
Pseudo-Rehearsal: Achieving Deep Reinforcement

Learning without Catastrophic Forgetting

Craig Atkinson1,∗, Brendan McCane1, Lech Szymanski1, Anthony Robins1,

Abstract

Neural networks can achieve excellent results in a wide variety of applica-
tions. However, when they attempt to sequentially learn, they tend to learn
the new task while catastrophically forgetting previous ones. We propose
a model that overcomes catastrophic forgetting in sequential reinforcement
learning by combining ideas from continual learning in both the image classi-
fication domain and the reinforcement learning domain. This model features
a dual memory system which separates continual learning from reinforcement
learning and a pseudo-rehearsal system that “recalls” items representative of
previous tasks via a deep generative network. Our model sequentially learns
Atari 2600 games without demonstrating catastrophic forgetting and contin-
ues to perform above human level on all three games. This result is achieved
without: demanding additional storage requirements as the number of tasks
increases, storing raw data or revisiting past tasks. In comparison, previous
state-of-the-art solutions are substantially more vulnerable to forgetting on
these complex deep reinforcement learning tasks.

Keywords: Deep Reinforcement Learning, Pseudo-Rehearsal, Catastrophic
Forgetting, Generative Adversarial Network

∗Corresponding author.
Email address: atkcr398@student.otago.ac.nz (Craig Atkinson)

1Department of Computer Science, University of Otago, 133 Union Street East,
Dunedin, New Zealand

Accepted for publication in Neurocomputing (https://doi.org/10.1016/j.neucom.
2020.11.050). © 2020. This manuscript version is made available under the CC-BY-
NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

ar
X

iv
:1

81
2.

02
46

4v
6

 [
cs

.L
G

]
 1

6
D

ec
 2

02
0

https://doi.org/10.1016/j.neucom.2020.11.050
https://doi.org/10.1016/j.neucom.2020.11.050
http://creativecommons.org/licenses/by-nc-nd/4.0/

Accepted for publication in Neurocomputing

1. Introduction

There has been enormous growth in research around reinforcement learn-
ing since the development of Deep Q-Networks (DQNs) [1]. DQNs apply
Q-learning to deep networks so that complicated reinforcement tasks can be
learnt. However, as with most distributed models, DQNs can suffer from
Catastrophic Forgetting (CF) [2, 3]. This is where a model has the tendency
to forget previous knowledge as it learns new knowledge. Pseudo-rehearsal
is a method for overcoming CF by rehearsing randomly generated exam-
ples of previous tasks, while learning on real data from a new task. Although
pseudo-rehearsal methods have been widely used in image classification, they
have been virtually unexplored in reinforcement learning. Solving CF in the
reinforcement learning domain is essential if we want to achieve artificial
agents that can continuously learn.

Continual learning is important to neural networks because CF limits
their potential in numerous ways. For example, imagine a previously trained
network whose function needs to be extended or partially changed. The typ-
ical solution would be to train the neural network on all of the previously
learnt data (that was still relevant) along with the data to learn the new func-
tion. This can be an expensive operation because previous datasets (which
tend to be very large in deep learning) would need to be stored and retrained.
However, if a neural network could adequately perform continual learning,
it would only be necessary for it to directly learn on data representing the
new function. Furthermore, continual learning is also desirable because it
allows the solution for multiple tasks to be compressed into a single network
where weights common to both tasks may be shared. This can also benefit
the speed at which new tasks are learnt because useful features may already
be present in the network.

Our Reinforcement-Pseudo-Rehearsal model (RePR2) achieves continual
learning in the reinforcement domain. It does so by utilising a dual memory
system where a freshly initialised DQN is trained on the new task and then
knowledge from this short-term network is transferred to a separate DQN
containing long-term knowledge of all previously learnt tasks. A generative
network is used to produce states (short sequences of data) representative of
previous tasks which can be rehearsed while transferring knowledge of the
new task. For each new task, the generative network is trained on pseudo-

2Read as “reaper”.

2

Accepted for publication in Neurocomputing

items produced by the previous generative network, alongside data from the
new task. Therefore, the system can prevent CF without the need for a large
memory store holding data from previously encountered training examples.

The reinforcement tasks learnt by RePR are Atari 2600 games. These
games are considered complex because the input space of the games is large
which currently requires reinforcement learning to use deep neural networks
(i.e. deep reinforcement learning). Applying pseudo-rehearsal methods to
deep reinforcement learning is challenging because these reinforcement learn-
ing methods are notoriously unstable compared to image classification (due
to the deadly triad [4]). In part, this is because target values are consistently
changing during learning. We have found that using pseudo-rehearsal while
learning these non-stationary targets is difficult because it increases the inter-
ference between new and old tasks. Furthermore, generative models struggle
to produce high quality data resembling these reinforcement learning tasks,
which can prevent important task knowledge from being learnt for the first
time, as well as relearnt once it is forgotten.

Our RePR model applies pseudo-rehearsal to the difficult domain of deep
reinforcement learning. RePR introduces a dual memory model suitable for
reinforcement learning. This model is novel compared to previously used
dual memory pseudo-rehearsal models in two important aspects. Firstly,
the model isolates reinforcement learning to the short-term system, so that
the long-term system can use supervised learning (i.e. mean squared error)
with fixed target values (converged on by the short-term network), prevent-
ing non-stationary target values from increasing the interference between
new and old tasks. Importantly, this differs from previous applications of
pseudo-rehearsal, where both the short-term and long-term systems learn
with the same cross-entropy loss function. Secondly, RePR transfers knowl-
edge between the dual memory system using real samples, rather than those
produced by a generative model. This allows tasks to be learnt and retained
to a higher performance in reinforcement learning. The source code for RePR
can be found at https://bitbucket.org/catk1ns0n/repr_public/.

A summary of the main contributions of this paper are:

• the first successful application of pseudo-rehearsal methods to complex
deep reinforcement learning tasks;

• above state-of-the-art performance when sequentially learning complex
reinforcement tasks, without storing any raw data from previously
learnt tasks;

3

https://bitbucket.org/catk1ns0n/repr_public/

Accepted for publication in Neurocomputing

• empirical evidence demonstrating the need for a dual memory system
as it facilitates new learning by separating the reinforcement learning
system from the continual learning system.

2. Background

2.1. Deep Q-Learning

In deep Q-learning [1], the neural network is taught to predict the dis-
counted reward that would be received from taking each one of the possible
actions given the current state. More specifically, it minimises the following
loss function:

LDQN = E(st,at,rt,dt,st+1)∼U(D)

[(
yt −Q(st, at;ψt)

)2
]
, (1)

yt =

{
rt, if terminal at t+ 1

rt + γmax
at+1

Q(st+1, at+1;ψ−
t), otherwise

(2)

where there exist two Q functions, a deep predictor network and a deep
target network. The predictor’s parameters ψt are updated continuously by
stochastic gradient descent and the target’s parameters ψ−

t are infrequently
updated with the values of ψt. The tuple (st, at, rt, dt, st+1) ∼ U(D) consists
of the state, action, reward, terminal and next state for a given time step t
drawn uniformly from a large record of previous experiences, known as an
experience replay.

2.2. Pseudo-Rehearsal

The simplest way of solving the CF problem is to use a rehearsal strat-
egy, where previously learnt items are practised alongside the learning of new
items. Researchers have proposed extensions to rehearsal [5, 6, 7]. However,
all these rehearsal methods still have disadvantages, such as requiring exces-
sive amounts of data to be stored from previously seen tasks3. Furthermore,
in certain applications (e.g. the medical field), storing real data for rehearsal
might not be possible due to privacy regulations. Additionally, rehearsal is

3An experience replay differs from rehearsal because it only stores recently seen data
from the current task and therefore, learning data from the experience replay does not
prevent forgetting of previously seen tasks.

4

Accepted for publication in Neurocomputing

not biologically plausible - mammalian brains don’t retain raw sensory infor-
mation over the course of their lives. Hence, cognitive research might be a
good inspiration for tackling the CF problem.

Pseudo-rehearsal was proposed as a solution to CF which does not require
storing large amounts of past data and thus, overcomes the previously men-
tioned shortcomings of rehearsal [8]. Originally, pseudo-rehearsal involved
constructing a pseudo-dataset by generating random inputs (i.e. from a
random number generator), passing them through the original network and
recording their output. This meant that when a new dataset was learnt,
the pseudo-dataset could be rehearsed alongside it, resulting in the network
learning the data with minimal changes to the previously modelled function.

There is psychological research that suggests that mammal brains use an
analogous method to pseudo-rehearsal to prevent CF in memory consolida-
tion. Memory consolidation is the process of transferring memory from the
hippocampus, which is responsible for short-term knowledge, to the cortex
for long-term storage. The hippocampus and sleep have both been linked as
important components for retaining previously learnt information [9]. The
hippocampus has been observed to replay patterns of activation that occurred
during the day while sleeping [10], similar to the way that pseudo-rehearsal
generates previous experiences. Therefore, we believe that pseudo-rehearsal
based mechanisms are neurologically plausible and could be useful as an ap-
proach to solving the CF problem in deep reinforcement learning.

Plain pseudo-rehearsal does not scale well to data with large input spaces
such as images [11]. This is because the probability of a population of ran-
domly generated inputs sampling the space of possible input images with suf-
ficient density is essentially zero. This is where Deep Generative Replay [12]
and Pseudo-Recursal [11] have leveraged Generative Adversarial Networks
(GANs) [13] to randomly generate pseudo-items representative of previously
learnt items.

A GAN has two components; a generator and a discriminator. The
discriminator is trained to distinguish between real and generated images,
whereas the generator is trained to produce images which fool the discrim-
inator. When a GAN is used alongside pseudo-rehearsal, the GAN is also
trained on the task so that its generator learns to produce items represen-
tative of the task’s input items. Then, when a second task needs to be
learnt, pseudo-items can be generated randomly from the GAN’s genera-
tor and used in pseudo-rehearsal. More specifically, the minimised cost for

5

Accepted for publication in Neurocomputing

pseudo-rehearsal is:

J = L(h (xi; θi), yi) +
i−1∑
j=1

L (h(x̃j; θi), ỹj) , (3)

where L is a loss function, such as cross-entropy, and h is a neural network
with weights θi while learning task i. The tuple xi, yi is the input-output pair
for the current task. The tuple x̃j, ỹj is the input-output pair for a pseudo-
item, where x̃j is the input generated so that it represents the previous task
j and ỹj is the target output calculated by ỹj = h(x̃j; θi−1).

This technique can be applied to multiple tasks using only a single GAN
by doing pseudo-rehearsal on the GAN as well. Thus, the GAN learns to
generate items representative of the new task while still remembering to
generate items representative of the previous tasks (by rehearsing the pseudo-
items it generates). This technique has been shown to be very effective for
remembering a chain of multiple image classification tasks [12, 11].

