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Abstract

Two-stream UNet based architectures are widely used in deep RGB-D salient object detection (SOD) models. However,
UNet only adopts a top-down decoder network to progressively aggregate high-level features with low-level ones. In
this paper, we propose to enrich feature aggregation via holistic aggregation paths and an extra bottom-up decoder
network. The former aggregates multi-level features holistically to learn abundant feature interactions while the latter
aggregates improved low-level features with high-level features, thus promoting their representation ability. Aiming
at the two-stream architecture, we propose another early aggregation scheme to aggregate and propagate multi-modal
encoder features at each level, thereby improving the encoder capability. We also propose a factorized attention module
to efficiently modulate the feature aggregation action for each feature node with multiple learned attention factors.
Experimental results demonstrate that all of the proposed components can gradually improve RGB-D SOD results.
Consequently, our final SOD model performs favorably against other state-of-the-art methods.
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1. Introduction

Salient object detection focuses on localizing and seg-
menting the most distinctive object(s) in a visual scene.
It mimics the human visual attention mechanism to ef-
ficiently allocate visual processing resources on informa-5

tive visual elements. Thus, SOD can be used as a pre-
processing technique and supply informative cues for many
other computer vision tasks, such as object detection
[1], video object segmentation [2], semantic segmentation
[3, 4], image editing [5] and intelligent vision surveillance10

in smart city application[6].
Most SOD models [7, 8, 9, 10, 11, 12, 13] typically detect

salient objects from RGB images. In a pioneer work of [14],
Ouerhani and Hugli showed that depth could also supply
useful cues and largely boost the performance for saliency15

detection. This is also intuitive since human beings live in
a real 3D environment and depth largely impacts our per-
ception of visual scenes. Many subsequent saliency mod-
els, e.g., those in [15, 16, 17, 18], have started to leverage
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RGB-D images for saliency detection. Recently, Convo-20

lutional Neural Networks (CNNs) have widely been seen
in the computer vision community and have also shown
excellent performance on various computer vision tasks.
Hence, many works have also introduced two-stream CNNs
for RGB-D SOD to exploit their powerful feature learning25

capability.

Some deep models [21, 22] applied the two-stream Fully
Convolutional Network (FCN) [19] architecture to feedfor-
ward each input RGB-D image pair into two CNN streams
and directly obtained the saliency map by fusing their final30

feature maps, as shown in Figure 1(a). FCN processes the
input image pair in a bottom-up manner, progressively ex-
tracting low-level features in shallow layers and high-level
features in deep layers. Although it is simple and straight-
forward, the single path of the bottom-up information flow35

heavily limits the model performance since usually the fi-
nal feature map of a CNN is very coarse, thus the obtained
saliency map lacks object details.

Considering the multi-level feature maps spontaneously
obtained by each CNN, most of other works [23, 24, 25,40

26, 27] have adopted the two-stream UNet [20] architec-
ture to aggregate multi-level features for RGB-D SOD. As
shown in Figure 1(b), the two-stream UNet first uses two
encoder networks to extract multi-level image features in
a bottom-up manner. Then, there is one or two decoder45

networks to successively aggregate high-level features with
low-level ones in a top-down processing and simultaneously
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Figure 1: Comparison of different network architectures. (a)
Two-stream FCN [19]. (b) Two-stream UNet [20]. (c) Our proposed
network. We cascade both top-down and bottom-up feature aggre-
gation for deep RGB-D SOD to further leverage improved low-level
features for promoting high-level features. We also propose to holisti-
cally aggregate features across all levels to learn plentiful multi-level
feature interactions. Early aggregation paths are also presented to
aggregate and propagate cross-modal encoder features.

fuse cross-modal features. In each decoder module, the fea-
tures of its symmetric encoder module at the same level are
reused through a skip connection and fused with previous50

decoder features. As such, discriminative semantic infor-
mation in deep layers can be effectively integrated with
local structures in shallow layers through the top-down
propagation, thus enabling both accurate object localiza-
tion and precise shape and boundary segmentation.55

However, UNet carries out top-down feature aggrega-
tion only once. Only high-level information can be aggre-
gated with low-level features to improve their representa-
tion ability in the decoder, while the high-level features
themselves cannot be improved. To solve this problem,60

in this paper, we propose to add an additional bottom-up
aggregation path, in which the improved low-level features
from the top-down path are propagated again to high-
level layers, as shown in Figure 1(c). As we cascade both
bottom-up and top-down feature aggregation, the features65

across all levels can be gradually improved.

Another problem is that above networks only gradu-
ally aggregate features at every two adjacent levels. Al-
though this feature aggregation scheme avoids large scale
changes and is widely used in previous works, we argue70

that it limits direct feature interactions among multi-level
features. To alleviate this issue, we further propose holistic
aggregation paths to holistically aggregate multi-level fea-
tures after the bottom-up and top-down processing. Thus,
the network can learn abundant cross-level feature fusion75

mechanism for SOD by considering them all at the same
time.

Considering the two-stream architecture, the authors of
existing works usually simply adopt two-stream encoders
independently and only conduct feature aggregation in the80

decoding phase [21, 27, 28]. Or they fuse cross-modal en-
coder features to reuse them in decoders [29, 30, 31], with-
out improving other encoder features. This is because they
use pretrained CNN models as encoders and they are re-
quire to preserve their network structures and pretrained85

parameters. In this paper, we aggregate and propagate
cross-modal features at the early stage, i.e., in the encod-
ing phase. We adopt a residual-learning based aggrega-
tion scheme to aggregate cross-modal encoder features and
propagate them back to the original encoder paths, hence90

enhancing the feature capability from the very beginning.
Furthermore, previous work usually aggregate features

by directly concatenating [23, 24, 25] or adding [32] them
together. However, not all aggregated features are help-
ful for the final SOD task. We propose to generate gated95

attention for all of the involved features to modulate the
aggregation flow at every node. To reduce the amount of
the required gated attention weights and the computation
and memory costs, we propose to factorize the gate matrix
into the multiplication of channel-wise and spatial gates100

with multiple factors. This proposed multi-factored gated
attention mechanism learns different gates in different fac-
tors and thus can ensemble multiple attention models to
make a better decision.

At last, we summarize the main contributions of this105

work as follows.
• We propose a novel feature aggregation architecture

for RGB-D SOD. We cascade both bottom-up and
top-down feature aggregation paths and also intro-
duce holistic aggregation paths, which promote both110

low-level and high-level features and boost multi-level
feature interactions. An early aggregation scheme is
also presented to enhance the two-stream encoders.

• We propose a novel factorized gated attention model
for modulating the feature aggregation actions. We115

factorize the gated attention weight matrix of each
feature map as the multiplication of two multi-
factored channel-wise and spatial gate matrices. As
such, both computational costs and model effective-
ness are improved.120

• We conduct experiments on eight widely used RGB-
D SOD benchmark datasets. Experimental results
demonstrate that all of the proposed model compo-
nents can gradually improve the model performance.
Consequently, our final model outperforms other125

state-of-the-art methods.

In the subsequent sections, in Section II we first dis-
cuss our model with related work. Then, we present our
model in Section III and report the experimental results in130

Section IV. Finally, in Section V we draw our conclusion.

