
JDGAN: Enhancing Generator on Extremely Limited

Data via Joint Distribution

Wei Li
School of Artificial Intelligence and Computer Science, Jiangnan University,

Wuxi, Jiangsu, P.R.China.
Jiangsu Key Laboratory of Media Design and Software Technology, Wuxi,

Jiangsu, P.R.China.
Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu,

P.R.China. Email: cs weili@jiangnan.edu.cn.
Linchuan Xu*

Corresponding author. Department of Computing, The Hong Kong
Polytechnic University, Hong Kong, P.R.China. Email:

linch.xu@polyu.edu.hk.
Jiannong Cao

IEEE Fellow. Department of Computing, The Hong Kong Polytechnic
University, Hong Kong, P.R.China. Email: csjcao@comp.polyu.edu.hk.

Zhixuan Liang
Department of Computing, The Hong Kong Polytechnic University, Hong

Kong, P.R.China. Email: zhixuan.liang@connect.polyu.edu.hk.
Senzhang Wang

Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu,
P.R.China. Email: szwang@nuaa.edu.cn.

Thomas.C.Lam
Laboratory of Experimental Optometry, Centre for Myopia Research,

School of Optometry, The Hong Kong Polytechnic University, Hong Kong.
Centre for Eye and Vision Research, Hong Kong, P.R.China. Email:

thomas.c.lam@polyu.edu.hk.
Xiaohui Cui*

Corresponding author. School of Cyber Science and Engineering, Wuhan
University, Wuhan, Hubei, P.R.China. Email: xcui@whu.edu.cn.

Abstract

Generative Adversarial Network (GAN) is a thriving generative model and

Preprint submitted to Elsevier June 13, 2022

https://doi.org/10.1016/j.neucom.2020.12.001

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

This is the Pre-Published Version.

considerable efforts have been made to enhance the generation capabilities
via designing a different adversarial framework of GAN (e.g., the discrim-
inator and the generator) or redesigning the penalty function. Although
existing models have been demonstrated to be very effective, their gener-
ation capabilities have limitations. Existing GAN variants either result in
identical generated instances or generate simulation data with low quality
when the training data are diverse and extremely limited (a dataset consists
of a set of classes but each class holds several or even one single sample) or
extremely imbalanced (a category holds a set of samples and other categories
hold one single sample). In this paper, we present an innovative approach to
tackling this issue, which jointly employs joint distribution and reparameter-
ization method to reparameterize the randomized space as a mixture model
and learn the parameters of this mixture model along with that of GAN. In
this way, we term our approach Joint Distribution GAN (JDGAN). We con-
duct extensive experiments using MNIST, CIFAR10, and Mass Spectrometry
datasets, all using extremely limited amounts of data, to demonstrate signif-
icant performance improvement of our proposed JDGAN in both achieving
the smallest Fréchet Inception Distance (FID) score and producing diverse
generated data in different types.

Keywords: Mode Collapse, Joint Distribution, Reparameterization, GAN.

1. Introduction

Generative Adversarial Network (GAN) [13] has been demonstrated as
the state-of-the-art generative model in various tasks of generating synthetic
but realistic-like data [30] [46] [45] [44] [29]. A typical GAN model con-
sists of two components, a generator and a discriminator. We usually view
the generator as the forger who specializes in generating plausible data to
fool the discriminator into accepting it as real data, while the discriminator
could be regarded as a detective who can determine whether the current data
are from the generator or the real dataset. The GAN model sidesteps the
difficulty of approximating many intractable probabilistic computations, for
it samples data from an easy-to-sample distribution so the Markov chains
[36] are never needed. Its gradients are tuned by using back-propagation,
which makes the training computationally inexpensive. Besides the elegant
framework, the GAN model also enjoys the power of deep generative neu-
ral networks, which, in theory, have the capabilities of approximating any

2

complicated probability distributions with adequate data. In particular, the
generator is a deep neural network, which is designed to transform a noise
sampled from a fixed, easy-to-sample distribution (e.g., Uniform distribution
with (-1, 1)) into the “realistic” data. Because of its huge potentials, it has
become an active research field and many researchers try to enhance data-
generation capability by modifying the framework and its two components or
loss function (e.g., Wasserstein GAN (WGAN) [4], Least Squares GAN (LS-
GAN) [34], Mixture Generators GAN (MGAN) [18] and Relativistic average
GAN (RaGAN) [20]). Although those GAN variants have been widely used
in many applications [28] [31] [10] [19] and achieve impressively plausible
simulated data, their generation capabilities are not viable as the training
data samples are extremely limited and diverse, e.g., a dataset consists of
a set of classes but each class just holds several or even one single sample.
If the training dataset is extremely limited dataset, the generated instances
either hold identical samples or low quality.