3. The RePR Model

RePR is a dual memory model which uses pseudo-rehearsal with a gener-
ative network to achieve sequential learning in reinforcement tasks. The first
part of our dual memory model is the short-term memory (STM) system4,
which serves a role analogous to that of the hippocampus in learning and is
used to learn the current task. The STM system contains two components;
a DQN that learns the current task and an experience replay containing
data only from the current task. The second part is the long-term memory
(LTM) system, which serves a role analogous to that of the cortex. The LTM
system also has two components; a DQN containing knowledge of all tasks
learnt and a GAN which can generate states representative of these tasks.
During consolidation, the LTM system retains previous knowledge through
pseudo-rehearsal, while being taught by the STM system how to respond on
the current task.

Transferring knowledge between these two systems is achieved through
knowledge distillation [14], where a student network is optimised so that it

4Note that the interpretation of the term “short-term memory” (STM) as used here
and in related literature varies somewhat from the use of the same term in the general
psychological literature.

6

Accepted for publication in Neurocomputing

outputs similar values to a teacher network. In the RePR model, the student
network is the long-term DQN and the teacher network is the short-term
DQN. The key difference between distillation and pseudo-rehearsal is that
distillation uses real items to teach new knowledge, whereas pseudo-rehearsal
uses generated items to retain previously learnt knowledge.

In reinforcement learning (deep Q-learning), the target Q-values are from
a non-stationary distribution because they are produced by the target net-
work which is being updated during training. Our dual memory system in
RePR is important because it allows the difficult job of reinforcement learning
to be isolated to the short-term DQN, so that no other learning can interfere
with it. Consequently, this reduces the difficulty of the problem for the long-
term DQN as it does not need to learn this non-stationary distribution while
also trying to retain knowledge of previous tasks. Instead, the long-term
DQN can use supervised learning to learn the final stationary distribution
Q-values, while rehearsing previous knowledge through pseudo-rehearsal.

3.1. Training Procedure

The training procedure can be broken down into three steps: short-term
DQN training, long-term DQN training and long-term GAN training. This
process could be repeated for any number of tasks until the DQN or GAN
run out of capacity to perform the role sufficiently.

3.1.1. Training the Short-Term DQN

When there is a new task to be learnt, the short-term DQN is reini-
tialised and trained solely on the task using the standard DQN loss function
(Equation 1). A summary of the information flow while training the STM
system can be found in Fig. 1 and the related pseudo-code can be found in
the appendices as Algorithm 1.

3.1.2. Training the Long-Term DQN

Knowledge is transferred to the long-term DQN by teaching it to produce
similar outputs to the short-term DQN on examples from its experience re-
play. Alongside this, the long-term DQN is constrained with pseudo-rehearsal
to produce similar output values to the previous long-term DQN on states
generated from the long-term GAN. More specifically, the loss functions used
are:

LLTM =
1

N

N∑
j=1

αLDj + (1− α)LPRj, (4)

7

Accepted for publication in Neurocomputing

Play

Train short-term DQN

Environment Experience
replay DQN

STM

Experience
replay DQN

STM
𝐿!"#

𝑠$𝑎$𝑠$, 𝑟$, 𝑑$

𝑎$, 𝑟$, 𝑑$, 𝑠$%&

𝑄

𝑠$

𝑎$

𝜓$

𝜓$

Figure 1: Flow of information while training the STM system. The model plays the game
while simultaneously training the STM system.

LDj =
A∑
a

(Q(sj, a; θi)−Q(sj, a;ψi))
2, (5)

LPRj =
A∑
a

(Q(s̃j, a; θi)−Q(s̃j, a; θi−1))2, (6)

where sj is a state drawn from the current task’s experience replay, N is the
mini-batch size, A is the set of possible actions, θi is the long-term DQN’s
weights on the current task, ψi is the short-term DQN’s weights after learning
the current task and θi−1 is the long-term DQN’s weights after learning the
previous task. Pseudo-items’ inputs s̃j are generated from a GAN and are

8

Accepted for publication in Neurocomputing

Experience
replay DQN

STM
Train long-term DQN

DQN GANDQN GAN

LTM
𝐿! 𝐿"#

�̃�$𝑠$𝑠$

𝑄𝑄

𝑄𝑄

Experience
replay DQN DQN GANDQN GAN

𝐿%&'

𝑠$

%𝑥

STM LTM
Train long-term GAN

𝑠$

Copy of LTM before training on the task

Copy of LTM before training on the task

�̃�$

�̃�$

�̃�$

𝜃()*

𝑥

𝜃()*

𝜃(

𝜃(

𝜓(

𝜓(

Figure 2: Flow of information while training the LTM system. Solid lines represent the
information flow for learning the new task and dashed lines represent the information flow
for retaining previous tasks with pseudo-rehearsal. The DQN and GAN are both trained
at independent times.

representative of states in previously learnt games. The trade off between
learning the new tasks and retaining the previous ones is controlled by a
scaling factor (0 < α < 1). A summary of the information flow while training
the long-term DQN can be found in Fig. 2 and the related pseudo-code can
be found in the appendices as Algorithm 2.

3.1.3. Training the Long-Term GAN

The GAN is reinitialised and trained to produce both states that are
representative of states the previous GAN outputs and states drawn from
the current task’s experience replay. More specifically, the states the GAN
learns are drawn such that:

x =

{
sj, if r < 1

T

s̃j, otherwise
(7)

9

Accepted for publication in Neurocomputing

where r is a random number uniformly drawn from [0, 1) and sj is a randomly
selected state in the current task’s experience replay. T is the number of tasks
learnt and s̃j is a randomly generated state from the long-term GAN before
training on task i. This state is a pseudo-item which ideally resembles a state
from one of the prior tasks (task 1 to i − 1). The GAN in our experiments
is trained with the WGAN-GP loss function [15] with a drift term [16]. The
specific loss function can be found in Appendix B.2. A summary of the
information flow while training the long-term GAN can be found in Fig. 2
and the related pseudo-code can be found in the appendices as Algorithm 3.

3.2. Requirements of a Continual Learning Agent

We seek to operate within the constraints that apply to biological agents.
As such, we seek a continual learning agent capable of learning multiple tasks
sequentially: without revisiting them; without substantially forgetting pre-
vious tasks; with a consistent memory size that does not grow as the number
of tasks increases; and without storing raw data from previous tasks. The
results in Section 6 demonstrate that our RePR model can sequentially learn
multiple tasks, without revisiting them or substantially forgetting previous
tasks. Furthermore, our model does not store raw data because applying
pseudo-rehearsal methods to a single GAN allows it to learn to generate data
representative of all previous tasks, without growing in size as the number
of tasks increases.

4. Related Work

This section will focus on methods for preventing CF in reinforcement
learning and will generally concentrate on how to learn a new policy without
forgetting those previously learnt for different tasks. There is a lot of related
research outside of this domain (see [17] for a broad review), predominantly
around continual learning in image classification. However, because these
methods cannot be directly applied to complex reinforcement learning tasks,
we have excluded them from this review.

There are two main strategies for avoiding CF. The first of these strategies
is restricting how the network is optimised. Some models, such as Progressive
neural networks [18], introduce a large number of units, or even separate
networks, which are restrictively trained only on a particular task. Although
these methods can share some weights, they still have a large number of

10

Accepted for publication in Neurocomputing

task specific ones and thus, the model size needs to grow substantially as it
continually learns.

Another way which the network’s optimisation can be restricted is through
weight constraints. These methods amend the loss function so that weights
do not change considerably when learning a new task. The most popular of
these methods is Elastic Weight Consolidation (EWC) [3], which augments a
network’s loss function with a constraint that forces the network’s weights to
yield similar values to previous networks. Weights that are more important
to the previous task/s are constrained more so that less important weights
can be used to learn the new task. EWC has been paired with a DQN to
learn numerous Atari 2600 games. One undesirable requirement of EWC
is that the network’s weights after learning each task must be stored along
with either the Fisher information matrix for each task or examples from past
tasks (so that the matrix can be calculated when needed). Other variations
for constraining the weights have also been proposed [19, 20]. However, these
variations have only been applied to relatively simple reinforcement tasks.

Progress and Compress [21] learnt multiple Atari games by firstly learning
the game in STM and then using distillation to transfer it to LTM. The LTM
system held all previously learnt tasks, counteracting CF using a modified
version of EWC called online-EWC. This modified version does not scale
in memory requirements as the number of tasks increases. This is because
the algorithm stores only the weights of the network after learning the most
recent task, along with the discounted sum of previous Fisher information
matrices to use when constraining weights. In Progress and Compress, there
are also layer-wise connections between the two systems to encourage the
short-term network to learn using features already learnt by the long-term
network.

The second main strategy for avoiding CF is to amend the training data
to be more representative of previous tasks. This category includes both
rehearsal and pseudo-rehearsal, as these methods add either real or gener-
ated samples to the training dataset. One example of a rehearsal method
in reinforcement learning is PLAID [22]. It uses distillation to merge a net-
work that performs the new task with a network whose policy performs all
previously learnt tasks. Distillation methods have also been applied to Atari
2600 games [23, 24]. However, these were in multi-task learning where CF
is not an issue. The major disadvantage with all rehearsal methods is that
they require either having continuous access to previous environments or
storing a large amount of previous training data. For other recent examples

11

Accepted for publication in Neurocomputing

of rehearsal in reinforcement learning see [25, 26, 27].
To our knowledge, pseudo-rehearsal has only been applied by [28] to se-

quentially learn reinforcement tasks. This was achieved by extending the
Deep Generative Replay algorithm from image classification to reinforcement
learning. Pseudo-rehearsal was combined with a Variational Auto-Encoder
so that two very simple reinforcement tasks could be sequentially learnt by
State Representation Learning without CF occurring. These tasks involved
a 2D world where the agent’s input was a small 64× 3 grid representing the
colour of objects it could see in front of it. The only thing that changed
between tasks was the colour of the objects the agent must collect. This
sequential learning environment is simple compared to the one we use and
thus, there are a number of important differences in our RePR model. Our
complex reinforcement learning tasks are relatively different from one another
and have a large input space. This requires RePR to use deep convolutional
networks, specifically DQNs and GANs, to learn and generate plausible input
items. Furthermore, our model incorporates a dual memory system which
isolates reinforcement learning to the STM system, improving the acquisition
of the new task.

Without an experience replay, CF can occur while learning even a single
task as the network forgets how to act in previously seen states. Pseudo-
rehearsal has also been applied to this problem by rehearsing randomly gener-
ated input items from basic distributions (e.g. uniform distribution) [29, 30],
with a similar idea accomplished in actor-critic networks [31]. However, all
these methods were applied to simple reinforcement tasks and did not utilise
deep generative structures for producing pseudo-items or convolutional net-
work architectures. Since our work, pseudo-rehearsal has been used to over-
come CF in models which have learnt to generate states from previously
seen environments [32, 33]. But in both these cases, pseudo-rehearsal was
not applied to the learning agent to prevent CF.