2. Related Work
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CNNs have been widely used for RGB SOD and RGB-
D SOD. For the former, please refer to [33] for a com-
prehensive survey. We focus on the latter in this paper.135

In two early pioneering deep RGB-D SOD works [34, 35],
the authors used superpixels as the computational units
and combined both traditional handcrafted features and
CNNs to classify them as salient or non-salient. However,
such schemes are usually computationally inefficient and140

therefore limit the model performance. Subsequent models
start to adopt CNNs to directly process each input image
and obtain the saliency map. Specifically, Han et al. [21]
adopted two-stream CNNs to process RGB and depth im-
ages respectively, and then used fully connected layers to145

predict global saliency maps. Chen et al. [36] further com-
bined this method with FCNs to fuse global and local con-
textual reasoning. In [22], Fan et al. first depurated depth
maps and then use single-stream FCNs with Pyramid Di-
lated Convolution modules [37] to predict saliency maps.150

These models directly predict saliency maps from the last
layer of a CNN without considering multi-level features.

Most of the other works use the UNet architecture to
gradually aggregate multi-level deep features. For in-
stance, Chen et al. [24] first used two encoder networks155

to extract multi-level features from an RGB image and a
depth image, respectively. Then, they proposed to densely
fuse multi-level cross-modal features in a top-down decoder
network. Zhao et al. [38] first proposed to leverage depth-
based contrast to enhance the RGB encoder features, and160

then fused multi-level features using a top-down decoder
with dense short connections. In [25], Liu et al. followed
the work in [9] to embed recurrent convolutional layers into
top-down decoder modules for fusing encoder and decoder
features with the depth map. Li et al. [31] fused RGB and165

depth encoder features first and then also adopted a UNet
style decoder to aggregate the multi-level features. All of
these models only considered a top-down feature aggrega-
tion path for RGB-D SOD, without exploring other feature
aggregation schemes. In contrast, we cascade both top-170

down and bottom-up processings to promote features at
all levels. Furthermore, most previous works directly use
pretrained two-stream encoder networks without both fus-
ing and improving encoder features, except for [36]. How-
ever, the authors of [36] only propagated depth encoder175

features to RGB ones, while we perform bidirectional fea-
ture aggregation and propagation via the proposed early
aggregation scheme.

Attention models are also widely used in RGB-D SOD
models. Chen et al. [23] adopted SENet [39] style channel180

attention in decoder modules to modulate feature chan-
nels. In [32], channel attention and spatial attention were
separately adopted in a recurrent attention module for
generating the final saliency maps. Liu et al. [40] pro-
posed to selectively fuse self-mutual attention for fusing185

cross-modal information at the beginning of the decoder
network. Different from the existing models, we propose to
modulate the whole feature map in each decoder module
with gated attention and further present a multi-factored

factorization mechanism to save computational costs and190

enhance the model capability.
In [41, 42, 43], gated attention were also used in the con-

volution operation for language modeling, image inpaint-
ing, and RGB-D SOD, respectively. Different from them,
we propose the multi-factored factorization operation for195

gated attention to reduce computational costs and boost
the model capability.

Two works are closely related to our proposed model.
Chen and Li [44] also used both top-down and bottom-up
decoders. The difference between our model and theirs200

are as follows. First, they adopted the bottom-up decoder
first to fuse cross-modal features and then used the top-
down decoder to obtain coarse-to-fine saliency maps, while
we build our model based on UNet and use the top-down
decoder first. Second, we also propose to use the holis-205

tic aggregation paths to aggregate all-level features simul-
taneously, while they only linearly fused the side output
saliency maps. Third, they used the existing SENet [39]
style channel attention in the top-down decoder while we
propose a novel factorized gated attention model and em-210

ploy it in all aggregation paths. Forth, we also propose an
early aggregation scheme to promote the two-stream en-
coders. Another work is that in [45], Wang et al. proposed
to iterate top-down and bottom-up decoders for multiple
steps for RGB SOD. Different from them, we only cascade215

top-down and bottom-up decoding paths once and found
the model performance already saturated. Furthermore,
they adopt RNN in each decoder module to enhance the
decoder capability while we use the proposed gated atten-
tion mechanism. We also propose the holistic aggregation220

paths to more effectively leverage multi-level features and
present the early aggregation scheme for the two-stream
architecture nature of the RGB-D SOD models.

3. Proposed Method

In this section, we articulate the proposed network for225

RGB-D SOD. Its detailed network architecture is shown
in Figure 2.

3.1. Encoder Network

We first follow most previous methods and adopt a two-
stream encoder network for extracting multi-level RGB230

and depth features. In order to learn common features
for cross-modality, we share the network structure and pa-
rameters for the two encoder branches. To leverage better
image features, we use an ImageNet [46] pretrained net-
work as the encoder. The VGG 16-layer network [47] is235

adopted for a fair comparison with previous works. It has
five convolutional (Conv) blocks and pooling layers, and
two fully connected (FC) layers. For better adapting the
network to SOD, we enhance the original VGG network
by keeping large scale feature maps and preserving high-240

level FC layers. Concretely, we first reduce the stride of
the pool5 layer to 1. Then, we convert the FC6 layer to a
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Figure 2: Network architecture of the proposed RGB-D SOD model. We first use two encoder branches for the RGB and depth
inputs to extract multi-level encoder features (FR∗ and FD∗ ). Within the two-stream encoders, we adopt early aggregation paths (FEA∗ )
to propagate cross-model information from the very beginning. Here, the early aggregation path for the two Conv5 3 layers is not shown.

Then, we successively adopt a top-down decoder network (D↓∗) and a bottom-up one (D↑∗) to aggregate multi-level features. We also
use holistic aggregation paths to directly aggregate features across all levels. The size of each feature map is also given and denoted by
channel× height× width. C○ denotes concatenation and ⊕ means element-wise summation.

Conv layer with 1024 channels and 3×3 kernels, and adopt
the dilated convolution algorithm [48] with dilation = 6.
Similarly, the FC7 layer is also converted to a Conv layer245

with 1024 channels and 1× 1 kernels. As such, the stride
of the encoder network is reduced from 32 to 16 and high-
level FC features are also preserved in the encoder.

To propagate cross-modal information from an early
stage, we introduce early aggregation (EA) into the two
encoders, specifically for the last Conv feature maps of
the last four Conv blocks and the FC7 layer, which are
Conv2 2, Conv3 3, Conv4 3, Conv5 3, and FC7 layers. We
do not use EA for the first Conv block since its low-level
features may be quite different in the two modalities while
the other higher layers can learn more common semantics.
Given an RGB encoder feature map and a depth one from
the same level, which are named as ER

i and ED
i , respec-

tively, our EA path first aggregates them by element-wise
summation and averaging, obtaining the EA feature map:

FEA
i =

ER
i + ED

i

2
. (1)

Then, we propagate FEA
i back to the two encoder features

using residual learning:

ER
i = ER

i + α · Conv(FEA
i ),

ED
i = ED

i + α · Conv(FEA
i ).

(2)

Here, the two Conv means two 1× 1 Conv layers and α is
a learnable parameter. We initialize α to 0 to make sure250

that the EA path brings no impact to the pretrained en-
coder networks at the beginning of the model training. As
such, the EA path boosts the encoder representation abil-
ity by leveraging cross-modal information and leveraging
the pretrained model parameters losslessly.255

Finally, we pick out the output feature maps of the
Conv1 2, Conv2 2, Conv3 3, Conv4 3, and FC7 layers as
the multi-level features and reuse them in later decoders.
Since these features have diverse channel numbers, we first
use 3× 3 Conv layers to convert each of them to 64 chan-260

nels, thus making them compatible with each other in the
subsequent feature aggregation. For representation sim-
plicity, we denote these multi-level features by FR

1 to FR
5

and FD
1 to FD

5 for the RGB and the depth branches, re-
spectively, as shown in Figure 2. The input scales of each265

RGB image and the depth map are fixed to 224× 224 for
simplicity. Hence, the sizes of the multi-level feature maps
can be easily inferred, as marked in Figure 2.