In deep learning, the overlapping area refers to such an area which is
intersected by two distributions. Fig.1 shows a less formal but more peda-
gogical illustration for overlapping area. In Fig.1, there exists two distribu-
tions, which are generated distribution (pG) and original data distribution
(pr). We also assume both of two distributions lying in a mapping space.
From Fig.1, we can see that the two distributions just hold a small overlap-
ping area in this mapping space, which is indicated by gray shade region.
Under such a scenario, the generator may hold a part of data modes and
missing other modes, resulting in mode collapse problem. This is because
the Jensen Shannon Divergence is maxed out when the generated and real
data distributions have disjoint support [4]. With this in place, the generated
data distribution pG is far away from the original data distribution pr in the
mapping space, which results in that the generator fails to correctly capture
all data modes [21]. This becomes more challenging if the training data are
extremely limited data samples.

To visually and effectively demonstrate our hypothesis, we apply recent
GAN variants to a diverse and extremely limited training dataset. Here,
we take the MNIST dataset as the example to form the extremely limited
dataset. Only 10 samples are selected from MNIST (figures ’0’ to ’9’), and
each sample belongs to a specific category. They are diverse because each
sample belongs to one category; they are extremely limited because each
category only holds one sample. The generated images are shown in Fig.2.

From Fig.2, we can see that the mode collapse arises in most existing GAN

3

Figure 1: The gray shade region indicates the overlapping area between two distributions.
Such a case also implicitly indicates low match degree of two distributions [16] [32].

variants, i.e., most data modes are missed and there exist identical generated
images. Also, the generated data quality is not satisfactory in LSGAN. It is
noticed that there are five GAN variants (sub-figures (a)-(d) and (f)) sample
noise from Gaussian(0, 1). DeLiGAN (sub-figure (e)) [15] samples noise
from the Mixture-of-Gaussian model [48]. Moreover, MGAN employs 10
generators and each generator only produces a single image. In addition, we
demonstrate the performance of those GAN variants in imbalanced dataset
(a category holds a set of samples while other categories just hold a single
sample), and we can observe the details in experiment section.

Wasserstein GAN (WGAN) [4] utilizes Wasserstein distance to measure
the dissimilarity between original data distribution pr and generated data dis-
tribution pG. However, only certain optimizers (e.g.,RMSProp [41] or SGD
[6]) are suitable for optimizing WGAN. Other momentum based ones (e.g.,
Adam [22]) may even turn the gradients negative, causing unstable training.
RaGAN [20] argues that the minimax game should simultaneously decrease
the probability that real data is real. The researchers [20] induce this prop-
erty by using a “relativistic discriminator”, and prove that the relativistic
discriminator makes training more stable. However, it is not suitable for

4

(a) DCGAN (b) LSGAN (c) WGAN

(d) RaGAN (e) DeLiGAN (f) MGAN

Figure 2: A case study on extremely limited MNIST samples. The generator samples
noise from standard Gaussian distribution (0, 1) for DCGAN, LSGAN, WGAN, RaGAN
and MGAN, and samples noise from a Mixture-of-Gaussian model for DeLiGAN.

extremely limited training data. MGAN [18], on the other hand, employs a
mixture of generators to learn disconnected manifolds. Since there are no re-
strictions enforcing generators to learn those manifolds mutually exclusively,
generators may learn the same manifolds as each other, resulting in the gen-
eration of identical instances. DeLiGAN [15] modifies the latent space with
Mixture-of-Gaussian model and samples noise from the MoG model. How-
ever, MoG model is a linear combination of multiple Gaussian distributions,
which causes each Gaussian distribution having different weights. Therefore,
the MoG model has been easily driven into the local optimal defect [7], and
holding most contribution of a Gaussian to MoG model dominates other
Gaussian models. The MoG model becomes a single Gaussian model under
such a scenario. Therefore, the mode collapse arises.

When training a GAN, we usually learn a mapping from noise distribution
pz(z) to original data distribution pr. To guarantee learning successfully, it
requires a lot of training samples such that the generator can disentangle the
underlying factors of variation and make the generated data diverse. When
training data are extremely limited, such a mapping mechanism becomes in-
feasible. To address this issue, this paper proposes to explore an alternative
direction, which increases the power of the latent distribution. To this end,
we propose Joint Distribution GAN (JDGAN), which jointly employs
multiple easy-to-sample distributions to construct the randomized space Z
and learns these distributions together with the generator with reparame-

5

terization, without modifying the framework. JDGAN addresses the mode
collapse by increasing the dimension of pz(z) to increase that of pG, because
pz(z) is contained in pG [3]. If the supports of pr and pG are not disjoint, the
generator can correctly capture all the modes. To obtain a sample from the
joint distribution, we employ the reparameterization method introduced by
Kingma [23] to sample noise. Assuming the joint distribution is formed by
a Gaussian distribution (G(µ, θ)) and a Uniform distribution (U(a, b)), we
represent the noise from the joint distribution as a deterministic function of
µ, θ, a and b.

In summary, the major innovations and contributions of this paper are
as follows:

• This paper proposes a novel JDGAN model which modifies the input
randomized space to enhance the generation capabilities of the GAN
model, overcoming the problem of mode collapse.

• This paper demonstrates how to sample noise from the joint distribu-
tion and how to learn the parameters of the joint distribution together
with the generator from theoretical and empirical perspectives, giving
new insights into the success of JDGAN.