The model which most closely resembles RePR is the Deep Generative
Dual Memory Network (DGDMN) [34] used in sequential image classifica-
tion. The DGDMN extends Deep Generative Replay by introducing a dual
memory system similar to RePR. The STM system comprises one or more
modules made up of a classifier paired with a generative network (i.e. a
Variational Auto-Encoder). A separate module is used to learn each of the
recent tasks. The LTM system comprises a separate classifier and generative
network. When consolidation occurs, knowledge from the short-term mod-
ules is transferred to the LTM system while the long-term generator is used

12

Accepted for publication in Neurocomputing

to produce pseudo-items for pseudo-rehearsal.
The primary difference between DGDMN and RePR relates to the data

used to teach the new task to the LTM system. The short-term modules in
DGDMN each contain a generative network which learns to produce input
examples representative of the new task. These examples are labelled by their
respective classifier and then taught to the LTM system. However, in RePR,
the STM system does not contain a generative network and instead uses data
from its experience replay to train the LTM system. This experience replay
does not grow in memory as it only contains a limited amount of data from
the most recent task and as this data is more accurate than generated data,
it is more effective in teaching the LTM system the new task. There are also
key differences in the loss functions used for DGDMN and RePR. DGDMN
was developed for sequential image classification and so, it uses the same
cross-entropy loss function for learning new tasks in the STM system as in
the LTM system. However, in RePR the learning process is separated. The
more difficult reinforcement learning (deep Q-learning) is accomplished in
the STM system. This is isolated from the LTM system, which can learn
and retain through supervised learning (i.e. mean squared error).

To our knowledge, a dual memory system has not previously been used
to separate different types of learning in pseudo-rehearsal algorithms. Al-
though a similar dual memory system to RePR was used in Progress and
Compress [21], unlike in RePR, authors of Progress and Compress did not
find conclusive evidence that it assisted sequential reinforcement learning.

In real neuronal circuits it is a matter of debate whether memory is re-
tained through synaptic stability, synaptic plasticity, or a mixture of mech-
anisms [35, 36, 37]. The synaptic stability hypothesis states that memory
is retained through fixing the weights between units that encode it. The
synaptic plasticity hypothesis states that the weights between the units can
change as long as the output units still produce the correct output pattern.
EWC and Progress and Compress are both methods that constrain the net-
work’s weights and therefore, align with the synaptic stability hypothesis.
Pseudo-rehearsal methods amend the training dataset, pressuring the net-
work’s outputs to remain the same, without constraining the weights and
therefore, align with the synaptic plasticity hypothesis. Pseudo-rehearsal
methods have not yet been successfully applied to complex reinforcement
learning tasks. The major advantage of methods that align with the synap-
tic plasticity hypothesis is that, when consolidating new knowledge, they
allow the network to restructure its weights and compress previous repre-

13

Accepted for publication in Neurocomputing

sentations to make room for new ones. This suggests that, in the long run,
pseudo-rehearsal will outperform state-of-the-art weight constraint methods
in reinforcement learning, since it allows neural networks to internally recon-
figure in order to consolidate new knowledge.

In summary, RePR is the first variation of pseudo-rehearsal to be suc-
cessfully applied to continual learning with complex reinforcement tasks.

5. Method

Our current research applies pseudo-rehearsal to deep Q-learning so that a
DQN can be used to learn multiple Atari 2600 games5 in sequence. All agents
select between 18 possible actions representing different combinations of joy-
stick movements and pressing the fire button. Our DQN is based upon [1]
with a few minor changes which we found helped the network to learn the
individual tasks quicker. The specifics of these changes can be found in Ap-
pendix B.1. Our initial experiments aim to comprehensively evaluate RePR
by comparing it to competing methods. In these experiments, conditions are
taught Road Runner, Boxing and James Bond. These were chosen as they
were three conceptually different games in which a DQN outperforms humans
by a wide margin [1]. The tasks were learnt in the order specified above. The
final experiment aims to test the capacity of RePR and analyse whether the
model fails gracefully or catastrophically when pushed beyond its capacity.
In this condition we extend the sequence learnt with the Atari games Pong,
Atlantis and Qbert. Due to the exceptionally long computational time re-
quired for running conditions in this experiment, only RePR and rehearsal
methods were tested with a single seed on this extended sequence. The pro-
cedure for this extended experiment is identical to the procedure described
below for the initial experiments, except for two differences. Firstly, learning
is slowed down by reducing α and doubling the LTM system’s training time.
Secondly, a larger DQN and GAN is used to ensure the initial size of the
networks is large enough to learn some of the extended sequence of tasks6.
Specific details for the extended experiment can be found in Appendix B.5.

5A brief summary of the Atari 2600 games learnt in this paper can be found in Appendix
A.

6Importantly, even when using larger networks, RePR is still pushed beyond its capacity
as the results from this experiment clearly demonstrate forgetting.

14

Accepted for publication in Neurocomputing

Table 1: Details of the experimental conditions.

Condition Description

no-reh
For each new task, the task is learnt in the STM system using deep Q-learning (Equation 1).
The task is then transferred to the LTM system using distillation (Equation 5). This
condition does not attempt to retain previously learnt tasks.

reh

For each new task, the task is learnt in the STM system using deep Q-learning (Equation 1).
The task is then transferred to the LTM system using distillation, while previously learnt
tasks are retained with rehearsal (Equation 4, where the generated items s̃j are replaced with
real items from previous tasks).

RePR

For each new task, the task is learnt in the STM system using deep Q-learning (Equation 1).
The task is then transferred to the long-term DQN using distillation, while previously learnt
tasks are retained with pseudo-rehearsal (Equation 4). The long-term GAN is then taught to
generate data from the new task and previously learnt tasks (Equation 7) using the loss
functions defined in Equation B.1 and Equation B.2 in Appendix B.2.

ewc
For each new task, the task is learnt in the STM system using deep Q-learning (Equation 1).
The task is then transferred to the LTM system using distillation, while previously learnt
tasks are retained with EWC (Equation B.3 in Appendix B.3).

online-ewc
For each new task, the task is learnt in the STM system using deep Q-learning (Equation 1).
The task is then transferred to the LTM system using distillation (Equation 5), while
previously learnt tasks are retained with online-EWC (Equation B.6 in Appendix B.3).

PR

For each new task, the task is learnt in a DQN using deep Q-learning (Equation 1), while
previously learnt tasks are retained with pseudo-rehearsal (Equation 6, where the weights θi
are the same weights ψt used in deep Q-learning). The GAN is then taught to generate data
from the new task and previously learnt tasks (Equation 7) using the loss functions defined in
Equation B.1 and Equation B.2 in Appendix B.2.

DGDMN

For each new task, the task is learnt in the short-term DQN using deep Q-learning
(Equation 1). The short-term GAN is then taught to generate data from the new task using
the loss functions defined in Equation B.1 and Equation B.2 in Appendix B.2. The task is
then transferred to the long-term DQN using distillation with generated items (Equation 5,
where real items sj are replaced with items generated by the short-term GAN), while
previously learnt tasks are retained with pseudo-rehearsal (Equation 6). The long-term GAN
is then taught to generate data from the new task and previously learnt tasks (Equation 7,
where the real items from the new task sj are replaced with generated items from the
short-term GAN) using the same loss functions as the short-term GAN.

reh-limit
This condition is identical to the reh condition above, except that the number of items stored
and used in rehearsal is limited to the number of uncompressed items (i.e. 600) which could
be stored using the same memory allocation size as used by RePR’s generative network.

reh-limit-comp
This condition is identical to the reh condition above, except that the number of items stored
and used in rehearsal is limited to the number of compressed items (i.e. 17000) which could
be stored using the same memory allocation size as used by RePR’s generative network.

reh-extend
This condition is identical to the reh condition above, except the model and its
hyper-parameters are set up to learn the extended task sequence (see Appendix B.5 for more
details).

RePR-extend
This condition is identical to the RePR condition above, except the model and its
hyper-parameters are set up to learn the extended task sequence (see Appendix B.5 for more
details).

reh-extend-policy

This condition is identical to the reh condition above, except the model and its
hyper-parameters are set up to learn the extended task sequence (see Appendix B.5 for more
details). Furthermore, the policy is transferred and retained in the long-term agent, rather
than Q-values.

RePR-extend-policy

This condition is identical to the RePR condition above, except the model and its
hyper-parameters are set up to learn the extended task sequence (see Appendix B.5 for more
details). Furthermore, the policy is transferred and retained in the long-term agent, rather
than Q-values.

15

Accepted for publication in Neurocomputing

The details of the experimental conditions used in this paper can be found
in Table 1.

The architecture of the DQNs is kept consistent across all experimental
conditions that train on the same sequence of tasks. Details of the network
architectures (including the GAN) and training parameters used throughout
the experiments can be found in Appendix B. A hyper-parameter search was
used in conditions that used a variant of EWC. Details of this search can also
be found in this appendix along with other specific implementation details
for these conditions. The online-EWC implementation does not include con-
nections from the LTM system to the STM system which try and encourage
weight sharing when learning the new task. This was not included because
authors of the Progress and Compress method found online-EWC alone was
competitive with the Progress and Compress method (which included these
connections) and it kept the architecture of the agents’ dual memory system
consistent with other conditions.

In some of the conditions listed in Table 1, the policy is transferred and
retained in the long-term agent, rather than Q-values. Transfer is achieved
by giving samples from the current task to the short-term agent and one-
hot encoding the action with the largest associated Q-value. This one-hot
encoding is then taught to the long-term agent using the cross-entropy loss
function. Similarly, when the policy is being retained in RePR’s long-term
agent, generated samples are given to the previous long-term agent and the
softmax values produced are then retained using the cross-entropy loss func-
tion. More specific details on learning and retaining the policy (including
loss functions) can be found in Appendix B.4.

Each game was learnt by the STM system for 20 million frames and then
taught to the LTM system for 20m frames. The only exception was for the
first long-term DQN which had the short-term DQN’s weights copied directly
over to it. This means that our experimental conditions differ only after the
second task (Boxing) was introduced. The GAN had its discriminator and
generator loss function alternatively optimised for 200,000 steps.

When pseudo-rehearsal was applied to the long-term DQN agent or GAN,
pseudo-items were drawn from a temporary array of 250,000 states generated
by the previous GAN. The final weights for the short-term DQN are those
that produce the largest average score over 250,000 observed frames. The
final weights for the long-term DQN are those that produced the lowest
error over 250,000 observed frames. In the initial experiments α = 0.55.
However, we have also tested RePR with α = 0.35 and α = 0.75, both of

16

Accepted for publication in Neurocomputing

which produced very similar results, with the final agent performing at least
equivalently to the original DQN’s results [1] for all tasks.

Our evaluation procedure is similar to [1] in that our network plays each
task for 30 episodes and an episode terminates when all lives are lost. Ac-
tions are selected from the network using an ε-greedy policy with ε = 0.05.
Final network results are also reported using this procedure and standard
deviations are calculated over these 30 episodes. Unless stated otherwise,
each condition is trained three times using the same set of seeds between
conditions and all reported results are averaged across these seeds.