3.2. Decoder Networks

After obtaining the ten multi-level features from both of
the RGB and the depth branches, we aggregate them for
RGB-D SOD. First, we follow UNet [20] to progressively
aggregate features at every two adjacent levels in a top-
down (denoted as ↓) decoder network. Specifically, in the
ith top-down decoder module, where i ∈ {1, 2, 3, 4}, we

obtain its decoder feature D↓i by aggregating the previous

decoder feature D↓i+1 with the RGB and depth features

FR
i and FD

i at this level. Since D↓i+1 has a smaller spatial
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size, we first upsample it by bilinear interpolation. For
the 5th decoder module, we directly aggregate FR

5 and
FD
5 . The top-down feature aggregation process can be

summarized by equation(3):

D↓i =

{
Conv(BR([FR

i ,F
D
i ])), i = 5,

Conv(BR([UP (D↓i+1),FR
i ,F

D
i ])), i ∈ {1, 2, 3, 4},

(3)
where [, ] means the concatenation operation, BR means270

batch normalization [49] and ReLU, Conv denotes a 3 ×
3 Conv layer with 64 channels and UP means bilinear
upsampling.

After the top-down feature aggregation, low-level fea-
tures can be enhanced by high-level features. Thus, the
final output feature map D↓1 simultaneously preserves lo-
cal details and contains high-level semantics. Most of pre-
vious works directly use this layer to predict the saliency
maps. We further construct a bottom-up (denoted as ↑)
decoder network to use the enhanced low-level features to
improve the high-level features. To be concrete, we first
use holistic aggregation paths to aggregate the features D↓i
at all levels to obtain the first feature map D↑1 . Then, in
the subsequent i ∈ {2, 3, 4, 5} bottom-up decoder modules,

we generate the decoder features D↑i by aggregating the

previous bottom-up decoder feature D↑i−1 with the top-

down decoder feature D↓i at this level. Since D↑i−1 has a
larger spatial size, we downsample it using a max-pooling
layer with stride of 2. The bottom-up feature aggregation
process can be represented by equation(4):

D↑i =

{
Conv(BR([D↓1 , UP (D↓2), · · · , UP (D↓5)])), i = 1,

Conv(BR([DW (D↑i−1),D↓i ]), i ∈ {2, 3, 4, 5},
(4)

where DW means down-sampling with a max-pooling
layer.275

After the bottom-up feature aggregation, high-level fea-
tures can also perceive better low-level features thus gen-
erating better semantic information. Hence, by cascading
both of the top-down and bottom-up decoder networks,
we can simultaneously enhance all low-level and high-level
features. Finally, we adopt the holistic aggregation again
at the finest scale to obtain the final decoder feature map
as equation(5):

DF = Conv(BR([D↑1 , UP (D↑2), · · · , UP (D↑5)])). (5)

A 1×1 Conv layer with 1 channel and the Sigmoid activa-
tion function can be used on top of DF to obtain the final
saliency map. During training, we also generate an inter-
mediate saliency map from D↑1 in the same way. Then,
we compute two binary cross entropy losses between the280

two saliency maps and the ground truth to train the whole
network.

3.3. Factorized Gated Attention

It is worth noting that SOD is a challenging dense pre-
diction task, and usually not all features are useful for

the final decision. Thus, we propose to introduce gated
attention for the feature aggregation operations to adap-
tively select informative features for each decoder module.
Specifically, for the Conv layers in (2), (3), (4), (5), con-
sidering an input feature map X ∈ RC×H×W , in which C,
H, and W respectively denote its channel number, height,
and width, we predict an gated attention matrix G of the
same size with each of its element in the range of [0, 1].
Then, we use G to modulate each node of X to control the
aggregation flow in each decoder module as equation(6):

XG = G�X, (6)

where � is the element-wise multiplication. As such, G
serves as a modulator and can retain informative features285

and suppress useless ones in X. Then, we use XG as the
input for the Conv layers.

However, predicting G requires predicting all of the
C × H ×W gate weights. A straightforward way is us-
ing a Conv layer with C channels on X. Nevertheless,290

this scheme only uses local information, which equals to
generating channel-wise gates for each pixel with shared
parameters. Another way is to use an FC layer. This
design is computationally prohibitive since it requires a
large number of parameters to learn. We propose to295

learn a factorized form of G for reducing the number
of attention weights to predict. Concretely, we factorize
G ∈ RC×H×W into the multiplication of two low-rank ma-
trices Gc ∈ RC×r and Gs ∈ Rr×(H×W ). In this way, when
a small number is used for r, the number of gate weights300

to predict can be reduced to (C + H ×W ) × r. For ex-

ample, for D↓2 where C = 192,W = H = 112, using our
factorization scheme with 2 factors, we can decrease the
computational costs by 94.6 times.

Using the factorized attention, equation (6) can be
rewritten to:

XG = G�X

= (GcGs)�X

=

r∑
j=1

(Gc
j(G

s
j)
>)�X,

(7)

where Gc
j ∈ RC and Gs

j ∈ R(H×W ) are the jth factors of305

Gc and Gs, respectively. We can respectively regard Gc
j

and Gs
j as the traditional channel and spatial gated atten-

tion. In this way, G can be seen as being spanned by the
outer product of channel attention and spatial attention.
As such, we efficiently generate the attention weights for310

the entire feature map and leads to cheaper computation
and memory costs. Furthermore, we generate r factors for
both channel and spatial gated attention, which is similar
to the multi-head attention in [50]. Thus, our proposed
factorized gated attention (FGA) mechanism can help to315

select different channels and spatial locations in different
factors.

Motivated by the SENet model [39], we use average
pooling and an FC layer to predict Gc. Specifically, we
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Figure 3: Architecture of the proposed factorized gated at-
tention module. We factorize the gated attention of the feature
map X as the multiplication of multi-factored channel-wise gate
weights Gc and spatial gate weights Gs to reduce computation and
memory costs and introduce attention ensemble. AAP: adaptive
average pooling. �: element-wise multiplication. ⊗: matrix multi-
plication. Sizes of some crucial features are marked by gray font.

first adopt adaptive average pooling on X to pool the en-320

tire feature map to the spatial size of 2× 2. The resultant
feature map represents the mean activation value of each
channel in a H

2 ×
W
2 window. Then, we use an FC layer

with BN and the Sigmoid activation function to generate
Gc, which is a vector of C × r dimensions. For generating325

Gs, we first use a 7× 7 Conv layer with r channels on X.
Then, BN and the Sigmoid activation function are used to
obtain Gs. Figure 3 shows the detailed architecture of the
proposed FGA module.

Since each element of Gc and Gs is in the range of [0, 1]
and the summation over r factors in (7) will magnify the
value range of the elements of G, we further divide G
by r to shrink its value range back to [0, 1]. The final
formulation of the proposed FGA module in equation(8):

XG =
1

r
(GcGs)�X. (8)

We write a new layer for this operation to implement
it efficiently. Given ∂L/∂XG be the gradient of the loss
function L with respect to XG, the gradients with respect
to the three inputs can be easily obtained by the chain rule
as equation(9):

∂L

∂X
=

1

r
(GcGs)� ∂L

∂XG
,

∂L

∂Gc
=

1

r
(
∂L

∂XG
�X)(Gs)>,

∂L

∂Gs
=

1

r
(Gc)>(

∂L

∂XG
�X).