• Through comprehensive experiments on generating simulated data, we
demonstrate the effectiveness of the proposed approach.

This paper is organized as follows. In section 2 we discuss some related
work. We discuss the limitations of a single distribution in section 3 and
present our main idea in section 4. In section 5 we will show our experimental
results, and we conclude this work in section 6.

2. Related Work

The GAN model displays its powerful generative capabilities since its
invention, however, there exist challenges (e.g., mode collapse and gradients
vanishing). Hence, many modifications to the original GAN model have been
proposed, and they can be mainly categorized into four types: modifying the
components, modifying the penalty function, modifying the architecture and
modifying the randomized space.

Modifying the components. The early researchers utilize some seem-
ingly simple but powerful strategies to improve the performance of the GAN

6

model. One of the first major improvements is DCGAN [1], which hopes
to bridge the gap between the success of CNNs for supervised learning and
unsupervised learning. It modifies the two components of the GAN model by
adding some functions such as BatchNorm [27], ReLu activation [12] for the
generator and BatchNorm, LeakyReLu activation [47] for the discriminator,
and replacing any pooling layers [24] with strided convolutions (discrimi-
nator) and fractional-strided convolutions (generator). These modifications
are suitable for both the generator and the discriminator to learn good up-
sampling and down-sampling operations, which could improve the quality of
simulated data. Salimans et al. (Improved GAN) [39] propose heuristic ap-
proaches to stabilize the training of GAN. Specifically, they use the feature
matching to address the instability of training a GAN model by changing
the objective for the generator to prevent the problem of overtraining, and
they use the mini-batch [27] discriminator to prevent the generator collapse,
for the discriminator can easily tell whether the generator is producing same
outputs. Mirza et al. (Conditional GAN) [35] train both the discrimina-
tor and the generator by using the new input that is conditioned on adding
extra information y (e.g., class labels), and it can generate descriptive tags
which are not part of training labels. This modification holds considerable
flexibility for generation.

Modifying the penalty function. The GAN model generally adopts
the JS divergence [33] to calculate the similarity between two distributions
which are from different datasets, for the principle of GAN is to transform
a distribution into another distribution. However, it is hard to achieve the
transforming process, and always causes the mode collapse in practice. Thus,
many researchers adopt different strategies to address this issue. WGAN [4]
replaces the JS divergence with the Wasserstein distance [37]. The value of JS
divergence for a GAN model could be a constant as the two distributions have
no overlapping area (or the overlapping area can be neglected), which causes
distribution transformation difficulty. The Wasserstein distance can reflect
the dissimilarity between the two distributions without the overlapping area.
Moreover, Gulrajani et al. (Improved WGAN) [14] find that the weight
clipping adversely reduces the capability of the discriminator in WGAN,
they then improve the WGAN by penalizing the norm of the discriminator
gradients during training instead of performing parameter clipping. LSGAN
[34] modifies the loss function with the Least Squares to generate samples
that are closer to the real data. This study argues that the Sigmoid Cross
Entropy loss function [50] for the discriminator would lead to the problem

7

of vanishing gradients as updating the generator using the fake samples that
are on the correct side of the decision boundary and are far from the real
data. The Least Squares loss function can penalize the fake samples that
are lying in a long way on the correct side of the decision boundary moving
toward the decision boundary even though they are classified correctly.

Modifying the Architecture. Since manifolds of original data are dis-
connected in the space and a single generator G only produces instances in
certain regions of this space, the generated data focuses on several or even
one single manifold. Researchers attempt to increase the quantity of gener-
ator to learn more about different manifolds. Tolstikhin et al. [42] added
a new component to a mixture model by running a GAN algorithm on a
re-weighted sample. Inspired by boosting techniques, this idea greedily ag-
gregates many potentially weak individual predictors to form a strong com-
posite predictor. This model is termed AdaGAN. Since AdaGAN utilizes
a sequential training technique to train the model, the model is computa-
tionally expensive. Moreover, it is hard to search the ChooseMixtureWeight
and the UpdateTrainingWeight functions for boosting techniques. Arora et
al., [5], alternatively, trained a mixture of generators and discriminators to
play the minimax game with the reward function being the weighted aver-
age reward function between any pair of generator and discriminator. This
strategy is not only computationally expensive but also lacks a mechanism to
enforce the divergence among generators. Ghosh et al. [11] employed many
generators and trained them by using multi-class discriminators that, in ad-
dition to detecting whether a sample is fake or not, predict which generator
produces this sample. The loss function in this study focuses on detecting
whether a sample is fake and does not directly encourage generators to pro-
duce diverse instances. The recent GAN variant for increasing the quantity
of generator is MGAN [18]. MGAN employs many generators G1:K and an
extra classifier C to construct architecture. Although study [18] claimed such
a design can help a model learn all manifolds, it is difficult to achieve this
goal in practice. MGAN does not provide that Gi is mutually exclusive with
Gj, i 6= j. In other words, Gi and Gj may learn the same manifold during
training. In addition, MGAN adopts the shared parameters to save training
cost. However, the shared parameters may cause all generators output the
same instance, given that the parameters have an influence to the quality of
data. RaGAN [20] argues that the Nash equilibrium should simultaneously
decrease the probability that real data is real, which may improve the GAN
performance. In this way, RaGAN utilizes a “relativistic discriminator” to

8

prove this property, and this discriminator estimates the probability that the
given real data is more realistic than fake data, on average. However, it still
suffers from the challenge in the case of extremely limited data. We can
observe more details in section experiments.