6. Results

6.1. RePR Performance on CF

The first experiment investigates how well RePR compares to a lower and
upper baseline. The no-reh condition is the lower baseline because it does
not contain a component to assist in retaining the previously learnt tasks.
The reh condition is the upper baseline for RePR because it rehearses real
items from previously learnt tasks and thus, demonstrates how RePR would
perform if its GAN could perfectly generate states from previous tasks to
rehearse alongside learning the new task7.

The results of RePR can be found in Fig. 3, alongside other conditions’
results. All of the mentioned conditions outperform the no-reh condition
which severely forgets previous tasks. RePR was found to perform very
closely to the reh condition, besides a slight degradation of performance on
Road Runner, which was likely due to the GAN performing pseudo-rehearsal
to retain states representative of Road Runner. These results suggest that
RePR can prevent CF without any need for extra task specific parameters
or directly storing examples from previously learnt tasks.

We also investigated whether a similar set of weights are important to the
RePR agent’s output on all of the learnt tasks or whether the network learns
the tasks by dedicating certain weights as important to each individual task.
When observing the overlap in the network’s Fisher information matrices for
each of the games (see Appendix C for implementation details and specific
results), we found that the network did share weights between tasks, with

7The reh condition is not doing typical rehearsal although the difference is subtle. It
relearns previous tasks using targets produced by the previous network (as in RePR),
rather than targets on which the original long-term DQN was taught.

17

Accepted for publication in Neurocomputing

0 10 20 30 40 50 60

Number of training frames seen across all games (millions)

0

5000

10000

15000

20000

25000

30000

35000

T
e
st

 s
co

re

Road Runner test scores during training
shared

no-reh

reh

RePR

ewc

online-ewc

PR

DGDMN

reh-limit

reh-limit-comp

0 10 20 30 40 50 60

Number of training frames seen across all games (millions)

100

50

0

50

100

T
e
st

 s
co

re

Boxing test scores during training
no-reh

reh

RePR

ewc

online-ewc

PR

DGDMN

reh-limit

reh-limit-comp

0 10 20 30 40 50 60

Number of training frames seen across all games (millions)

0

100

200

300

400

500

600

700

800

T
e
st

 s
co

re

James Bond test scores during training
no-reh

reh

RePR

ewc

online-ewc

PR

DGDMN

reh-limit

reh-limit-comp

Figure 3: Results of our RePR model compared to the no-reh, reh, ewc, online-ewc, PR,
DGDMN , reh-limit and reh-limit-comp conditions. After every 1 million observable
training frames, the long-term agent is evaluated on the current task and all previously
learnt tasks. Task switches occur at the dashed lines, in the order Road Runner, Boxing
and then James Bond.

18

Accepted for publication in Neurocomputing

Real Images Generated Images

Figure 4: Images drawn from previous tasks’ experience replays (real) and images gener-
ated from a GAN sequentially taught to produce sequences from Road Runner, Boxing
and then James Bond. Images shown are the first image of each four frame sequence.
Each row contains images from one of the three tasks.

similar tasks sharing a larger proportion of important weights. Overall, these
positive results show that RePR is a useful strategy for overcoming CF.

6.2. Quality of Generated Items

In RePR, all pseudo-items generated by the GAN are used in pseudo-
rehearsal. Furthermore, we have found that balancing the proportion of new
items and pseudo-items by the number of tasks learnt (with Equation 7) is
sufficient to ensure the GAN generates items evenly from each of the tasks.
Fig. 4 shows some GAN generated images after learning all three tasks, along-
side real images from the games. This figure shows that although the GAN is
successful at generating images similar to the previous games there are clear
visual differences between them.

A further experiment was conducted to analytically assess the quality
of pseudo-items. This experiment uses three networks. The first is a DQN
trained on a task (or sequence of tasks) and is the teacher network. The
second is a GAN trained on the same task/s as the first network. The final
network is a freshly initialised DQN and is the student network. The student

19

Accepted for publication in Neurocomputing

Table 2: Final long-term network scores (and standard deviations) attained after training
a student DQN using either real or generated items. Results are collected using a single
consistent seed with the average scores and standard deviations calculated by testing the
final network on 30 episodes.

Condition Road Runner Boxing James Bond
real road 27133 (±5772)
gan road 15343 (±5885)
real boxing 84 (±17)
gan boxing 70 (±21)
real james 482 (±139)
gan james 247 (±98)
real 3T 23660 (±5112) 79 (±20) 342 (±178)
gan 3T 747 (±739) −6 (±12) 142 (±100)

network is taught how to play the task/s by the teacher network (using the
distillation loss function in Equation 5). The data used to teach the task/s
is either real items from the task/s (real) or pseudo-items generated by the
GAN (gan). Therefore, the score which the student network can attain,
after training with real or generated data, reflects the quality of the training
data. The student network was either taught to play one of the games: Road
Runner (road), Boxing (boxing) or James Bond (james), or taught to play
all three of these games at once (3T).

Table 2 shows a clear difference between the quality of real and generated
items. When learning a single task with items generated by the GAN, the
student network cannot learn the task to the same score as it can with real
items. When the GAN has been taught multiple tasks, the gan 3T condition
shows that the quality of generated items is severely lower than real items
and cannot be used to learn all three tasks to a reasonable standard. This
can be considered a positive result for RePR as it demonstrates that pseudo-
items can still be used to effectively prevent CF even when the pseudo-items
are considerably poorer quality than real items.

6.3. RePR Versus EWC

We further investigate the effectiveness of RePR by comparing its perfor-
mance to the leading EWC variants. The results of both the EWC conditions
are also included in Fig. 3. These results clearly show that RePR outperforms
both EWC and online-EWC under these conditions. We find that EWC re-
tains past experiences better than online-EWC and due to this, online-EWC
was more effective at learning the new task.

20

Accepted for publication in Neurocomputing

The poor results displayed by the EWC variants contrast substantially
from those originally reported by authors [3, 21]. This can be explained by
the differences in our training scheme. More specifically, we do not allow
tasks to be revisited, whereas both EWC and Progress and Compress visited
tasks several times. Furthermore, we do not allow the networks we tested
to grow in capacity when a new task is learnt, whereas the training scheme
in [3] allowed EWC to have two task specific weights per neuron. Finally, the
networks we have tested so far are retaining Q-values in their LTM system,
whereas Progress and Compress [21] retained only the policy of an Actor-
Critic network in its LTM system.

In Appendix B.3, we test RePR and the EWC variants on a different
training scheme where only the policy is retained in the LTM system and
the total training time of the LTM system is reduced so that tasks need only
to be retained for a shorter period of time. Under this different training
scheme, the EWC variants perform comparatively to RePR and thus, the
training scheme less comprehensively explores the capabilities of the models.

6.4. Further Evaluating RePR

In this section, RePR is further evaluated through a number of condi-
tions. Firstly, the PR condition represents an ablation study investigating
the importance of the dual memory system. Consequently, the PR condition
is identical to the RePR condition without a dual memory system. In Fig. 3,
the PR condition demonstrates poorer results compared to the RePR con-
dition along with slower convergence times for learning the new task. This
shows that combining pseudo-rehearsal with a dual memory model, as we
have done in RePR, is beneficial for learning the new task.

The DGDMN condition represents an implementation of the DGDMN.
This network was proposed for sequential image classification and therefore,
significant changes were necessary to allow the model to learn reinforcement
tasks. These changes made our DGDMN implementation similar to RePR,
except for the presence of a separate GAN in the STM system which DGDMN
teaches to generate data representative of the new task. This GAN gener-
ates the data used to train the LTM system on the new task. The DGDMN
condition also demonstrates poorer results compared to the RePR condi-
tion. The most evident difference between these conditions was DGDMN’s
inability to completely transfer new tasks to its long-term DQN using items
generated by its STM system. More specifically, the DGDMN’s long-term
DQN could learn the new tasks Boxing and James Bond to approximately

21

Accepted for publication in Neurocomputing

Table 3: Final long-term network scores for each of the conditions, along with their storage
requirements. The final three rows contain the scores which the same DQN can attain
after training solely on the specified task. Results are collected using three consistent seeds
with the average scores and standard deviations calculated by testing each of the seed’s
final networks on 30 episodes.

Condition Final network’s average score (std) Memory space*
Road Runner Boxing James Bond

no-reh 0 (±0) −13 (±9) 619 (±165) 0.007 GB
reh 26486 (±6245) 85 (±10) 548 (±156) 7.063 GB
RePR 22042 (±5375) 82 (±12) 468 (±155) 0.023 GB
ewc 581 (±525) −2 (±10) 162 (±97) 0.042 GB

online-ewc 130 (±159) −10 (±10) 381 (±165) 0.014 GB
PR 21804 (±6042) 33 (±17) 342 (±99) 0.023 GB

DGDMN 22841 (±4211) 36 (±24) 184 (±108) 0.023 GB
reh-limit 151 (±329) 29 (±26) 598 (±246) 0.024 GB

reh-limit-comp 16348 (±6980) 80 (±14) 511 (±178) 0.024 GB
Road Runner 29463 (±7864) n/a

Boxing 88 (±8) n/a
James Bond 645 (±161) n/a

*Memory allocation size required for long-term storage.

half the performance of RePR. To be consistent with the other conditions
tested, the STM system’s networks were copied to the LTM system after
learning the first task. Because of this, the LTM system learnt the first task
with real data (not data generated from the short-term GAN) and thus, did
not struggle to learn the first task Road Runner.

The memory efficiency of RePR is investigated with the reh-limit and
reh-limit-comp conditions. These conditions only store a small number of
either uncompressed or compressed real items for rehearsal, limited by the
memory allocation size of RePR’s generative network. The reh-limit condi-
tion shows substantially more forgetting compared to RePR. On Road Run-
ner, the reh-limit condition quickly forgets everything it has learnt about the
task and thus, performs similarly to the no-reh condition, which makes no ef-
fort to retain the task. On Boxing, forgetting causes the reh-limit condition
to retain roughly half of its performance on the task. The reh-limit-comp
condition only displays forgetting on Road Runner, where, compared to
RePR, the condition retains noticeably less knowledge of Road Runner through-
out the learning sequence.

The scores for the final long-term networks8 in each of the conditions are

8For the PR condition, as no dual memory system is used, we refer to the DQN which

22

Accepted for publication in Neurocomputing

shown in Table 3 along with the long-term storage space required by the
models to be able to continue learning. Additionally, the table includes the
scores which can be attained by training three DQNs individually on each
of the tasks. Similar to previous results, this table shows that the reh and
RePR conditions are the most successful at learning and retaining this se-
quence of tasks, with reh achieving on average 90% of the scores that could
be attained from individually learning the tasks and RePR achieving 80%.
The scores attained by RePR are found to be well above human expert per-
formance levels (7845, 4, 407) [1]. The table also shows that the long-term
memory allocation used by the RePR condition was smaller than the reh
condition by orders of magnitude9. Although, we did not attempt to optimise
this size for either of the conditions, the reh-limit and reh-limit-comp con-
ditions show that RePR outperforms rehearsal when rehearsal is constrained
to approximately the same memory size as the RePR condition.