(9)

Thus, the proposed FGA module can be trained along with330

other layers of the network simultaneously via existing gra-
dient based optimizers.

We adopt FGA for all decoder modules and the gen-
eration of the multi-level encoder features FR

∗ and FD
∗ .

Experimental results in Section 4.4 demonstrate that it335

can further improve the feature aggregation effectiveness
for RGB-D SOD.

4. Experiments

4.1. Datasets

We evaluate the effectiveness of the proposed model on340

eight widely used RGB-D SOD benchmark datasets. The
first one is the NJUD [51] dataset, which has 1985 stereo
images. The images are selected from the Internet, 3D
movies, and stereo photographs. The salient objects are
labeled in a 3D display environment. The second one is the345

NLPR [52] dataset with 1000 RGB-D images collected by
Microsoft Kinect. Most of them are indoor images with
simple salient objects. The third one is the RGBD135
[17] dataset, which has 135 RGB-D indoor images captured
by Kinect. The fourth one is the LFSD [53] dataset. It350

consists of 100 challenging images captured by the Lytro
light field camera, including 60 indoor scenes and 40 out-
door scenes. The fifth one is the STERE [54] dataset,
which has 1000 stereoscopic images. Many of the images
include complex scenes and various objects. SSD [55] is355

the sixth dataset that has 80 images selected from three
stereo movies. DUT-RGBD [32] dataset is the seventh
one. It includes 800 indoor and 400 outdoor images with
challenging scenes and generated depth maps. The last
one is SIP [56] dataset, which is a newly released one360

with 1000 human activities oriented images.

4.2. Implementation Details

We follow the previous work [32] to select 1400, 650, and
800 images from the NJUD, NLPR, and DUT-RGBD
datasets, respectively, to train the proposed SOD network.365

To alleviate overfitting, we conduct data augmentation by
first resizing each training image pair to 288 × 288 pix-
els and then randomly cropping 224 × 224 image patches
and also use random horizontal flipping. The input im-
age pairs are pre-processed by subtracting the mean RGB370

and depth pixels computed on the training set. We adopt
the stochastic gradient descent (SGD) algorithm with mo-
mentum to train our network, where we set the batchsize,
momentum, and weight decay to 4, 0.9, and 0.0005, respec-
tively. We set the initial learning rate of the VGG part of375

the two encoder branches as 0.001 and train the other part
of the network with random initialization and the initial
learning rate of 0.01. We train the network with totally
60,000 steps and reduce the learning rates by 10 times at
the 40, 000th and 50, 000th steps, respectively.380

Our code is implemented based on an improved Caffe
[57] library1 to save GPU memory. We use a GTX 1080
Ti GPU to accelerate network training and testing. Dur-
ing testing, we directly resize each image pair to 224×224
pixels as the input and get the network output as the385

predicted saliency map, without any post-processing tech-
nique. The testing process costs 0.089 seconds for each
image.

1https://github.com/yjxiong/caffe
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Table 1: Ablation study on the effectiveness of the holistic aggregation paths (HA), the bottom-up aggregation (BU), the factorized gated
attention (FGA), and the early aggregation (EA). Blue indicates the best performance.

ID
Settings NJUD [51] NLPR [52] DUT-RGBD [32] STERE [54]

HA BU FGA EA Sm maxF Eξ MAE Sm maxF Eξ MAE Sm maxF Eξ MAE Sm maxF Eξ MAE

I 0.888 0.889 0.930 0.059 0.908 0.894 0.951 0.036 0.898 0.906 0.937 0.052 0.891 0.888 0.936 0.055
II X 0.894 0.892 0.933 0.053 0.911 0.902 0.953 0.035 0.912 0.915 0.948 0.046 0.889 0.890 0.937 0.055
III X X 0.897 0.890 0.929 0.051 0.917 0.901 0.950 0.030 0.915 0.914 0.944 0.041 0.897 0.887 0.932 0.048
IV X X r = 1 0.899 0.890 0.928 0.048 0.914 0.894 0.944 0.031 0.918 0.921 0.949 0.042 0.897 0.887 0.934 0.049
V X X r = 2 0.901 0.893 0.933 0.047 0.920 0.901 0.953 0.029 0.921 0.926 0.952 0.037 0.905 0.897 0.941 0.043
VI X X r = 3 0.903 0.894 0.934 0.047 0.919 0.903 0.953 0.029 0.919 0.919 0.946 0.040 0.902 0.892 0.938 0.046
VII X X r = 2 X 0.906 0.902 0.936 0.045 0.927 0.912 0.961 0.025 0.926 0.927 0.954 0.034 0.904 0.896 0.940 0.042

4.3. Evaluation Metrics

We adopt four widely used SOD metrics. The first one
is the max F-measure score. Concretely, for each image,
we first use a series of thresholds, which vary from 0 to 1
to binarize the predicted saliency map. Then, we compare
the binarized saliency maps with the ground truth saliency
map, thus obtaining a series of precision-recall value pairs.
F-measure comprehensively considers both precision and
recall as equation(10):

Fβ =
(1 + β2)Precision×Recall
β2Precision+Recall

, (10)

where β2 is set to 0.3 as suggested in previous work to390

emphasize more on precision. Max F-measure Fmaxβ is
obtained by selecting the highest F-measure score under
the optimal threshold.

The second metric is the Mean Absolute Error (MAE),
which computes the average absolute difference between
the predicted saliency map S and the ground truth
saliency map G as equation(11):

MAE =
1

WH

W∑
w=1

H∑
h=1

|G(w, h)− S(w, h)| . (11)

Although being widely used in previous work, the above
two mentioned metrics are all based on pixel-wise errors395

and ignore structural information, and they are shown to
be highly sensitive for the human visual system. Thus,
we use the Structure-measure Sm [58] as our third metric
to evaluate the structural similarity between the predicted
saliency maps and the ground truth maps.400

Fan et al. [59] recently simultaneously evaluate image-
level statistics and local pixel matching with the proposed
Enhanced-alignment measure Eξ, which demonstrated su-
periority over other existing measures. Thus, we also fol-
low recent work to adopt this measure as the forth metric.405

4.4. Component Analysis

In this part, we analyze the effect of each proposed
model component on four large datasets to verify their
effectiveness. We use the two-stream UNet [20] as the
baseline model, as shown in Row(I) of Table 1.410

Holistic Aggregation Paths. To evaluate the effective-
ness of the proposed holistic aggregation paths, we directly
aggregate decoder features across all levels of the UNet
model on the finest level and use the obtained feature map
(i.e., D↑1) to generate saliency maps. The results are shown415

in row (II) of Table 1. By comparing them with the results
in row (I), we can see that aggregating multi-level features
holistically can improve the performance of UNet, espe-
cially on the DUT-RGBD [32] dataset.

Bottom-up Aggregation. We further add the bottom-420

up decoder network to promote high-level features using
low-level features from the top-down decoder network of
UNet. The results in row (III) show obvious performance
gains based on the model setting in row (II), which demon-
strates the effectiveness of an additional bottom-up feature425

aggregation path.

Factorized Gated Attention. We further adopt our
proposed factorized gated attention in all decoder modules
to verify its effectiveness. We have tried different settings
with the factor number r varying from 1 to 3 and show430

the results in rows (IV) to (VI) of Table 1. We can see
that when using 1 factor to factorize the gated attention,
the model does not bring obvious performance gains when
compared with the results in row (III). However, when we
increase the factor number to 2 and 3, the model perfor-435

mance can be obviously improved. We also observe that
the model performance saturates when r is greater than 2.
Thus, we do not try other settings for r and select r = 2
as the best setting.