Modifying randomized space. DeLiGAN [15] hopes to make Z dis-
connected to learn the disconnected manifolds, with the mixture of Gaussian
(MoG) model. However, it is hard to make Z disconnected in practice.
MoG model is a linear combination of multiple Gaussian distributions, and
the combined distribution still belongs to a bounded continuous distribu-
tion. This is pedagogically shown in Fig.3. There still exists the uncovered
manifolds such that some modes are missed in generated instances, given
that pz(z) is contained in pG [3]. When we sample the noise from the MoG
model, it needs two steps. First, one of N Gaussian models is selected. Sec-
ond, we draw the noise from the chosen Gaussian distribution. Considering
an extreme scenario, the same Gaussian distribution has been chosen at each
epoch. The MoG model becomes the single Gaussian model under such a
scenario. The mode collapse is still not addressed. In addition, DeLiGAN
does not give how to determine the number of Gaussian model. However, we
would fully discuss how to determine the number of distributions in our study.
We believe that the number of distributions would influence the diversity of
generated data. More details are shown in experiment section.

3. Preliminaries

In this section, we discuss the limitations of sampling noises from a fixed,
easy-to-sample distribution and give the explanation of reparameterization
method.

3.1. The Limited Overlapping Area

Although the GAN model was introduced in Section 1, we formally present
the GAN model as below to establish the continuity. The GAN model was
introduced by Goodfellow [13] as a novel generative model to simultaneously
train a generator and a discriminator by using Eq. (1).

min
G

max
D

V (G,D) = Ex∼pr(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]
(1)

9

Figure 3: Assuming original data (red curve) hold 6 submanifolds, while MoG model
(green curve) just covers part of submanifolds of original data.

where x comes from a distribution pr(x) (it is abbreviated as pr) sampled
from the original dataset and z comes from a fixed, easy-to-sample distribu-
tion pz(z) (e.g., Uniform with (-1, 1) or Gaussian with (0, 1)). The generator
builds a mapping function from pz(z) to original data space χ, and the dis-
criminator would output a single score ∈ [0, 1] to indicate whether the current
data are from the generator or not. Generally, a small score indicates the
current data generated by the generator, while a high score indicates the cur-
rent data coming from the original dataset. We repeat this training process
until both the discriminator and the generator reach to the Nash equilibrium
[8] where pG = pr = 0.5.

Eq.(1) measures the difference between pr and pG by using the Jensen–Shannon
(JS) divergence [9]. The closer the two distributions are, the smaller the JS
divergence is. However, the two distributions are hard to match each other
because they lie in low-dimensional manifolds [3] [4]. In other words, we
cannot guarantee that the two probability distributions (pG and pr) have a
large overlapping area. Under such a scenario, the matching degree of both
pG and pr is not high [3]. With such, both pr and pG have a limited overlap-
ping area. Note that pG is defined via sampling from the simple prior pz(z)
[3]. This implicitly indicates that we can utilize prior pz(z) to increase the

10

overlapping area.

3.2. The Limited Diversity

In general, the noise distribution pz(z) is a fixed, easy-to-sample distri-
bution, i.e., Uniform with (-1, 1) or Gaussian with (0, 1). The model usually
adopts independent identically distributed strategy to draw noise code z from
such an distribution, and transform it into high-dimensional matrix (G(z)).
Let G be a function composed by affine transformations and rectifiers. We
get G(z) = DnWn...D1W1z where Wi denotes the affine transformation and
Di indicates the rectifier. Note that the noise code z follows the distribution
pz(z) and the generated data Gz follows distribution pG. In this way, pz(z)
is contained in pG.

With this in place, the diversity of generated data Gz has been limited
by such a low-dimensional noise code when GAN model has been trained
successfully because the number of noise code z is limited. One may want
to increase the dimension by increasing the number of noise samples (e.g.,
z = 10→ z = 100). However, these noise samples could be linear correlation
so the intrinsic dimension of those noise samples is far less than 100. It
further increases the loss of diversity as we consider such a scenario where
the neural network brings the dimension reduction mapping.

On the other hand, assuming the original data holds a set of disjoint
manifolds and each one named submanifoldi, a part of manifolds of original
data are covered by the support of the generated data distribution. This
is because pz(z) is supported on a connected subspace of χ while pz(z) is
contained in pG. Therefore, generator G (a continuous function by design)
can not correctly model a set of disjoint manifolds in χ [21]. Although there
is a trade-off between covering all original data distribution and minimizing
the volume of the off real-manifold space in the cover, such a trade-off also
indicates that the generator may sacrifice certain submanifolds to learn a
cover with less off real-manifold volume [21]. In this way, the diversity of the
generated data is limited.