Finally, Fig. 5 displays the results for the final experiment which compares
RePR to rehearsal in the extended sequence of Atari 2600 tasks. Overall, the
reh-extend, reh-extend-policy and RePR-extend-policy conditions retained
considerable knowledge of previous tasks, with reh-extend-policy retaining
noticeably more knowledge of Road Runner. The RePR-extend condition
underperformed compared to the other conditions, showing mainly a gradual
decline in performance of previously learnt tasks.

7. Discussion

Our experiments have demonstrated RePR to be an effective solution to
CF when sequentially learning multiple tasks. To our knowledge, pseudo-
rehearsal has not been used until now to successfully prevent CF on complex
reinforcement learning tasks. RePR has advantages over popular weight con-
straint methods, such as EWC, because it does not constrain the network to
retain similar weights when learning a new task. This allows the internal lay-
ers of the network to change according to new knowledge, giving the model
the freedom to restructure itself when incorporating new information. Exper-
imentally, we have verified that RePR does outperform these state-of-the-art
EWC methods on a sequential learning task.

learns new tasks while retaining previous tasks as the final long-term network.
9When the reh condition is storing compressed items, the size of its long-term memory

allocation is still an order of magnitude greater than RePR at approximately 0.250 GB.

23

Accepted for publication in Neurocomputing

0 50 100 150 200

Number of training frames seen across all games (millions)

0

5000

10000

15000

20000

25000

30000

35000

T
e
st

 s
co

re

Road Runner test scores during training

shared

shared-policy

reh-extend

RePR-extend

reh-extend-policy

RePR-extend-policy

0 50 100 150 200

Number of training frames seen across all games (millions)

100

50

0

50

100

T
e
st

 s
co

re

Boxing test scores during training

reh-extend

RePR-extend

reh-extend-policy

RePR-extend-policy

0 50 100 150 200

Number of training frames seen across all games (millions)

0

200

400

600

800

T
e
st

 s
co

re

James Bond test scores during training

reh-extend

RePR-extend

reh-extend-policy

RePR-extend-policy

0 50 100 150 200

Number of training frames seen across all games (millions)

20

10

0

10

20

T
e
st

 s
co

re

Pong test scores during training

reh-extend

RePR-extend

reh-extend-policy

RePR-extend-policy

0 50 100 150 200

Number of training frames seen across all games (millions)

0

10000

20000

30000

40000

50000

60000

70000

80000

T
e
st

 s
co

re

Atlantis test scores during training

reh-extend

RePR-extend

reh-extend-policy

RePR-extend-policy

0 50 100 150 200

Number of training frames seen across all games (millions)

0

2000

4000

6000

8000

10000

T
e
st

 s
co

re

Qbert test scores during training

reh-extend

RePR-extend

reh-extend-policy

RePR-extend-policy

Figure 5: Results of the reh-extend, RePR-extend, reh-extend-policy and
RePR-extend-policy conditions on an extended sequence of tasks. After every 1 mil-
lion observable training frames, the long-term agent is evaluated on the current task and
all previously learnt tasks. Task switches occur at the dashed lines, in the order Road
Runner, Boxing, James Bond, Pong, Atlantis and then Qbert. Results were produced
using a single seed.

24

Accepted for publication in Neurocomputing

7.1. Dual Memory
The PR condition omits using the dual memory system to analyse the sys-

tem’s importance. This results in the condition trying to learn non-stationary
target Q-values (for the new task) through reinforcement learning, while also
retaining previous tasks through pseudo-rehearsal. The results for the PR
condition showed that convergence times were longer and the final perfor-
mance reached was lower on new tasks compared to RePR. Therefore, this
demonstrates that omitting the dual memory system increases the interfer-
ence between new knowledge and knowledge of previous tasks. In Appendix
D the extent of this interference is explored and it is found that to learn
Boxing to a similar standard to RePR, while also omitting the dual mem-
ory system, the deep Q-learning loss function must be weighted substantially
higher than the pseudo-rehearsal loss function, such that the model consid-
erably suffers from CF. Overall, these results are strong evidence that the
dual memory system is beneficial in sequential reinforcement learning tasks.
This is particularly interesting because the authors of Progress and Com-
press [21] did not find clear evidence that their algorithm benefited from a
similar dual memory system in their experimental conditions and addition-
ally, the dual memory system in RePR showed more substantial benefits than
the dual memory system used by DGDMN in image classification with the
same number of tasks [34].

Our results show that the dual memory system used by DGDMN per-
forms substantially worse than RePR in reinforcement learning. This is be-
cause DGDMN relies on short-term generative networks to provide the data
to teach the LTM system. When these tasks are difficult for the generative
network to learn, this data is not accurate enough to effectively teach new
tasks to the LTM system. Although this was not an issue for the DGDMN
in image classification [34], in Section 6.2 we show that, in these complex
reinforcement tasks, the GAN does struggle such that it is much more effec-
tive to teach a new task to a freshly initialised DQN using real data than
generated data. However, our results also show that generated items that are
not of high enough quality for STM to LTM transfer, can be used effectively
in pseudo-rehearsal.

To overcome the limited quality of generative items, RePR’s dual memory
system assumes real data from the most recent task can be retained in an
experience replay so that it can be used to successfully teach the LTM system.
We do not believe this assumption is unrealistic because the experience replay
is a temporary buffer, with a fixed size, and once the most recent task has

25

Accepted for publication in Neurocomputing

been consolidated into LTM, it is cleared to make room for data from the
next task.

7.2. Scalability

One main advantage of RePR compared to many other continual learn-
ing algorithms is that it is very scalable. Applying pseudo-rehearsal to both
the agent and generative model means that the network does not need to
use any task specific weights to accomplish continual learning and thus, the
model’s memory requirements do not grow as the number of tasks increases.
RePR’s generative network also means that it does not retain knowledge by
storing raw data from previous tasks. This is advantageous in situations
where storing raw data is not allowed because of e.g. privacy reasons, biolog-
ical plausibility, etc. Furthermore, results show RePR outperforms rehearsal
when the number of rehearsal items are limited by the storage space required
for RePR’s generative network (reh-limit and reh-limit-comp). Therefore,
RePR can also prevent CF more effectively than rehearsal when memory is
limited.

In theory, RePR could be used to learn any number of tasks as long as
the agent’s network (e.g. DQN) and GAN have the capacity to successfully
learn the collection and generate states that are representative of previously
learnt tasks. However, in practice the capacity of RePR’s components could
be exceeded and we explored how this affects RePR by investigating it on
an extended sequence of tasks. In this test, RePR demonstrated a modest
amount of forgetting when required to retain only the policy in its LTM sys-
tem. However, when RePR is required to retain Q-values in its LTM system,
it shows substantial forgetting compared to rehearsal. In this case, RePR’s
forgetting was generally gradual, such that learning the new tasks only dis-
rupts retention after millions of training frames. However, the reh-extend
condition does not notably suffer from this gradual forgetting. The only dif-
ference between these conditions is that the reh-extend condition uses real
items to rehearse previous tasks. This is important as it identifies that it is
the GAN which is struggling to learn the extended sequence of tasks, result-
ing in the observed forgetting. Therefore, future research improving GANs’
capacity and stability (vanishing gradients and mode collapse [38]) will di-
rectly improve RePR’s ability to prevent CF in these challenging conditions.

26

Accepted for publication in Neurocomputing

7.3. Limitations and Future Research
One limitation of rehearsal methods (including RePR) is that they be-

come infeasible when the number of tasks goes to infinity. This is because
the items rehearsed in each training iteration will only cover a very small se-
lection of previously seen tasks. However, research in sweep rehearsal [39, 8]
shows that rehearsal methods can still be beneficial when rehearsing a com-
parably small number of items per task, suggesting that this limitation will
only become severe in long task sequences. Another limitation of our model
is that it currently assumes the agent knows when a task switch occurs.
However, in some use cases this might not be true and thus, a task detection
method would need to be combined with RePR.

In these experiments we use the same task sequence for all conditions
which could bias the results either positively or negatively. However, there is
work [40] which suggests that for a given set of tasks, the mean performance
of the final model is not affected by the order in which those tasks are learnt.

Currently, our RePR model has been designed to prevent the CF that
occurs while learning a sequence of tasks, without using real data. However,
our implementation still stores a limited amount of real data from the current
task in an experience replay. This data is used to prevent the CF that occurs
while learning a single task. We believe this was acceptable as our goal in
this research was to prevent the CF that occurs from sequential task learning
(without using real data) and consequently, this real data was never used to
prevent this form of CF. In future work we wish to extend our model by
further modifying pseudo-rehearsal so that it can also prevent the CF that
occurs while learning a single reinforcement task.

In this paper, we chose to apply our RePR model to DQNs. However, this
can be easily extended to other state-of-the-art deep reinforcement learning
algorithms, such as actor-critic networks, by adding a similar constraint to
the loss function. We chose DQNs for this research because their Q-values
contain both policy and value information whereas Actor-Critics produce
policy and value information separately. Although our research suggests that
it is easier for the LTM system to retain solely the policy, the policy does not
contain information about the expected discounted rewards (i.e. the value)
associated with each state which is necessary to continue learning an already
seen task. Future research could investigate whether the expected discounted
rewards can be quickly relearnt with access to the retained policy, or whether
it should also be retained by the LTM system to continue reinforcement
learning without disruption.

27

Accepted for publication in Neurocomputing

8. Conclusion

In conclusion, pseudo-rehearsal can be used with deep reinforcement
learning methods to achieve continual learning. We have shown that our
RePR model can be used to sequentially learn a number of complex reinforce-
ment tasks, without scaling in complexity as the number of tasks increases
and without revisiting or storing raw data from past tasks. Pseudo-rehearsal
has major benefits over weight constraint methods as it is less restrictive on
the network and this is supported by our experimental evidence. We also
found compelling evidence that the addition of our dual memory system is
necessary for continual reinforcement learning to be effective. As the power
of generative models increases, it will have a direct impact on what can be
achieved with RePR and our goal of having an agent which can continuously
learn in its environment, without being challenged by CF.

Appendix A. Details on the Atari 2600 Games

Road Runner is a game where the agent must outrun another character
by moving toward the left of the screen while collecting items and avoiding
obstacles. To achieve high performance the agent must also learn to lead
its opponent into certain obstacles to slow it down. Boxing is a game where
the agent must learn to move its character around a 2D boxing ring and
throw punches aimed at the face of the opponent to score points, while also
avoiding taking punches to the face. James Bond has the agent learn to
control a vehicle, while avoiding obstacles and shooting various objects. In
Pong, the agent learns to hit a ball back to its opponent by moving a paddle.
A point is scored by the agent when the opponent does not successfully
hit the ball back and the opponent scores a point when the agent does not
successfully hit back the ball. For Atlantis, the agent learns to control three
stationary cannons and must shoot down enemy ships moving horizontally
across the sky. After a ship passes 4 times it will take out one of the city’s
bases, starting with the central cannon. The agent scores points for shooting
down ships and loses once all bases have been destroyed. Finally, in Qbert the
agent learns to control a character which jumps diagonally around a pyramid
of cubes, changing the cubes’ colours. Once all the cubes have been changed
to a particular colour the level is cleared. In this game, the agent must also
learn to avoid various enemies.