Early Aggregation. The above model settings follow440

most previous works to use the original VGG network as
encoders. Then, we add early aggregation paths between
our two-stream encoders to introduce early cross-modal
information interaction. The results are given in row (VII)
of Table 1. We can see that adding early aggregation paths445

can effectively improve the model performance on most
datasets. Thus, we select this model setting as our final
SOD model.

Qualitative Comparison. To further demonstrate the
effectiveness of the proposed model components, we show450

a visual comparison in Figure 4. We can see that adopting
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(a)Image (b)Depth (c)GT Saliency (d)Two-stream UNet (e)+HA+BU (f)+HA+BU+FGA (g)+HA+BU+FGA+EA

Figure 4: Visual comparison of different model settings. We compare the results of the baseline Two-stream UNet (d), adding the
holistic aggregation paths and the bottom-up aggregation (e), and further adding the factorized gated attention (f).

the proposed holistic aggregation, the bottom-up aggrega-
tion, the factorized gated attention, and the early aggrega-
tion can gradually improve the SOD results. We observe
that the proposed model components can help not only re-455

cover missing salient regions, but also filter out redundant
detected regions. As a result, the final model can obtain
better saliency maps that are close to the ground truth.

What do the multi-factored attention learn? Since
we factorize the gated attention into the multiplication of460

channel-wise gated attention Gc and a spatial gated at-
tention Gs with multiple factors, What do these multiple
attention factors learn? To answer this question, we show
the learned two spatial attention maps of our final SOD
model in Figure 5 for the D↑2 feature map. We can see that465

the spatial attention maps mainly focus to highlight ob-
ject boundaries. The two attention maps in each example
are slightly different. Thus, our proposed multi-factored
attention model can be seen as an ensemble of multiple
submodules, which has been widely proved to be useful470

in various machine learning algorithms. We also observe
similar phenomena for the spatial attention in other layers
and the channel-wise gated attention.

Comparison between FGA and existing attention
models. We compare our proposed FGA with conven-475

tional convolutional gated attention (CGA), spatial atten-
tion (SA), and the Convolutional Block Attention Module
(CBAM) [60], in terms of both model performance and
computational costs. For CGA, we simply use a 7 × 7
Conv layer to generate the gated attention weights with480

the same size with each input feature map. The attention
generation for SA is similar, except that we generate a sin-
gle channel attention map. For CBAM, we use the default
settings to incorporate cascaded channel and spatial at-
tention. We substitute FGA in our SOD model with these485

three attention models and report the comparison results
in Table 2. The results clearly show that our proposed
FGA model achieves the best RGB-D SOD performance.
In terms of computational costs, we can see that FGA uses
much less GPU memory than CGA and is much faster than490

CGA and CBAM. Compared with CGA, FGA predicts
much fewer attention weights. Compared with CBAM,
FGA only needs to carry out the attending operation once
while CBAM needs to do it twice. Compared with SA,
FGA costs a little more inference time but achieves better495

model performance.

4.5. Comparison with State-of-the-art Models

To verify the effectiveness of our final model for RGB-D
SOD, we conduct a performance comparison with other
11 state-of-the-art RGB-D SOD methods. We consider500
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(a1)Image (b1)Depth (c1)Att 1 (d1)Att 2 (a2)Image (b2)Depth (c2)Att 1 (d2)Att 2

Figure 5: Visualization of two learned two spatial attention factors for D↑2 . “Att 1” and “Att 2” denote the two spatial attention
maps, respectively.

Table 2: Comparison between FGA and the existing attention models, including convolutional gated attention (CGA), spatial attention (SA),
and the Convolutional Block Attention Module (CBAM). We report both RGB-D SOD performance and computational costs, which include
both memory costs and running times during testing. Here, we only test the network forwarding time and ignore the time for reading and
writing images for rigorous comparisons. Blue indicates the best performance.

Attention
Mem Time NJUD [51] NLPR [52] DUT-RGBD [32] STERE [54]

(Mb) (s) Sm maxF Eξ MAE Sm maxF Eξ MAE Sm maxF Eξ MAE Sm maxF Eξ MAE

SA 2247 0.057 0.901 0.896 0.933 0.049 0.916 0.898 0.946 0.032 0.918 0.921 0.948 0.040 0.902 0.893 0.937 0.047
CGA 4139 0.226 0.908 0.903 0.941 0.044 0.916 0.898 0.951 0.031 0.924 0.927 0.954 0.036 0.903 0.894 0.939 0.046
CBAM[60] 2813 0.139 0.907 0.901 0.937 0.043 0.922 0.907 0.958 0.027 0.922 0.926 0.952 0.036 0.904 0.896 0.941 0.042

FGA 3033 0.066 0.906 0.902 0.936 0.045 0.927 0.912 0.961 0.025 0.926 0.927 0.954 0.034 0.904 0.896 0.94 0.042

recently published deep-learning-based models, including
CTMF [21], MMCI [36], PCF [24], TANet [44], CPFP [38],
DMRA [32], S2MA [40], ICNet [31], UCNet [62], and JL-
DCF [61].

The quantitative comparison in terms of the above men-505

tioned four metrics is reported in Table 3. Since most com-
pared models except for DMRA and S2MA were trained
on only two datasets, i.e., NJUD and NLPR, we report
comparison results with all using either 2 and 3 training
datasets for fair comparisons. The results show that, when510

using 2 training datasets, our proposed model achieves a
comparable performance with the SOTA UCNet. When
trained on 3 datasets, our model obviously outperforms
all other methods, including all of those trained on either
2 or 3 datasets.515

On the other hand, we show a qualitative model com-
parison of the saliency maps in Figure 6. The results show
that the saliency maps of our model can not only highlight
salient objects more accurately, but also recover object de-
tails more precisely (see Row III). Our model can also cope520

with various challenging scenarios, e.g., the large statue in
Row II, the very challenging relief in Row IV, and the book
in row VI, where most other SOTA models fail to com-
pletely highlight the salient objects. For Rows V and VII,
although the backgrounds are very cluttered, our model525

can successfully separate the salient objects from the back-
grounds despite that other SOTA models are largely dis-
tracted by the backgrounds.

4.6. Failure Analysis

We show some common failure patterns in Figure 7. We530

observe that our RGB-D SOD model mainly fails in three

cases. The first row of Figure 7 demonstrates that it is
hard to perceive low-level (e.g., color) contrast thus may
incorrectly localize salient objects. The left example in the
second row shows that extreme illumination condition is a535

challenge for our model. The right example shows that it
may be distracted by cluttered backgrounds. The last row
indicates that it may also fail when facing images with no
obvious salient objects. All these three cases are challeng-
ing for all deep learning based SOD models. Solving these540

problems can be our future work.