In addition, there is a lower bound for intrinsic dimension of a dataset [49],
the diversity of data will be lost when the intrinsic dimension of generated
data is smaller than such a lower bound. It is much worse on diversity when
the training data samples are extremely limited and diverse (See Fig.2).

11

3.3. Reparameterization Method

In the traditional sampling method, the lower bound of the noise variable
is fixed, e.g., Uniform with (-1, 1) or Gaussian with (0, 1). The reparame-
terization method can help us to determine the lower bound of the variable
through back-propagation. For example, we want to take the gradient w.r.t.
θ of the following expectation Ep(z)fθ(z) where p denotes the density. How-
ever, computing the gradient of this expectation (i.e., ∇θEpθ(z)fθ(z)) is often
difficult because the integral is typically unknown and the parameters θ, with
respect to which we are computing the gradient, are of the distribution pθ(z).
The reparameterisation method can “transform” this formula to another ex-
pression, i.e., ∇θEpθ(z)fθ(z) = ∇θEpεf(g(ε, θ)). In this way, the gradient is
now unrelated to the distribution with which we take the expectation, so
easily passes through the integral. We take the Gaussian distribution as the
example. The sample can be represented from the Gaussian as a determin-
istic function of µ and δ and an auxiliary noise variable ε, i.e., z = µ + δε,
and we can learn the parameters µ and δ along with the GAN parameters.

4. Joint Distribution GAN

In this section, we propose the Joint Distribution GAN (JDGAN). As
mentioned in the introduction, the innovation of JDGAN lies in the input
randomized space Z, which modifies Z with joint of multiple independent
distributions. To this end, there are four important issues to be addressed,
which are how to construct a new randomized space using joint distribution,
how to draw samples from the joint distribution, how to choose the number
of distributions and how to learn the parameters of JDGAN.

4.1. Constructing the New Randomized Space

No matter which GAN-based model we choose, we always hope the net-
work to learn a mapping from the noise distribution pz(z) to the original data
distribution pr. In our study, we employ joint distribution to construct the
randomized space for the generator. In joint distribution, the distribution
of the random vector Z = (Z1, Z2, ..., Zn) is named joint distribution of the
random variable Zi, and it is shown as follows.

P (Z) = P (Z1 = z1 and Z2 = z2 and ... and Zn = zn) (2)

12

In Eq.4, each zi indicates a distribution. The joint distribution of multiple
variables can be generally represented as follows:

pz(z) = pz(z1, z2, ..., zn)

= pz(z1)pz(z2)...pz(zn)
(3)

Here we assume that each distribution is independent of all the others,
so Eq.(3) can be reformulated as follows:

pz(z) = p(z1, z2, ..., zN |θ1, θ2, ..., θN)

= p(z1|θz1 , z2|θz2 , ... zN |θzN)

= p(z1|θz1) · .. · p(zi|θzi) · .. · p(zn|θzn)

=
n∏
i

P (zi|θzi)

(4)

In this way, pG which is the generating distribution parameterized by
the generator should be a larger and more complicated distribution, so the
overlapping area between pr and pG is increased. Moreover, the increasing
distributions also increase the dimension of manifold, so the diversity of the
generated data can also be increased. This is because adopting the joint dis-
tribution can construct a more complex pz(z). Since the supports of pG and
pr lie on low-dimensional manifolds [3], we attempt to increase the dimension
of manifold of pG to overlap pr, given that pz(z) has to be contained in pG
[3]. If the dimension of manifold of pG is no longer less than that of pr, it is
certainly for pr to be covered by pG in the mapping space. Assuming an ex-
treme scenario, pG is complicated enough to fill up the mapping space. That
is to say, pr and pG have non-disjoint supports. In this way, the diversity of
the generated data can be guaranteed.

Since the JDGAN focuses on constructing the joint distribution to mod-
ify the randomized space Z, the generator and discriminator architectures of
JDGAN are from the vanilla DCGAN. The details of components still adopt
Conv-BatchNorm-ReLu (GeneratorG) and Conv-BatchNorm-LeakyReLu (Dis-
criminator D). One may use other frameworks given that the designing of
randomized space Z is independent of the architectures. Even though the
common architectures are utilized, JDGAN is demonstrated to be more ef-
fective than state-of-the-art variants of GAN. More details are shown in the
experiment section.

13

In the rest of this subsection, we discuss how to choose each distribution
(i.e., P (zi|θzi)) to form the joint distribution for constructing randomized
space Z. Theoretically, we can use any statistical distribution (even the
same distribution) to jointly construct Z, and what we need to pay attention
to is that those distributions have to be independent to each other when
employing multiple distributions (we will consider the case of dependent joint
distribution in future work). However, many distributions can be viewed as
the combination of the Gaussian distributions and the Uniform distributions
[17], and both of them are widely used in many applications. Here we take the
two distributions as the example to construct the randomized space. More
distributions are shown in the section experiments. We instantiate Eq.(4) via
the joint distribution of a Gaussian distribution and a Uniform distribution
as shown in the following equation:

pz(z) = p(z1, z2) = p(z1|G(µ, δ))p(z2|U(a, b)), (5)

By Eq.(5), the joining of two distributions belongs to non-linear combi-
nation, which increases the power of prior distribution. It is highly likely to
produce a larger overlapping area (or a higher matching degree) than a single
one and the joining of two distributions significantly increases the diversity.
Next, we will introduce how to sample noise from the new randomized space.