28

Accepted for publication in Neurocomputing

Table B.4: DQN hyper-parameters.

Hyper-parameter Value Description

mini-batch size 32
Number of examples drawn for calculating the stochastic gradient
descent update.

replay memory size 200,000
Number of frames in experience replay which samples from the
current game are drawn from.

history length 4 Number of recent frames given to the agent as an input sequence.

target network update frequency 5,000
Number of frames which are observed from the environment before
the target network is updated.

discount factor 0.99 Discount factor (γ) for each future reward.

action repeat 4
Number of times the agent’s selected action is repeated before
another frame is observed.

update frequency 4
Frequency of observed frames which updates to the current network
occur on.

learning rate 0.00025 Learning rate used by Tensorflow’s RMSProp optimiser.

momentum 0.0 Momentum used by Tensorflow’s RMSProp optimiser.

decay 0.99 Decay used by Tensorflow’s RMSProp optimiser.

epsilon 1e−61e−61e−6 Epsilon used by Tensorflow’s RMSProp optimiser.

initial exploration 1.0 Initial ε-greedy exploration rate.

final exploration 0.1 Final ε-greedy exploration rate.

final exploration frame 1,000,000
Number of frames seen by the agent before the linear decay of the
exploration rate reaches its final value.

replay start size 50,000
The number of frames which the experience replay is initially filled
with (using a uniform random policy).

no-op max 30
Maximum number of “do nothing” actions performed at the start of
an episode (U [1, no-op max]).

Appendix B. Further Implementation Details

Appendix B.1. DQN

The main difference between our DQN and [1] is that we used Ten-
sorFlow’s RMSProp optimiser (without centering) with global norm gra-
dient clipping compared to the original paper’s RMSProp optimiser which
clipped gradients between [−1, 1]. Our network architecture remained the
same. However, our biases were set to 0.01 and weights were initialised with
N (0, 0.01), where all values that were more than two standard deviations
from the mean were re-drawn. The remaining changes were to the hyper-
parameters of the learning algorithm which can be seen in bold in Table B.4.
The architecture of our network can be found in Table B.5, where all layers
use the ReLU activation function except the last linear layer.

29

Accepted for publication in Neurocomputing

Table B.5: DQN architecture used in all experiments except the extended task sequence
experiment, where CONV is a convolutional layer and FC is a fully connected layer.

DQN
Input: 4 × 84 × 84

layer # units/filters filter shape filter stride
CONV 32 8 × 8 4 × 4
CONV 64 4 × 4 2 × 2
CONV 64 3 × 3 1 × 1

FC 512
FC 18

Appendix B.2. GAN

The GAN is trained with the WGAN-GP loss function [15] with a drift
term [16]. The drift term is applied to the discriminator’s output for real and
fake inputs, stopping the output from drifting too far away from zero. More
specifically, the loss functions used for updating the discriminator (Ldisc) and
generator (Lgen) are:

Ldisc = D(x̃;φ)−D(x;φ) + λ(‖∇x̂D(x̂;φ)‖2 − 1)2

+εdriftD(x;φ)2 + εdriftD(x̃;φ)2,
(B.1)

Lgen = −D(x̃;φ), (B.2)

where D and G are the discriminator and generator networks with the pa-
rameters φ and ϕ. x is an input item drawn from either the current task’s
experience replay or the previous long-term GAN (as specified in Equation 7).
x̃ is an item produced by the current generative model (x̃ = G(z;ϕ)) and
x̂ = εx + (1 − ε)x̃. ε is a random number ε ∼ U(0, 1), z is an array of la-
tent variables z = U(−1, 1), λ = 10 and εdrift = 1e−6. The discriminator
and generator networks’ weights are updated on alternating steps using their
corresponding loss function.

The GAN is trained with the Adam optimiser (α = 0.001, β1 = 0.0,
β2 = 0.99 and ε = 1e−8 as per [16]) where the networks are trained with
a mini-batch size of 100. The architecture of the networks is illustrated in
Table B.6. All layers of the discriminator use the Leaky ReLU activation
function (with the leakage value set to 0.2), except the last linear layer.
All layers of the generator use batch normalisation (momentum = 0.9 and
ε = 1e−5) and the ReLU activation function, except the last layer which has
no batch normalisation and uses the Tanh activation function. This is to

30

Accepted for publication in Neurocomputing

Table B.6: GAN architecture used in all experiments except the extended task sequence
experiment, where FC is a fully connected layer, DECONV is a deconvolutional layer and
CONV is a convolutional layer.

Generator Discriminator
Input: 100 latent variables Input: 4 × 84 × 84

layer # units/filters filter shape filter stride layer # units/filters filter shape filter stride
FC 256 × 7 × 7 CONV 64 5 × 5 3 × 3

DECONV 256 5 × 5 3 × 3 CONV 128 5 × 5 2 × 2
DECONV 128 5 × 5 2 × 2 CONV 256 5 × 5 2 × 2
DECONV 64 5 × 5 2 × 2 FC 1
DECONV 4 5 × 5 1 × 1

make the generated images’ output space the same as the real images which
are rescaled between −1 and 1 by applying f(x) = 2(x

255
− 0.5) to each raw

pixel value. We also decreased the convergence time of our GAN by applying
random noise U(−10, 10) to real and generated images before rescaling and
giving them to the discriminator.

Appendix B.3. EWC

The EWC constraint is implemented as per [3], where the loss function
is amended so that:

LLTM EWC =
1

N

N∑
j=1

LDj +
λ

2
LEWC , (B.3)

LEWC =
∑
i

Fi(θi − θ∗i)2, (B.4)

where LD is the distillation loss for learning the current task (as specified in
Equation 5) and N is the batch-size. λ is a scaling factor determining how
much importance the constraint should be given, θ is the current long-term
network’s parameters, θ∗ is the final long-term network’s parameters after
learning the previous task and i iterates over each of the parameters in the
network. Fi is an approximation of the diagonal elements in a Fisher informa-
tion matrix, where each element represents the importance each parameter
has on the output of the network.

The Fisher information matrix is calculated as in [3], by approximating
the posterior as a Gaussian distribution with the mean given by the optimal

31

Accepted for publication in Neurocomputing

parameters after learning a previous task θ∗i and a standard deviation β = 1.
More specifically, the calculation follows [41]:

F = β2Es∼U(D)[J
T
y Jy], (B.5)

where an expectation is calculated by uniformly drawing states from the
experience replay (s ∼ U(D)). Jy is the Jacobian matrix ∂y

∂θ
for the output

layer y.
When the standard EWC implementation is extended to a third task, a

separate penalty is added. This means the current parameters of the network
are constrained to be similar to both the parameters after learning the first
task and the parameters after further learning the second task.

Online-EWC further extends EWC so that only the previous network’s
parameters and a single Fisher information matrix is stored. As per [21], this
results in the LEWC constraint being replaced by:

LOEWC =
∑
i

F ∗
i (θi − θ∗i,t−1)2, (B.6)

where the single Fisher information matrix F ∗ is updated by:

F ∗ = γF ∗
t−1 + Ft, (B.7)

where γ < 1 is a discount parameter and t represents the index of the current
task. In online-EWC, Fisher information matrices are normalised using min-
max normalisation so that the tasks’ different reward scales do not affect the
relative importance of parameters between tasks.

For the ewc condition, we applied a grid search over λ = [50, 100, 150, 200,
250,300, 350, 400] and for our online-ewc condition we performed a grid
search over λ = [25,75, 125, 175] and γ = [0.95,0.99]. The best parameters
found during the grid searches are in bold. In all conditions, the Fisher
information matrix is calculated by sampling 100 batches from each task.
The final network’s test scores for each of the tasks were min-max normalised
and the network with the best average score was selected. The minimum and
maximum is found across all testing episodes played during the learning of
the task in the STM system.

An additional experiment was run to confirm our EWC variants could suc-
cessfully retain previous task knowledge under a different training scheme.
In these conditions, the LTM system retained the agent’s policy (taught by

32

Accepted for publication in Neurocomputing

minimising the cross-entropy) and new tasks were learnt in the LTM sys-
tem for 5m frames each. Fig. B.6 displays results for the EWC, online-EWC
and RePR implementations tested under these conditions (ewc-policy-short,
online-ewc-policy-short and RePR-policy-short respectively). All condi-
tions performed similarly and could successfully learn new tasks while re-
taining knowledge of previous tasks.

Appendix B.4. Transferring and Retaining the Policy in the LTM System

Firstly, the policy is extracted from the short-term DQN by giving sam-
ples from the current task to the DQN and calculating the Q-values it has
learnt to associate with those samples. For each sample, the action with
the largest Q-value is then one-hot encoded. After this policy has been ex-
tracted, distillation is used to transfer it to the long-term agent, using the
loss function:

LD policyj = CE(π(sj; θi), h(Q(sj;ψi))), (B.8)

where sj is a state drawn from the current task’s experience replay. π is
the long-term agent which has a softmax output layer and Q is the short-
term DQN agent which has a linear output layer. θi is the long-term agent’s
weights on the current task and ψi is the short-term agent’s weights after
learning the current task. CE is the standard cross-entropy loss function
and h(q) is a function that one-hot encodes q.

For EWC variants, the long-term agent retains the policy through the
same methods it retains Q-values (i.e. using a weight constraint). However,
in rehearsal based methods (including RePR) it is necessary to adapt the re-
tention loss function to use cross-entropy. More specifically, the loss function
for RePR is changed to:

LPR policyj = CE(π(s̃j; θi), π(s̃j; θi−1)), (B.9)

where pseudo-items’ inputs s̃j are generated from a GAN and are representa-
tive of states in previously learnt games. θi−1 is the long-term agent’s weights
after learning the previous task.

Appendix B.5. Extended Task Sequence Experiment

The experiment investigating RePR with an extended task sequence is
nearly identical to the first experiment’s details from the main text. One of
the main differences is that learning is slowed down by initially setting α to
0.05 and after learning the fourth task reducing this to 0.01. Consequently,

33

Accepted for publication in Neurocomputing

0 2 4 6 8 10 12 14

Number of training frames seen across all games (millions)

0

5000

10000

15000

20000

25000

30000

35000

T
e
st

 s
co

re

Road Runner test scores during training
shared

ewc-policy-short

online-ewc-policy-short

RePR-policy-short

0 2 4 6 8 10 12 14

Number of training frames seen across all games (millions)

100

50

0

50

100

T
e
st

 s
co

re

Boxing test scores during training
ewc-policy-short

online-ewc-policy-short

RePR-policy-short

0 2 4 6 8 10 12 14

Number of training frames seen across all games (millions)

0

100

200

300

400

500

600

700

T
e
st

 s
co

re

James Bond test scores during training
ewc-policy-short

online-ewc-policy-short

RePR-policy-short

Figure B.6: Results of our EWC, online-EWC and RePR implementations tested under a
different training scheme. After every 1 million observable training frames, the long-term
agent is evaluated on the current task and all previously learnt tasks. Task switches occur
at the dashed lines, in the order Road Runner, Boxing and then James Bond. Results
were produced using a single seed.