5. Conclusion

In this paper, we have reconsidered the feature aggre-
gation schemes for deep RGB-D SOD and proposed novel
feature aggregation methods. Based on the widely used545

two-stream UNet architecture, we have first proposed to
add early aggregation and holistic aggregation paths to
propagate cross-modal information in an early stage and
learn abundant feature interactions among all multi-level
features. We have also proposed to cascade the top-down550

decoder network in UNet with a bottom-up decoder net-
work, thus enabling to improve the high-level features with
the already improved low-level features. Furthermore, we
have proposed a factorized gated attention model to mod-
ulate the feature aggregation actions for each feature node555

with reduced computational costs and boosted model per-
formance. Experimental results have demonstrated the ef-
fectiveness of our final RGB-D SOD model when compared
with very recent state-of-the-art methods.
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Table 3: Quantitative comparison of our proposed model with state-of-the-art RGB-D SOD methods. We report comparison results under
two settings, i.e., training with 2 datasets (NJUD and NLPR) and training with 3 datasets (NJUD, NLPR, and DUT-RGBD). Red and blue
indicate the best and the second best performance under each setting, respectively. Red means the best performance under both settings.
Note that, for fair comparisons, we show the results of the JL-DCF [61] model with the VGG backbone, whose results are only reported on
6 datasets in their paper.

Dataset Metric
Training with 2 Datasets Training with 3 Datasets

CTMF MMCI PCF TANet CPFP ICNet UCNet JL-DCF
Ours

DMRA S2MA
Ours*

[21] [36] [24] [44] [38] [31] [62] [61] [32] [40]

NJUD Sm ↑ 0.849 0.858 0.877 0.878 0.878 0.894 0.897 0.897 0.908 0.886 0.894 0.906
maxF ↑ 0.845 0.852 0.872 0.874 0.877 0.891 0.895 0.899 0.901 0.886 0.889 0.902

Eξ ↑ 0.913 0.915 0.924 0.925 0.923 0.926 0.936 0.939 0.943 0.927 0.930 0.936
[51] MAE ↓ 0.085 0.079 0.059 0.060 0.053 0.052 0.043 0.044 0.040 0.051 0.053 0.045

NLPR Sm ↑ 0.860 0.856 0.874 0.886 0.888 0.923 0.920 0.920 0.922 0.899 0.915 0.927
maxF ↑ 0.825 0.815 0.841 0.863 0.867 0.908 0.903 0.907 0.908 0.879 0.902 0.912

Eξ ↑ 0.929 0.913 0.925 0.941 0.932 0.952 0.956 0.959 0.957 0.947 0.953 0.961
[52] MAE ↓ 0.056 0.059 0.044 0.041 0.036 0.028 0.025 0.026 0.026 0.031 0.030 0.025

RGBD135 Sm ↑ 0.863 0.848 0.842 0.858 0.872 0.920 0.933 0.913 0.925 0.900 0.941 0.943
maxF ↑ 0.844 0.822 0.804 0.827 0.846 0.913 0.930 0.905 0.910 0.888 0.935 0.937

Eξ ↑ 0.932 0.928 0.893 0.910 0.923 0.960 0.976 0.955 0.963 0.943 0.973 0.978
[17] MAE ↓ 0.055 0.065 0.049 0.046 0.038 0.027 0.018 0.026 0.018 0.030 0.021 0.016

LFSD Sm ↑ 0.796 0.787 0.794 0.801 0.828 0.868 0.864 0.833 0.860 0.847 0.837 0.879
maxF ↑ 0.791 0.771 0.779 0.796 0.826 0.871 0.864 0.840 0.867 0.856 0.835 0.881

Eξ ↑ 0.865 0.839 0.835 0.847 0.872 0.903 0.905 0.877 0.904 0.900 0.873 0.914
[53] MAE ↓ 0.119 0.132 0.112 0.111 0.088 0.071 0.066 0.091 0.078 0.075 0.094 0.062

STERE Sm ↑ 0.848 0.873 0.875 0.871 0.879 0.903 0.903 0.894 0.897 0.886 0.890 0.904
maxF ↑ 0.831 0.863 0.860 0.861 0.874 0.898 0.899 0.889 0.887 0.886 0.882 0.896

Eξ ↑ 0.912 0.927 0.925 0.923 0.925 0.942 0.944 0.938 0.934 0.938 0.932 0.940
[54] MAE ↓ 0.086 0.068 0.064 0.060 0.051 0.045 0.039 0.046 0.048 0.047 0.051 0.042

SSD Sm ↑ 0.776 0.813 0.841 0.839 0.807 0.848 0.865 - 0.880 0.857 0.868 0.876
maxF ↑ 0.729 0.781 0.807 0.810 0.766 0.841 0.855 - 0.871 0.844 0.848 0.852

Eξ ↑ 0.865 0.882 0.894 0.897 0.852 0.902 0.907 - 0.926 0.906 0.909 0.915
[55] MAE ↓ 0.099 0.082 0.062 0.063 0.082 0.064 0.049 - 0.045 0.058 0.052 0.049

DUT- Sm ↑ 0.831 0.791 0.801 0.808 0.818 0.852 0.897 - 0.870 0.889 0.903 0.926
RGBD maxF ↑ 0.823 0.767 0.771 0.790 0.795 0.850 0.895 - 0.860 0.898 0.901 0.927

Eξ ↑ 0.899 0.859 0.856 0.861 0.859 0.899 0.936 - 0.901 0.933 0.937 0.954
[32] MAE ↓ 0.097 0.113 0.100 0.093 0.076 0.072 0.043 - 0.066 0.048 0.043 0.034

SIP Sm ↑ 0.716 0.833 0.842 0.835 0.850 0.854 0.875 0.866 0.881 0.806 0.872 0.889
maxF ↑ 0.694 0.818 0.838 0.830 0.851 0.857 0.879 0.873 0.884 0.821 0.877 0.889

Eξ ↑ 0.829 0.897 0.901 0.895 0.903 0.903 0.919 0.916 0.926 0.875 0.919 0.930
[56] MAE ↓ 0.139 0.086 0.071 0.075 0.064 0.069 0.051 0.056 0.049 0.085 0.057 0.047

Acknowledgments560

This work is sponsored by Innovation Foundation for
Doctor Dissertation of Northwestern Polytechnical Uni-
versity (CX201959) and Synergy Innovation Foundation
of the University and Enterprise for Graduate Students in
Northwestern Polytechnical University (XQ201910). This565

work is also supported in part by the National Natural
Science Foundation of China under Grant 61972321.

References

[1] D. Zhang, J. Han, L. Zhao, D. Meng, Leveraging prior-
knowledge for weakly supervised object detection under a col-570

laborative self-paced curriculum learning framework 127 (4)
(2019) 363–380.

[2] W. Wang, J. Shen, R. Yang, F. Porikli, Saliency-aware video
object segmentation, IEEE transactions on pattern analysis and
machine intelligence 40 (1) (2017) 20–33.575

[3] Y. Wei, X. Liang, Y. Chen, X. Shen, M.-M. Cheng, J. Feng,
Y. Zhao, S. Yan, Stc: A simple to complex framework for
weakly-supervised semantic segmentation, IEEE Transactions
on Pattern Analysis and Machine Intelligence 39 (11) (2017)
2314–2320.580

[4] A. Chaudhry, P. K. Dokania, P. H. S. Torr, Discovering class-
specific pixels for weakly-supervised semantic segmentation, in:
British Machine Vision Conference, 2017.

[5] W. Wang, J. Shen, H. Ling, A deep network solution for atten-
tion and aesthetics aware photo cropping, IEEE Transactions on585

Pattern Analysis and Machine Intelligence 41 (7) (2019) 1531–
1544.

