopFacade 1.00m, 6.65° 0.876m, 5.11° 0.930m, 6.23° 0.868m, 5.19° 0.834m, 5.56°
StMarysChurch 1.76m, 4.03° 1.617m, 5.83° 1.720m, 4.06° 1.664m, 4.68° 1.615m, 2.98°
Average 1.396m, 4.97° 1.275m, 4.257° 1.308m, 4.09° 1.282m, 4.06° 1.242m, 3.23°
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constraints work better in feature space than in the pose space
since RelRLoss and MDLoss are in the feature space while
RelLoss is in the pose space. It should also be noted that
the results of our proposed loss (G+C+R+M) outperforms
all the other single relative geometry-related losses, which
further demonstrate the effectiveness of our comprehensive
loss function.

3) Comparison of Metric Losses: To further evaluate the
proposed adaptive metric distance loss, we conduct exper-
iments to compare it with conventional siamese loss [53]
and triplet loss [36], since the two losses can also help
make visually similar image distinctive as the proposed metric
distance loss does. The siamese loss is shown in equation
(20) and the triplet loss is shown in equation (Z1)). The major
difference is that the conventional metric losses set the margin
to be a fixed value while our loss is a function of the relative
pose of two images.

1 N
LSiamese = ﬁ Z{(l _y)d2 —i—y{maaj(m—d, 0)}2}7 (20)

n=1
N
Lrvipier = 3 _IF @) = FaD)o =1 (=) — f@)|5+m]+
n=1

2n
where [x]+ represents max(z,0) as hinge loss, N is the
number of training samples, m is the margin, d is the feature
distance of the paired image, y always equals 1, since the
two images are not from the same location. f(z¢), f(z?) and
f(zl') are the feature vectors of the ith training image, its
reference images, and the image after the reference image,
respectively. In the siamese loss of equation (20), it explicitly
forces the features of the two images to be different because
they are from two different locations. In the triplet loss (21)),



TABLE VII: Comparison between metric loss functions and
adaptive metric distance loss with median error on 7Scene
dataset.

Scene LossSiamese LossTriplet Ours

Chess 0.127m, 5.17° 0.139m, 5.42° 0.099m, 5.19°
Fire 0.273m, 13.57°  0.276m, 12.94°  0.253m, 11.64°
Heads 0.128m, 13.45°  0.125m, 14.76°  0.126m, 13.20°
Office 0.188m, 7.77°  0.192m, 7.60°  0.161m, 7.71°
Pumpkin 0.198m, 6.13°  0.216m, 6.03° 0.163m, 6.61°
Redkitchen ~ 0.219m, 8.32° 0.224m, 8.30° 0.174m, 8.24°
Stairs 0.277m, 10.59° 0.279m, 11.07° 0.260m, 13.13°
Average 0.201m, 9.29° 0.207m, 9.44° 0.177m, 9.39°

it explicitly enforces that the difference between the ith image
and its reference should be smaller than the difference between
it and the image after the reference image. In the experiments,
we simply replace the MDLoss with the siamese loss and
the triplet loss respectively and repeat the experiment. The
margin parameter m of the siamese loss and the triplet loss
is empirically set to be 0.001, which gives the best accuracy.
Three comparative losses are listed as below.

(1) LossSiamese: GlobalLoss + RelLoss + RelRLoss +
Siamesel.oss;

(2) LossTriplet: GlobalLoss + RelLoss + RelRLoss +
TripletLoss;

(3) Ours: GlobalLoss + RelLoss + RelRLoss + MDLoss.

We repeat the experiments on the two datasets using the
above losses and the results are shown in Table [VII for
7Scene and Table VM| for Cambridge Landmarks. The average
localization errors of the two datasets are shown in Figure [6]
and Figure

TABLE VIII: Comparison between metric loss functions and
adaptive metric distance loss with median error on Cambridge
Landmarks dataset.

Scene LossSiamese LossTriplet Ours
KingsCollege 0.867m, 4.87° 0.839m, 2.03° 0.865m, 1.96°
OldHospital 1.675m, 5.73° 1.683m, 3.82° 1.617m, 2.42°
ShopFacade 0.861m, 5.76° 0.847m, 5.01° 0.834m, 5.56°
StMarysChurch ~ 1.728m, 7.06° 1.650m, 4.10° 1.615m, 2.98°
Average 1.282m, 5.86° 1.258m, 3.74° 1.242m, 3.23°
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It can be seen that our method achieves the best average
position accuracy on 7Scene dataset, and both average position

6 1.3
> £
§ 5.5 1.28 >
3 5 g
3 126 3
2 a5 S
© ©
© =
£ 35 122 5
S 3 1.2

LossSiamese LossTriplet Ours

Orientational accuracy M Positional accuracy

Fig. 7: The metric loss analysis over the average errors on
Cambridge Landmarks dataset.

accuracy and average orientation accuracy on the Cambridge
Landmarks dataset. The LossSiamese acquires the best orien-
tational accuracy on the 7Scene dataset. LossTriplet performs
badly on the 7Scene dataset but obtains better performance
than LossSiamese on the Cambridge Landmarks dataset. Al-
though the LossSiamese achieves the best orientational ac-
curacy, our method obtains more best performances on each
scene of the two datasets shown in Table [VIIl and in Table
[VIT] The results show that our adaptive metric distance loss
outperforms the conventional siamese loss and the triplet loss.
4) Reference Image Analysis: In this section, we evaluate
two strategies of choosing the reference image. One obvious
strategy is to pair every two different images, but it will
result in exponential increase of the training time and high
information redundancy. To make the training phase efficient,
we generate only one reference image for each image. Specif-
ically, reference images are selected in two ways: 1) select
the next image in the same image sequence as the reference
image; 2) randomly select a different image of the dataset that
is not a reference image of any other images. It should be noted
that the next image is visually similar to the current image.
Randomly chosen reference image has no such property. To
evaluate the effectiveness of the two reference image selection
strategies on the adaptive metric loss (MDLoss), we train the
proposed network with the comprehensive loss function. In
addition, we use the result of the networks trained without
MDLoss (G+R+C) as baseline to compare the results.