4.2. Sampling from Joint Distribution

We take Eq.(5) as the example. In Eq.(5), the new randomized space has
been determined by two different distributions (p(z1) follows the Gaussian
distribution and p(z2) follows the Uniform distribution). In order to draw
noise code z from Eq.(5), we employ the “reparameterization method” [23]
to sample noise code z1 from the Gaussian distribution and use the inverse
transformation method [43] with the cumulative distribution function (x−a

b−a)
to sample noise code z2 from the Uniform distribution. Since we repeatedly
sample noise code from the two distributions and both of the two distribu-
tions are univariate Gaussian distribution and uniform distribution, all the
elements of z are not the same and each element within noise code is a scalar.
In this way, the noise code drawn from the joint distribution can be denoted
as follows:

z = (µ+ δε) [ζ(b− a) + a] (6)

14

Generator

Discriminator

Pdata(x)

Real/Fake

JDGANz1

z2

zi

P_latent(z) (µ+δƐ)[ζ(b-a)+a]

Figure 4: JDGAN architecture. Different from the regular GAN model, the generator sam-
ples noise from the joint distribution. The Platent(z) is made up of multiple distributions
(zi). Those distributions are independent to each other.

In Eq.(6), the first term follows the standard Gaussian and the second
term follows the standard Uniform distributions respectively, which means
that the data we sampled from the randomized space Z are a deterministic
function of the parameters of µ, δ, b and a. Substituting Eq.(5) into Eq.(6),
we get:

Pr(G(z)) =

∫
pr[G(µ+ δε)|ε]p(ε)dε

·
∫
pr[G(ζ(b− a) + a)|ζ]p(ζ)dζ

(7)

In this way, our new objective is to learn µ, δ, b and a together with
the generator to minimize Ez∼pz(z)[log(1−D(G(z)))], and the architecture of
JDGAN is shown in Fig.4.

4.3. Learning Parameters of JDGAN

For each distribution, we first need to initialize their parameters. We still
take the Eq.(6) as the example. We initialize µi and δi with 0 and 1 for p(z1)
and assign (-1, 1) to p(z2) (a and b). In order to train our model, generator
samples a latent vector z from the joint distribution (Eq.(6)). After feeding z
into the generator, we obtain the generated data and then put these data into
discriminator. The discriminator would output a signal to update generator’s
parameters by using vanilla GAN training procedure (Eq.(1)). Also, µ, δ, a
and b are trained simultaneously along with the generator’s parameters, with
gradient methods. The derivative with respect to each parameter is easy to
obtain using the back-propagation method (e.g., ∂G

∂µ
= ∂G

∂z
· ∂z
∂µ

).

15

4.4. Determining the Number of Distributions

The goal of jointly employing multiple distributions in the randomized
space is to increase the generating capabilities. However, we need to know
how to choose the optimal number of multiple distributions. In this paper,
the Intrinsic Dimension [2] [26] is utilized to determine the number of distri-
butions. A dataset is usually projected into a low-dimensional manifold, and
the minimal dimension of such a manifold is called intrinsic dimension [2].
Assuming there exist independent identically distributed (IID) sample obser-
vations X1, ..., Xn from a high-dimensional space RD, and those observations
represent an embedding of lower-dimensional samples, i.e., Xi = g(Yi). Yi
is from an unknown smooth density f on Rm with m < D. The unknown
term m is the expected intrinsic dimension. Here, we utilize the widely used
maximum likelihood method [26] to estimate intrinsic dimension, which is
shown in Eq.(8).

m̂(x) =

[
1

n

n∑
j=1

log
xj

Tj(x)

]−1

(8)

where Tj(x) is the Euclidean distance from the point x to its jth nearest
neighbor. More deductions are shown in [26]. We take the extremely limited
MNIST as the example to demonstrate the optimal number of distributions.
We feed the extremely limited training samples and generated instances from
DCGAN (See Fig.2 (a)) into Eq.(8), and get m̂(x)DCGAN = 3.30, m̂(x)MNIST

= 5.79. In this way, two distributions may be the optimal choice in our cases.
A detailed discussion is shown in experiment section.

Besides, we observe in our experiments that a larger number not always
brings better performance. The reason behind it could be as follows. If the
number of distributions is large, it can cause that the noise distribution is
more complicated than the raw data distribution. In other words, a GAN
model transforms a complicated distribution into a relatively simpler dis-
tribution, and such a transformation process could abandon some valuable
information for mapping the former one into the latter one, which would
cause the loss of diversity.

16

5. Empirical Evaluation

5.1. Experiment Settings

For the experiments, the implementation details of JDGAN are shown in
Fig.5. Six recent GAN models are employed as baselines, which are DCGAN
[1], WGAN [4], MGAN [18], LSGAN [34], RaGAN [20] and DeLiGAN
[15], respectively.