[6] X. Fan, C. Xiang, C. Chen, P. Yang, L. Gong, X. Song,
P. Nanda, X. He, Buildsensys: Reusing building sensing data
for traffic prediction with cross-domain learning, IEEE Trans-590

actions on Mobile Computing (2020).
[7] M.-M. Cheng, N. J. Mitra, X. Huang, P. H. Torr, S.-M. Hu,

Global contrast based salient region detection, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 37 (3) (2014)
569–582.595

[8] L. Wang, H. Lu, X. Ruan, M.-H. Yang, Deep networks for
saliency detection via local estimation and global search, in:
IEEE Conference on Computer Vision and Pattern Recognition,

10



I

II

III

IV

V

VI

VII

Image Depth GT Ours* ICNet[31] S2MA[40] DMRA[32] CPFP[38] TANet[44] PCF[24] MMCI[36] CTMF[21] AFNet[26]

Figure 6: Visualization of the saliency maps of our SOD model and other state-of-the-art RGB-D SOD models.

2015, pp. 3183–3192.
[9] N. Liu, J. Han, Dhsnet: Deep hierarchical saliency network600

for salient object detection, in: IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 678–686.

[10] W. Wang, J. Shen, X. Dong, A. Borji, Salient object detection
driven by fixation prediction, in: IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 1711–1720.605

[11] J.-X. Zhao, J.-J. Liu, D.-P. Fan, Y. Cao, J. Yang, M.-M. Cheng,
Egnet: Edge guidance network for salient object detection, in:
IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 8779–8788.

[12] W. Wang, S. Zhao, J. Shen, S. C. Hoi, A. Borji, Salient object610

detection with pyramid attention and salient edges, in: IEEE
Conference on Computer Vision and Pattern Recognition, 2019,
pp. 1448–1457.

[13] N. Liu, J. Han, M.-H. Yang, Picanet: Pixel-wise contextual
attention learning for accurate saliency detection, IEEE Trans-615

actions on Image Processing (2020).
[14] N. Ouerhani, H. Hugli, Computing visual attention from scene

depth, in: International Conference on Pattern Recognition,
Vol. 1, IEEE, 2000, pp. 375–378.

[15] C. Lang, T. V. Nguyen, H. Katti, K. Yadati, M. Kankan-620

halli, S. Yan, Depth matters: Influence of depth cues on vi-
sual saliency, in: European Conference on Computer Vision,
Springer, 2012, pp. 101–115.

[16] A. Ciptadi, T. Hermans, J. Rehg, An in depth view of saliency,
in: British Machine Vision Conference, 2013.625

[17] Y. Cheng, H. Fu, X. Wei, J. Xiao, X. Cao, Depth enhanced
saliency detection method, in: International Conference on In-
ternet Multimedia Computing and Service, ACM, 2014, p. 23.

[18] H. Song, Z. Liu, H. Du, G. Sun, O. Le Meur, T. Ren, Depth-
aware salient object detection and segmentation via multiscale630

discriminative saliency fusion and bootstrap learning, IEEE
Transactions on Image Processing 26 (9) (2017) 4204–4216.

[19] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks
for semantic segmentation, in: IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 3431–3440.635

[20] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional
networks for biomedical image segmentation, in: Interna-
tional Conference on Medical Image Computing and Computer-
Assisted Intervention, 2015, pp. 234–241.

[21] J. Han, H. Chen, N. Liu, C. Yan, X. Li, Cnns-based rgb-d640

saliency detection via cross-view transfer and multiview fusion,
IEEE Transactions on Cybernetics 48 (11) (2017) 3171–3183.

[22] D.-P. Fan, Z. Lin, J.-X. Zhao, Y. Liu, Z. Zhang, Q. Hou,
M. Zhu, M.-M. Cheng, Rethinking rgb-d salient object de-
tection: Models, datasets, and large-scale benchmarks, arXiv645

preprint arXiv:1907.06781 (2019).
[23] H. Chen, Y.-F. Li, D. Su, Attention-aware cross-modal cross-

level fusion network for rgb-d salient object detection, in: Inter-
national Conference on Intelligent Robots and Systems, IEEE,
2018, pp. 6821–6826.650

[24] H. Chen, Y. Li, Progressively complementarity-aware fusion
network for rgb-d salient object detection, in: IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2018, pp.
3051–3060.

[25] Z. Liu, S. Shi, Q. Duan, W. Zhang, P. Zhao, Salient object655

detection for rgb-d image by single stream recurrent convolution
neural network, Neurocomputing 363 (2019) 46–57.

[26] N. Wang, X. Gong, Adaptive fusion for rgb-d salient object
detection, IEEE Access 7 (2019) 55277–55284.

[27] C. Zhu, X. Cai, K. Huang, T. H. Li, G. Li, Pdnet: Prior-model660

guided depth-enhanced network for salient object detection, in:
International Conference on Multimedia and Expo, IEEE, 2019,
pp. 199–204.

[28] Y. Ding, Z. Liu, M. Huang, R. Shi, X. Wang, Depth-aware
saliency detection using convolutional neural networks, Journal665

of Visual Communication and Image Representation 61 (2019)
1–9.

[29] G. Li, Z. Liu, L. Ye, Y. Wang, H. Ling, Cross-modal weight-
ing network for rgb-d salient object detection, in: European
Conference on Computer Vision, 2020.670

[30] X. Zhou, G. Li, C. Gong, Z. Liu, J. Zhang, Attention-guided
rgbd saliency detection using appearance information, Image

11



Image Depth GT Ours* Image Depth GT Ours*

Figure 7: Visualization of common failure patterns.

and Vision Computing 95 (2020) 103888.
[31] G. Li, Z. Liu, H. Ling, Icnet: Information conversion network

for rgb-d based salient object detection, IEEE Transactions on675

Image Processing 29 (2020) 4873–4884.
[32] Y. Piao, W. Ji, J. Li, M. Zhang, H. Lu, Depth-induced multi-

scale recurrent attention network for saliency detection, in:
IEEE International Conference on Computer Vision, 2019, pp.
7254–7263.680

[33] W. Wang, Q. Lai, H. Fu, J. Shen, H. Ling, R. Yang, Salient
object detection in the deep learning era: An in-depth survey,
arXiv preprint arXiv:1904.09146 (2019).

[34] L. Qu, S. He, J. Zhang, J. Tian, Y. Tang, Q. Yang, Rgbd salient
object detection via deep fusion, IEEE Transactions on Image685

Processing 26 (5) (2017) 2274–2285.
[35] R. Shigematsu, D. Feng, S. You, N. Barnes, Learning rgb-d

salient object detection using background enclosure, depth con-
trast, and top-down features, in: IEEE International Conference
on Computer Vision Workshops, 2017, pp. 2749–2757.690

[36] H. Chen, Y. Li, D. Su, Multi-modal fusion network with multi-
scale multi-path and cross-modal interactions for rgb-d salient
object detection, Pattern Recognition 86 (2019) 376–385.

[37] H. Song, W. Wang, S. Zhao, J. Shen, K.-M. Lam, Pyramid
dilated deeper convlstm for video salient object detection, in:695

European Conference on Computer Vision, 2018, pp. 715–731.
[38] J.-X. Zhao, Y. Cao, D.-P. Fan, M.-M. Cheng, X.-Y. Li,

L. Zhang, Contrast prior and fluid pyramid integration for rgbd
salient object detection, in: IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2019, pp. 3927–3936.700

[39] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in:
IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 7132–7141.

[40] N. Liu, N. Zhang, J. Han, Learning selective self-mutual at-
tention for rgb-d saliency detection, in: IEEE Conference on705

Computer Vision and Pattern Recognition, 2020.
[41] Y. N. Dauphin, A. Fan, M. Auli, D. Grangier, Language mod-

eling with gated convolutional networks, in: International Con-
ference on Machine Learning, JMLR. org, 2017, pp. 933–941.