34

Accepted for publication in Neurocomputing

training time is increased to 40m frames for the long-term DQN. Secondly,
both the DQN and generative networks are enlarged by doubling the number
of filters and units in hidden layers. More specifically, the convolutional
layers in the DQN use 64, 128 and 128 filters respectively and then the fully
connected layer (before the output layer) uses 1024 units. For the GAN, the
generative network is enlarged by increasing the first fully connected layer to
512× 7× 7 units and increasing the following three deconvolutional layers so
that they use 512, 256 and 128 filters respectively. The training time for the
GAN is also increased to 400,000 steps.

The reh-extend and RePR-extend conditions learn the extended se-
quence of tasks with either rehearsal or RePR. In these conditions we stan-
dardise the short-term DQN’s Q-values when they are being taught to the
long-term DQN. This was beneficial because it reduced the interference be-
tween the games’ substantially different reward functions and thus, evened
out the importance of retaining each of the games. In the reh-extend-policy
and RePR-extend-policy conditions only the policy was retained in the LTM
system. This was achieved by using cross-entropy to learn and retain each
game’s policy, as described above.

Appendix C. How well does RePR Share Weights?

To investigate whether an agent’s DQN uses similar parameters for deter-
mining its output across multiple tasks, [3] suggest that the degree of overlap
between two tasks’ Fisher information matrices can be analysed. This Fisher
overlap score is bounded between 0 and 1, where a high score represents high
overlap and indicates that many of the weights that are important for cal-
culating the desired action in one task are also important in the other task.
More specifically, the Fisher overlap is calculated by 1− d2, where:

d2(F̂1, F̂2) =
1

2
tr
(
F̂1 + F̂2 − 2(F̂1F̂2)

1
2

)
, (C.1)

given F̂1 and F̂2 are the two tasks’ Fisher information matrices which have
been normalised so that they each have a unit trace. Fisher information
matrices are approximated by Equation B.5 using 100 batches of samples
drawn from each tasks’ experience replay.

We compared RePR’s Fisher information matrices for each task using
the Fisher overlap calculation. When RePR had learnt the tasks in the order
Road Runner, Boxing and then James Bond (as in the RePR condition from

35

Accepted for publication in Neurocomputing

Table C.7: Fisher overlap scores between task pairs.

Condition Road Runner & Boxing Road Runner & James Bond Boxing & James Bond
RePR 0.691 0.233 0.198

RePR-rev 0.753 0.192 0.110

Section 6.1), the Fisher overlap score was high between the first two tasks
learnt but relatively low between other task pairs. This suggests that there
are more similarities between Road Runner and Boxing than other task pairs.
We confirm this by calculating the Fisher overlap for each of the task pairs
when the RePR model had successfully learnt the tasks in the reverse order
(ie. James Bond, Boxing and then Road Runner). In this case, a higher
overlap value remains between Road Runner and Boxing, regardless of the
order they were learnt in. This demonstrates that the network attempts to
share the computation across a similar set of important weights, where the
more similar the tasks are the more effective they are at sharing weights.
The precise Fisher overlap values for both of these conditions can be found
in Table C.7.

Appendix D. Evaluating the Importance of Dual Memory

To further evaluate the importance of the dual memory system, the PR
andRePR conditions from the main text are trained with varying importance
values (α) on the sequence Road Runner, then Boxing. The PR condition
does not use a dual memory system and thus, its α value weights the impor-
tance of learning new tasks with deep Q-learning (Equation 1) vs. retaining
previous tasks with pseudo-rehearsal (Equation 6). The RePR condition
has a dual memory system and thus, its α value weights the importance of
learning new tasks with distillation (Equation 5) vs. retaining previous tasks
with pseudo-rehearsal (Equation 6). The aim of this experiment was to in-
vestigate the extent to which omitting the dual memory system increases the
interference between new knowledge and knowledge of old tasks. This was
investigated by finding the α value the PR condition needed to learn Boxing
to the same standard as RePR (i.e. to an approximate score of 80) and what
effect these varying α values had on the two models’ retention.

The results in Table D.8 show that without a dual memory system, α
must be extremely high (α = 0.95) for the model to successfully learn Box-
ing to a similar standard as RePR. However, both models show that high α

36

Accepted for publication in Neurocomputing

Table D.8: Final long-term network scores (and standard deviations) for the RePR and
PR models after learning Road Runner and Boxing with varying importance values (α).
Results are collected using a single consistent seed with the average scores and standard
deviations calculated by testing the final network on 30 episodes.

PR RePR
α Road Runner Boxing Road Runner Boxing

0.65 30700 (±6463) 32 (±17) 28543 (±4699) 84 (±9)
0.75 30630 (±5420) 32 (±21) 23603 (±6124) 85 (±8)
0.85 26310 (±8257) 46 (±14) 13977 (±8814) 85 (±10)
0.95 12090 (±5894) 80 (±10) 7617 (±5696) 83 (±10)

values result in considerable forgetting of Road Runner. Importantly, this
means that without a dual memory system there does not exist an α value
that results in both successful learning of the new task and acceptable reten-
tion of the previous task. When using RePR’s dual memory system, learning
the new task is considerably easier and thus, comparably lower α values will
result in both successfully learning the new task and retaining the previous
task. Overall, these results suggest that omitting the dual memory system
dramatically increases the interference between new knowledge and knowl-
edge of previous tasks.

Acknowledgment

We gratefully acknowledge the support of NVIDIA Corporation with the
donation of the TITAN X GPU used for this research. We also wish to ac-
knowledge the use of New Zealand eScience Infrastructure (NeSI) high per-
formance computing facilities. New Zealand’s national facilities are provided
by NeSI and funded jointly by NeSI’s collaborator institutions and through
the Ministry of Business, Innovation & Employment’s Research Infrastruc-
ture programme. URL https://www.nesi.org.nz.

Declaration of Competing Interest

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the work
reported in this paper.

37

https://www.nesi.org.nz

Accepted for publication in Neurocomputing

def train stm(env, exp):
stm agent = init stm agent()
exp.clear()
while training stm agent do

exp.add(env.step(stm agent.pred net.calc action()))
at, rt, dt, st, st+1 = exp.sample()
if dt then

yt = rt
else

yt =
rt + γmax

at+1

stm agent.target net.get outputs(st+1)[at+1]

loss = (yt − stm agent.pred net.get outputs(st)[at])
2

stm agent.pred net.SGD step(loss)
if iter divisible by update target freq then

stm agent.target net = copy(stm agent.pred net)

return stm agent
Algorithm 1: Simplified pseudo-code demonstrating the training proce-
dure of the short-term agent in RePR. This pseudo-code implements the
loss function defined in Equation 1. The stm agent contains a predictor
network and a target network; env is the environment currently being
learnt; exp is an experience replay; iter is the current training iteration;
update target freq is the frequency at which the target network is up-
dated. In practice, the loss function is calculated by averaging over a
batch of samples.

38

Accepted for publication in Neurocomputing

def train ltm(env, exp, stm agent, ltm agent, gan):
exp.clear()
prev ltm agent = copy(ltm agent)
while training ltm agent do

exp.add(env.step(ltm agent.pred net.calc action()))
at, rt, dt, st, st+1 = exp.sample()
z = uniform sample(−1, 1, n latents)
s̃ = gan.gen.get outputs(z)
LD = sum((ltm agent.pred net.get outputs(s)−
stm agent.pred net.get outputs(s))2)
LPR = sum((ltm agent.pred net.get outputs(s̃)−
prev ltm agent.pred net.get outputs(s̃))2)
loss = αLD + (1− α)LPR
ltm agent.pred net.SGD step(loss)

return ltm agent
Algorithm 2: Simplified pseudo-code demonstrating the training proce-
dure of the long-term agent in RePR. This pseudo-code implements the
loss function defined in Equation 4. The stm agent contains a predictor
network; the ltm agent contains a predictor network; the gan contains a
generator network; env is the environment currently being learnt; exp is
an experience replay; α weights the importance of learning the new task
vs. retaining previously learnt tasks; n latents is the number of latent
input variables used by the GAN. In practice, the loss function is calcu-
lated by averaging over a batch of samples and pseudo-items are sampled
from a large array of items generated by the GAN before training the
agent.

39

Accepted for publication in Neurocomputing

def train gan(exp, gan):
new gan = initialise gan()
while training new gan do

if iter is even then
if True with probability of 1/T then

at, rt, dt, st, st+1 = exp.sample()
x = st

else
z = uniform sample(−1, 1, n latents)
s̃ = gan.gen.get outputs(z)
x = s̃

z = uniform sample(−1, 1, n latents)
ε = uniform sample(0, 1)
x̃ = new gan.gen.get outputs(z)
x̂ = εx+ (1− ε)x̃
disc real = new gan.disc.get outputs(x)
disc fake = new gan.disc.get outputs(x̃)
disc xhat = new gan.disc.get outputs(x̂)
gradient penalty = λ(‖grads(disc xhat, x̂)‖2 − 1)2

loss = disc fake− disc real + gradient penalty +
εdriftdisc real

2 + εdriftdisc fake
2

new gan.disc.SGD step(loss)

else
z = uniform sample(−1, 1, n latents)
x̃ = new gan.gen.get outputs(z)
loss = −new gan.disc.get outputs(x̃)
new gan.gen.SGD step(loss)

return new gan
Algorithm 3: Simplified pseudo-code demonstrating the training pro-
cedure of the long-term GAN in RePR. This pseudo-code implements
the training data selection procedure defined in Equation 7 and the loss
functions defined in Equation B.1 and Equation B.2. The gan contains
a generator network; the new gan contains both a discriminator network
and a generator network; exp is an experience replay containing samples
from the current environment; iter is the current training iteration; T is
the number of tasks seen; n latents is the number of latent input vari-
ables used by the GAN. In practice, the loss functions are calculated by
averaging over a batch of samples and pseudo-items are sampled from a
large array of items generated by the previous GAN before training the
new GAN. 40

Accepted for publication in Neurocomputing

References

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., Human-level control through deep reinforcement learning, Nature
518 (7540) (2015) 529–533.

[2] M. McCloskey, N. J. Cohen, Catastrophic interference in connectionist
networks: The sequential learning problem, in: Psychology of Learning
and Motivation, Vol. 24, Elsevier, 1989, pp. 109–165.