Two commonly used public image datasets, the MNIST dataset and the
CIFAR-10 dataset, and a real-word medical Mass Spectrometry dataset, are
studied. JDGAN is proposed to enhance the capabilities of capturing the
diverse modes of data. We thus mainly compare the diversity of generated
images with these GAN-based models. Since deep neural networks can theo-
retically approximate any kind of distributions with adequate training data,
we reduce the amount of data so as to test how many benefits the designed
JDGAN can bring. However, it is not easy to justify how limited the data
should be. In this way, we study diverse and extremely limited data which
means that there are many categories of images but each category holds only
one image because no more data can further be reduced. To make a fair
comparison, the quantity of generated data for all models is the same as that
of training data (10 samples for image dataset and 5 samples for medical
dataset).

5.2. MNIST Dataset

We first generate image simulation data using JDGAN on MNIST dataset
where each sample is a gray image with 1*28*28 size. We sample only one
image from each category as the training data, and the hyperparameters
are shown in Fig.5. In Fig.5, we use the Adam optimizer [22] and Binary
Cross Entropy [25] to update the generator and the discriminator and the
multiple distribution’s parameters (e.g., µ, δ, b and a). We set the parameter
of LeakyRelu [47] as 0.02 and that of Dropout [40] as 0.5. The activation of
last layer for the generator and the discriminator is Sigmoid for MNIST and
MS datasets and Tanh for CIFAR-10 dataset.

In this case, we test the number of distributions in Z from 2 to 4 and
the drawing noise samples from only multiple Gaussian distributions (z =
(µ+δε1)∗ ...∗(µ+δεn)) and only multiple Uniform distributions (z = (ζ1(b−
a) + a) ∗ ... ∗ (ζn(b− a) + a)) which are used to form the joint distribution in
Z, and the generated images are shown in Table.1. Note that the parameters
a, b have been initialized to (-1, 1) and the parameters µ and δ have been

17

Generator network

Discriminator network

3
×

3
 d

ec
o
n

v
, 1

1
2

, strid
e=

1

3
×

3
 d

ec
o
n

v
, 5

6
, strid

e=
2

3
×

3
 d

ec
o
n

v
, 2

8
, strid

e=
2

R
e
L

u

R
e
L

u

B
a
tch

N
o

rm

B
a
tch

N
o

rm

3
×

3
 co

n
v

, 2
8
, strid

e=
2

3
×

3
 co

n
v
, 5

6
, strid

e=
2

3
×

3
 co

n
v

, 1
1
2

, strid
e=

1

L
e
ak

y
R

elu

L
e
ak

y
R

elu

B
a
tch

N
o

rm

B
a
tch

N
o

rm

D
ro

u
p

o
u

t

D
ro

u
p

o
u

t

S
ig

m
o

id
S

ig
m

o
id

MNIST CIFAR-10

lin
ear, 2

5
6

lin
ear, 1

0
2

4

lin
ear, 6

R
e
L

u

R
e
L

u

B
a
tch

N
o

rm

B
a
tch

N
o

rm

lin
ear, 2

5
6

lin
ear, 5

1
2

lin
ear, 1

0
2

4

L
e
ak

y
R

elu

L
e
ak

y
R

elu

B
a
tch

N
o

rm

B
a
tch

N
o

rm

D
ro

u
p

o
u

t

D
ro

u
p

o
u

t

S
ig

m
o

id

S
ig

m
o

id
MS

4
×

4
 d

ec
o
n

v
, 1

2
8

, strid
e=

1

4
×

4
 d

ec
o
n

v
, 6

4
, strid

e=
2

4
×

4
 d

ec
o
n

v
, 3

2
, strid

e=
2

R
e
L

u

R
e
L

u

B
a
tch

N
o

rm

B
a
tch

N
o

rm

4
×

4
 co

n
v
, 3

2
, strid

e=
2

4
×

4
 co

n
v

, 6
4
, strid

e=
2

4
×

4
 co

n
v

, 1
2
8

, strid
e=

2

L
e
ak

y
R

elu

L
e
ak

y
R

elu

B
a
tch

N
o

rm

B
a
tch

N
o

rm

D
ro

u
p

o
u

t

D
ro

u
p

o
u

t

S
ig

m
o

id

T
a
n
h

B
a
tch

N
o

rm

R
e
L

u

4
×

4
 d

ec
o
n

v
,3

 strid
e=

1

L
e
ak

y
R

elu

B
a
tch

N
o

rm

4
×

4
 co

n
v
, 2

5
6

, strid
e=

1

z, 1
0

x
/G

(z)

x
/G

(z)
z, 1

0

R
e
L

u

3
×

3
 d

ec
o
n

v
, 1

, strid
e=

2

x
/G

(z)
z, 1

0

Figure 5: Architectural details of JDGAN model. “K ×K, conv/deconv, C, stride = S”
denotes a convolutional/deconvolutional layer with K × K kernel, C output filters and
stride = S. BN indicates a batch normalization layer. 10 indicates the dimension of z. In
Mass Spectrometry (MS) dataset, the out channel at the last layer for generator is set to 6,
for 6 features (Acq Time, Intensity, Precursor Intensity Acquisition, Apex Time, Elution
Peak Width, MS2Counts) can determine whether the eyes are diseased or not.