[42] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, T. S. Huang, Free-710

form image inpainting with gated convolution, in: IEEE Inter-
national Conference on Computer Vision.

[43] Z. Liu, W. Zhang, P. Zhao, A cross-modal adaptive gated fu-
sion generative adversarial network for rgb-d salient object de-
tection, Neurocomputing 387 (2020) 210–220.715

[44] H. Chen, Y. Li, Three-stream attention-aware network for rgb-d
salient object detection, IEEE Transactions on Image Process-
ing 28 (6) (2019) 2825–2835.

[45] W. Wang, J. Shen, M.-M. Cheng, L. Shao, An iterative and co-
operative top-down and bottom-up inference network for salient720

object detection, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 5968–

5977.
[46] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Im-

agenet: A large-scale hierarchical image database, in: IEEE725

Conference on Computer Vision and Pattern Recognition, Ieee,
2009, pp. 248–255.

[47] K. Simonyan, A. Zisserman, Very deep convolutional networks
for large-scale image recognition, in: International Conference
on Learning Representations, 2015.730

[48] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L.
Yuille, Deeplab: Semantic image segmentation with deep con-
volutional nets, atrous convolution, and fully connected crfs,
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 40 (4) (2017) 834–848.735

[49] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep
network training by reducing internal covariate shift, in: Inter-
national Conference on Machine Learning, 2015, pp. 448–456.

[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, I. Polosukhin, Attention is all you need, in:740

Neural Information Processing Systems, 2017, pp. 5998–6008.
[51] R. Ju, L. Ge, W. Geng, T. Ren, G. Wu, Depth saliency based on

anisotropic center-surround difference, in: International Confer-
ence on Image Processing, IEEE, 2014, pp. 1115–1119.

[52] H. Peng, B. Li, W. Xiong, W. Hu, R. Ji, Rgbd salient object de-745

tection: A benchmark and algorithms, in: European Conference
on Computer Vision, Springer, 2014, pp. 92–109.

[53] N. Li, J. Ye, Y. Ji, H. Ling, J. Yu, Saliency detection on light
field, in: IEEE Conference on Computer Vision and Pattern
Recognition, 2014, pp. 2806–2813.750

[54] Y. Niu, Y. Geng, X. Li, F. Liu, Leveraging stereopsis for saliency
analysis, in: IEEE Conference on Computer Vision and Pattern
Recognition, IEEE, 2012, pp. 454–461.

[55] C. Zhu, G. Li, A three-pathway psychobiological framework of
salient object detection using stereoscopic technology, in: Inter-755

national Conference on Computer Vision Workshops, 2017, pp.
3008–3014.

[56] D.-P. Fan, Z. Lin, Z. Zhang, M. Zhu, M.-M. Cheng, Rethinking
rgb-d salient object detection: Models, data sets, and large-
scale benchmarks, IEEE Transactions on Neural Networks and760

Learning Systems (2020).
[57] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, T. Darrell, Caffe: Convolutional archi-
tecture for fast feature embedding, in: ACM International con-
ference on Multimedia, 2014, pp. 675–678.765

[58] D.-P. Fan, M.-M. Cheng, Y. Liu, T. Li, A. Borji, Structure-
measure: A new way to evaluate foreground maps, in: IEEE
International Conference on Computer Vision, 2017, pp. 4558–
4567.

[59] D.-P. Fan, C. Gong, Y. Cao, B. Ren, M.-M. Cheng, A. Borji,770

Enhanced-alignment measure for binary foreground map eval-
uation, in: International Joint Conference on Artificial Intelli-

12



gence, AAAI Press, 2018, pp. 698–704.
[60] S. Woo, J. Park, J.-Y. Lee, I. So Kweon, Cbam: Convolutional

block attention module, in: Proceedings of the European con-775

ference on computer vision (ECCV), 2018, pp. 3–19.
[61] K. Fu, D.-P. Fan, G.-P. Ji, Q. Zhao, Jl-dcf: Joint learning and

densely-cooperative fusion framework for rgb-d salient object
detection, in: IEEE Conference on Computer Vision and Pat-
tern Recognition, 2020, pp. 3052–3062.780

[62] J. Zhang, D.-P. Fan, Y. Dai, S. Anwar, F. S. Saleh, T. Zhang,
N. Barnes, Uc-net: uncertainty inspired rgb-d saliency detection
via conditional variational autoencoders, in: IEEE Conference
on Computer Vision and Pattern Recognition, 2020, pp. 8582–
8591.785

Yuan-fang Zhang is currently pur-
suing his dual Ph.D. degrees with
the School of Computer Science at
Northwestern Polytechnical Univer-
sity, Shaanxi, China and Faculty of
Engineering and IT, University of
Technology Sydney, Australia. His
current research focuses on image
processing and computer vision, es-
pecially in the domains of the image
enhancement, object detection and
saliency detection.

Jiangbin Zheng received the Ph.D.
degree from Northwestern Polytech-
nical University in 2002, where he is a
Full Professor and Dean with School
of Software. His research interests
include computer graphics, computer
vision and multimedia. He has pub-
lished over 100 papers in the above
related research area.

Long Li is a M.E. student of School
of Automation at Northwestern Poly-
technical University, Xi’an, China.
He received the B.E. degree from
Northwestern Polytechnical Univer-
sity in 2018. His research interests
include computer vision and machine
learning.

Nian Liu is a researcher with Mo-
hamed bin Zayed University of Arti-
ficial Intelligence, Abu Dhabi, UAE.
He received the Ph.D. degree, the
M.S. degree, and the B.S. degree from
School of Automation at Northwest-
ern Polytechnical University, in 2020,
2015, and 2012, respectively. His re-
search interests include computer vi-
sion and machine learning, especially
on saliency detection and deep learn-
ing.

Wenjing Jia received her Ph.D. de-
gree in Computing Science from
the University of Technology Sydney
(UTS) in 2007. She is currently a Se-
nior Lecturer at the Faculty of Engi-
neering and IT and a Core Research
Member at the Global Big Data Tech-
nologies Centre, UTS. She has au-
thored over 100 quality journal arti-
cles and conference papers. Her re-
search interests include image/video
analysis, computer vision, and pat-
tern recognition.

790

Xiaochen Fan received his B.S. degree
in Computer Science from the Bei-
jing Institute of Technology, China,
in 2013. He is currently a Ph.D.
candidate at the School of Electrical
and Data Engineering, University of
Technology Sydney, Australia. His
research interests include mobile edge
computing, pattern recognition, deep
learning, and IoT.
Chengpei Xu received his Bachelor
degree in System Engineering from
National University of Defence Tech-
nology, China, a Master degree in In-
formation Technology from Univer-
sity of New South Wales, Australia,
in 2018. His research has focused on
computer vision, multimodal data fu-
sion and artificial intelligence in e-
learning.

Xiangjian He received the Ph.D.
degree in Computer Science from
the University of Technology Sydney
(UTS), Australia in 1999. He is cur-
rently a Full Professor and the Direc-
tor of the Computer Vision and Pat-
tern Recognition Laboratory, Global
Big Data Technologies Centre, UTS.

13


	Elsevier required licence
	20200921_RGBD_saliency_revise_1
	Introduction
	Related Work
	Proposed Method
	Encoder Network
	Decoder Networks
	Factorized Gated Attention

	Experiments
	Datasets
	Implementation Details
	Evaluation Metrics
	Component Analysis
	Comparison with State-of-the-art Models
	Failure Analysis

	Conclusion