TABLE IX: Comparison of median errors of two reference
image selection strategies on the 7Scene dataset.

Scene G+R+C Random Next

Chess 0.116m, 6.50° 0.109m, 5.46° 0.099m, 5.19°
Fire 0.258m, 12.48°  0.265m, 12.54°  0.253m, 11.64°
Heads 0.144m, 13.82°  0.138m, 13.72°  0.126m, 13.20°
Office 0.175m, 8.19° 0.172m, 8.17° 0.161m, 7.71°
Pumpkin 0.214m, 6.80°  0.207m, 6.33°  0.163m, 6.61°
Redkitchen  0.201m, 8.24° 0.202m, 8.89° 0.174m, 8.24°
Stairs 0.279m, 13.18°  0.287m, 11.89°  0.260m, 13.13°
Average 0.198m, 9.89° 0.197m, 9.57° 0.177m, 9.39°

Comparative median error results for the different reference
selection strategies for the 7Scene and Cambridge Landmarks
are shown in Table [IX] and Table [X] The average positional
and orientational errors are shown in Figure [§ and in Figure
[] It can be seen that strategy of choosing the next image as
reference image obtains higher image similarity score than that
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Fig. 8: The average median errors of two reference image
selection strategies on 7Scene dataset.

of randomly choosing in two datasets since it achieves lower
feature distance.

From Table it is seen that compared to the random
reference selection strategy, taking the next image as reference
image increases the average positional accuracy from 0.197m
to 0.177m and the average orientational accuracy from 9.57° to
9.39°. It is also seen that for both reference image selection
strategies, the inclusion of MDLoss improves performance.
One probable explanation is that MDLoss makes the network
learn to keep similar images of different poses apart in the
feature space.

TABLE X: Comparison of median errors of two reference
image selection strategies on Cambridge Landmarks dataset.

Scene G+C+R Random Next
KingsCollege 0.970m, 2.14° 1.120m, 2.09° 0.865m, 1.96°
OldHospital 1.670m, 3.01° 1.618m, 2.80° 1.617m, 2.42°
ShopFacade 0.858m, 5.92° 1.000m, 4.91°  0.834m, 5.56°
StMarysChurch ~ 1.684m, 4.83°  1.714m, 3.26°  1.650m, 2.98°
Average 1.296m, 3.98° 1.363m, 3.26° 1.242m, 3.23°
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Fig. 9: The average median errors of two reference image
chosen strategies on Cambridge Landmarks.
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As shown in Table[X] the results of taking the next image as
reference are better than that of the random reference selection
strategy on both the average positional and orientational accu-
racy. It is also seen that randomly choosing the reference image
achieves the worse performance on positional accuracy than
the baseline. This may be explained by the fact that images of
the Cambridge Landmarks are of large difference so that the
metric distance loss fails to work. To verify the explanation,
we measure image similarity of the two pairing strategies. The
average Euclidean distance of GIST features of paired images
are employed to quantify paired image similarity. The average
feature distances of the scenes are shown in Figure [I0]

0.8

0.6
0.4

0 -I II

0.2
Next Random
M 7Scene m Cambridge

Fig. 10: Average paired image similarity (measured with
average Gist feature distance) on two datasets.

Table [XT] shows that for each scene, taking the next image
as reference achieves higher similarity between paired images
than that of randomly chosen. This confirms our explanation
that MDLoss works better in scenarios where paired images
are similar.

VI. CONCLUDING REMARKS

In this paper, we enhance the camera relocalization per-
formance of deep learning-based methods by introducing the
relative geometry constraints. This is achieved by designing
a relative geometry-aware Siamese neural network and three
relative geometry-related loss functions. The proposed network
is capable of predicting the poses of two images as well
as the relative pose between them. Another advantage of
the network is that it is able to predict the global pose
by feeding a single image into one stream of it. The new
pose space relative loss and feature space relative regression
loss functions can be combined with traditional global pose
loss to enhance the position and orientation accuracy. The
metric distance loss enables the network to learn deep feature
representation that can distinguish similar images of different
locations, thus helping improve localization accuracy. We also
find that pairing similar images outperforms random paring. In
future work, we plan to investigate the combination of deep
learning-based methods and 3D modeling-based methods to
further enhance the performance.



TABLE XI: Statistic of image similarity (measured by average Gist features distance) of two image pairing strategies.

Scene Training  Testing  Spatial scope(m) Next Random

Chess 4000 2000 3x2 0.0700 0.5044

Fire 2000 2000 25 x 1 0.0968 0.5187

Heads 1000 1000 2 x 05 0.0613 0.4866

Office 6000 4000 25 x2 0.0600 0.4366

Pumpkin 4000 2000 25 x2 0.0540 0.4390

Red Kitchen 7000 5000 4 x3 0.0749 0.4993

Stairs 2000 1000 25 x2 0.0540 0.5220

KingsCollege 1220 343 140 x 40 0.2816 0.5531

OldHospital 895 182 50 x 40 0.3338 0.6127

ShopFacade 231 103 35 x 25 0.3133 0.5730

StMarysChurch 1487 530 80 x 60 0.3411 0.6471
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