[3] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
et al., Overcoming catastrophic forgetting in neural networks, Proceed-
ings of the National Academy of Sciences 114 (13) (2017) 3521–3526.

[4] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction
(2nd edition), complete draft (2017).

[5] D. Lopez-Paz, M. Ranzato, Gradient episodic memory for contin-
ual learning, in: Advances in Neural Information Processing Systems,
Vol. 30, Curran Associates, Inc., 2017, pp. 6467–6476.

[6] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, C. H. Lampert, iCaRL: Incre-
mental classifier and representation learning, in: IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 5533–5542.

[7] M. Riemer, M. Franceschini, D. Bouneffouf, Generative knowledge dis-
tillation for general purpose function compression, in: Neural Informa-
tion Processing Systems Workshop on Teaching Machines, Robots, and
Humans, 2017.

[8] A. Robins, Catastrophic forgetting, rehearsal and pseudorehearsal, Con-
nection Science 7 (2) (1995) 123–146.

[9] S. Gais, G. Albouy, M. Boly, T. T. Dang-Vu, A. Darsaud, M. Desseilles,
G. Rauchs, M. Schabus, V. Sterpenich, G. Vandewalle, et al., Sleep
transforms the cerebral trace of declarative memories, Proceedings of
the National Academy of Sciences 104 (47) (2007) 18778–18783.

41

Accepted for publication in Neurocomputing

[10] K. Louie, M. A. Wilson, Temporally structured replay of awake hip-
pocampal ensemble activity during rapid eye movement sleep, Neuron
29 (1) (2001) 145–156.

[11] C. Atkinson, B. McCane, L. Szymanski, A. Robins, Pseudo-recursal:
Solving the catastrophic forgetting problem in deep neural networks,
arXiv e-prints (Unpublished results). arXiv:1802.03875.

[12] H. Shin, J. K. Lee, J. Kim, J. Kim, Continual learning with deep gen-
erative replay, in: Advances in Neural Information Processing Systems,
Vol. 30, Curran Associates, Inc., 2017, pp. 2990–2999.

[13] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in: Ad-
vances in Neural Information Processing Systems, Vol. 27, Curran As-
sociates, Inc., 2014, pp. 2672–2680.

[14] G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural
network, arXiv e-prints (Unpublished results). arXiv:1503.02531.

[15] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. C. Courville,
Improved training of Wasserstein GANs, in: Advances in Neural Infor-
mation Processing Systems, Vol. 30, Curran Associates, Inc., 2017, pp.
5767–5777.

[16] T. Karras, T. Aila, S. Laine, J. Lehtinen, Progressive growing of GANs
for improved quality, stability, and variation, in: International Confer-
ence on Learning Representations, 2018.

[17] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, S. Wermter, Continual
lifelong learning with neural networks: A review, Neural Networks 113
(2019) 54–71.

[18] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, R. Hadsell, Progressive neural networks,
arXiv e-prints (Unpublished results). arXiv:1606.04671.

[19] T. Kobayashi, Check regularization: Combining modularity and elastic-
ity for memory consolidation, in: Artificial Neural Networks and Ma-
chine Learning, Springer International Publishing, 2018, pp. 315–325.

42

http://arxiv.org/abs/1802.03875
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1606.04671

Accepted for publication in Neurocomputing

[20] C. Kaplanis, M. Shanahan, C. Clopath, Continual reinforcement learn-
ing with complex synapses, in: Proceedings of the 35th International
Conference on Machine Learning, Vol. 80 of Proceedings of Machine
Learning Research, PMLR, 2018, pp. 2497–2506.

[21] J. Schwarz, J. Luketina, W. M. Czarnecki, A. Grabska-Barwinska, Y. W.
Teh, R. Pascanu, R. Hadsell, Progress & compress: A scalable frame-
work for continual learning, in: Proceedings of the 35th International
Conference on Machine Learning, Vol. 80 of Proceedings of Machine
Learning Research, PMLR, 2018, pp. 4528–4537.

[22] G. Berseth, C. Xie, P. Cernek, M. Van de Panne, Progressive reinforce-
ment learning with distillation for multi-skilled motion control, in: In-
ternational Conference on Learning Representations, 2018.

[23] A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirk-
patrick, R. Pascanu, V. Mnih, K. Kavukcuoglu, R. Hadsell, Policy distil-
lation, in: International Conference on Learning Representations, 2016.

[24] E. Parisotto, J. L. Ba, R. Salakhutdinov, Actor-mimic: Deep multitask
and transfer reinforcement learning, in: International Conference on
Learning Representations, 2016.

[25] D. Rolnick, A. Ahuja, J. Schwarz, T. P. Lillicrap, G. Wayne, Experi-
ence replay for continual learning, in: Advances in Neural Information
Processing Systems, Vol. 32, Curran Associates, Inc., 2019, pp. 350–360.

[26] D. Isele, A. Cosgun, Selective experience replay for lifelong learning, in:
AAAI Conference on Artificial Intelligence, 2018.

[27] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, G. Tesauro,
Learning to learn without forgetting by maximizing transfer and mini-
mizing interference, in: International Conference on Learning Represen-
tations, 2019.

[28] H. Caselles-Dupré, M. Garcia-Ortiz, D. Filliat, Continual state represen-
tation learning for reinforcement learning using generative replay, arXiv
e-prints (Unpublished results). arXiv:1810.03880.

43

http://arxiv.org/abs/1810.03880

Accepted for publication in Neurocomputing

[29] V. Marochko, L. Johard, M. Mazzara, Pseudorehearsal in value function
approximation, in: Agent and Multi-Agent Systems: Technology and
Applications, Springer International Publishing, 2017, pp. 178–189.

[30] B. Baddeley, Reinforcement learning in continuous time and space: In-
terference and not ill conditioning is the main problem when using dis-
tributed function approximators, IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics) 38 (4) (2008) 950–956.

[31] V. Marochko, L. Johard, M. Mazzara, L. Longo, Pseudorehearsal in
actor-critic agents with neural network function approximation, in:
IEEE 32nd International Conference on Advanced Information Network-
ing and Applications, 2018, pp. 644–650.

[32] H. Caselles-Dupré, M. Garcia-Ortiz, D. Filliat, S-TRIGGER: Continual
state representation learning via self-triggered generative replay, arXiv
e-prints (Unpublished results). arXiv:1902.09434.

[33] N. Ketz, S. Kolouri, P. Pilly, Continual learning using world models for
pseudo-rehearsal, arXiv e-prints (Unpublished results). arXiv:1903.

02647.

[34] N. Kamra, U. Gupta, Y. Liu, Deep generative dual memory network
for continual learning, arXiv e-prints (Unpublished results). arXiv:

1710.10368.

[35] W. C. Abraham, A. Robins, Memory retention - the synaptic stability
versus plasticity dilemma, Trends in Neurosciences 28 (2) (2005) 73–78.

[36] C. R. Gallistel, L. D. Matzel, The neuroscience of learning: Beyond the
hebbian synapse, Annual Review of Psychology 64 (1) (2013) 169–200.

[37] W. C. Abraham, O. D. Jones, D. L. Glanzman, Is plasticity of synapses
the mechanism of long-term memory storage?, npj Science of Learning
4 (1) (2019).

[38] J. Li, A. Madry, J. Peebles, L. Schmidt, On the limitations of first-
order approximation in GAN dynamics, in: Proceedings of the 35th
International Conference on Machine Learning, Vol. 80 of Proceedings
of Machine Learning Research, PMLR, 2018, pp. 3005–3013.

44

http://arxiv.org/abs/1902.09434
http://arxiv.org/abs/1903.02647
http://arxiv.org/abs/1903.02647
http://arxiv.org/abs/1710.10368
http://arxiv.org/abs/1710.10368

Accepted for publication in Neurocomputing

[39] D. L. Silver, G. Mason, L. Eljabu, Consolidation using sweep task re-
hearsal: Overcoming the stability-plasticity problem, in: Advances in
Artificial Intelligence, Springer International Publishing, 2015, pp. 307–
322.

[40] R. Poirier, D. L. Silver, Effect of curriculum on the consolidation of
neural network task knowledge, in: IEEE International Joint Conference
on Neural Networks, Vol. 4, 2005, pp. 2123–2128.

[41] R. Pascanu, Y. Bengio, Revisiting natural gradient for deep networks,
in: International Conference on Learning Representations, 2014.

Craig Atkinson received his B.Sc. (Hons.) from
the University of Otago, Dunedin, New Zealand, in 2017.
He has just completed his doctorate in Computer Sci-
ence at the University of Otago. His research interests
include deep reinforcement learning and continual learn-
ing.

Brendan McCane received the B.Sc. (Hons.) and
Ph.D. degrees from the James Cook University of North
Queensland, Townsville City, Australia, in 1991 and 1996,
respectively. He joined the Computer Science Department,
University of Otago, Otago, New Zealand, in 1997. He served
as the Head of the Department from 2007 to 2012. His
current research interests include computer vision, pattern
recognition, machine learning, and medical and biological
imaging. He also enjoys reading, swimming, fishing and long

walks on the beach with his dogs.

Lech Szymanski received the B.A.Sc. (Hons.) degree
in computer engineering and the M.A.Sc. degree in elec-
trical engineering from the University of Ottawa, Ottawa,
ON, Canada, in 2001 and 2005, respectively, and the Ph.D.
degree in computer science from the University of Otago,
Otago, New Zealand, in 2012. He is currently a Lecturer

45

Accepted for publication in Neurocomputing

at the Computer Science Department at the University of
Otago. His research interests include machine learning, arti-
ficial neural networks, and deep architectures.

Anthony Robins completed his doctorate in cognitive
science at the University of Sussex (UK) in 1989. He is cur-
rently a Professor of Computer Science at the University of
Otago, New Zealand. His research interests include artifi-
cial neural networks, computational models of memory, and
computer science education.

46

	1 Introduction
	2 Background
	2.1 Deep Q-Learning
	2.2 Pseudo-Rehearsal

	3 The RePR Model
	3.1 Training Procedure
	3.1.1 Training the Short-Term DQN
	3.1.2 Training the Long-Term DQN
	3.1.3 Training the Long-Term GAN

	3.2 Requirements of a Continual Learning Agent

	4 Related Work
	5 Method
	6 Results
	6.1 RePR Performance on CF
	6.2 Quality of Generated Items
	6.3 RePR Versus EWC
	6.4 Further Evaluating RePR

	7 Discussion
	7.1 Dual Memory
	7.2 Scalability
	7.3 Limitations and Future Research

	8 Conclusion
	Appendix A Details on the Atari 2600 Games
	Appendix B Further Implementation Details
	Appendix B.1 DQN
	Appendix B.2 GAN
	Appendix B.3 EWC
	Appendix B.4 Transferring and Retaining the Policy in the LTM System
	Appendix B.5 Extended Task Sequence Experiment

	Appendix C How well does RePR Share Weights?
	Appendix D Evaluating the Importance of Dual Memory