initialized to (0, 1). After that, we incorporate the two distributions (Eq.(7))
into a joint distribution, and the results are shown in Table.2. Note that
we have already studied all the baselines on this dataset, and the results
shown in Fig.2 demonstrate poor performance of all the baselines. We now
report the Fréchet Inception Distance (FID) [16] [32] scores obtained by our
JDGAN (Row 1 and column1 in Table.2) and baselines (Fig.2) in Table.3
on MNIST dataset. FID measures the Fréchet distance between the two
distributions and it is the 2-Wasserstein distance. In other words, FID can
loyally reflect the matching degree (it is also called overlapping area) of two
distributions (pr and pG). The smaller the FID score is, the better. From
Table.3, we can see that the JDGAN achieves the smallest score, which proves
the effectiveness of our proposed JDGAN on generating diverse simulation
data and more closer distribution as original data distribution. Also, we
visualize the generated data distributions for all models to further validate
the promising performance of our proposed JDGAN on overlapping area,
which is shown in Fig.6. It shows that the distribution of simulation data
produced by JDAGN is closer to the original data distribution than that
produced by baselines, and thus suffers the least from the mode collapse.

The three sets of results demonstrate the promising results produced by
our proposed JDGAN. However, there is an interesting scenario where the
diversity is decreasing when the number of distributions is increasing. Note

18

Number Simulation Data1 Simulation Data2

2

3

4

Table 1: We jointly employ multiple Gaussian distributions (Simulation Data1) or Uniform
distributions (Simulation Data2). The number=2 indicates that we employ two same
distributions to construct Z. The best performance is achieved with the number=2 as the
randomized space is constructed by 2 Gaussian distributions, for the diversity outperforms
others.

that when employing a large number of distributions to construct the ran-
domized space, the noise distribution could be more complicated than orig-
inal data distribution. We think it may be because the noise’s diversity is
richer under this scenario, and the generator may abandon some values dur-
ing training when the GAN model transforms a complicated distribution into
an relatively simpler distribution. The abandoned values would cause incom-
plete information, which may be a part of a handwritten figure. Thus, to fool
the discriminator, the generator easily tends to generate the “realistic” but
repeated simulated data rather than the “unrealistic” but diverse instances.
Thus, a suitable number is 2 for the MNIST dataset in this scenario.

Notice that all the experiments shown above are conducted on the sce-
nario with diverse and extremely limited data. To validate the generalization
of our proposed JDGAN, we test its performance on other scenarios.

1. We apply our proposed JDGAN to the adequate training data (60000
figure samples) and compare it with the state-of-the-art GAN vari-

19

Number Simulation Data

1

2

3

Table 2: We jointly employ multiple Uniform and Gaussian distributions. The number=1
indicates that the joint distribution is determined by a Uniform and a Gaussian (Eq.(6)),
and number=2 indicates that the joint distribution is determined by two Uniform dis-
tributions and two Gaussian distributions. The best performance is achieved with the
number=1 and number=2, for they show the promising diversity.

ants. The generated images are shown in Fig.7. It shows that the
proposed JDGAN can also achieve good performance with adequate
training samples.

2. The training dataset is imbalanced dataset. On this scenario, the cat-
egory ’0’ holds 8 samples, and the categories ’1’ and ’2’ hold 1 sam-
ple. The results are shown in Fig.8. The generated data produced by
JDGAN are more diverse than other two models, because the three
categories are arisen while DeLiGAN lacks category ’2’.

Those experimental results show the effectiveness of our proposed JDGAN
on capturing diverse modes in different scenarios.

5.3. CIFAR-10 Dataset

The CIFAR-10 dataset is a colorful image dataset with 3*32*32 size. We
continue to apply all models to this dataset, and the architectural details of

20

Models FID Score

DCGAN 202.1
DeLiGAN 106.3
LSGAN 266.5
WGAN 179.4
RaGAN 290.3
MGAN 401.8
JDGAN 66.2

Table 3: FID scores of generated data shown in Fig.2 and Row 1, column1 in Table.2.

Figure 6: The overlapping area on the MNIST dataset. The blue line indicates the orig-
inal data distribution, and other lines indicate the generated data distribution, which
are produced by JDGAN, MGAN, WGAN, LSGAN, RaGAN and DCGAN respectively.
Obviously, JDGAN is closer to original data distribution than baselines.

JDGAN are the same as the Fig.5 except for the last layer of the generator,
which replaces Sigmoid with Tanh, given that the CIFAR-10 holds color-
ful images and the Tanh function can cover the color space of the training
distribution. We set the noise distribution as the Gaussian distribution (0,

21

(a) DCGAN (b) LSGAN (c) WGAN

(d) RaGAN (e) MGAN (f) JDGAN

Figure 7: Generated images produced by baselines and JDGAN on adequate MNIST
training samples.

Figure 8: Sub-figure (a) indicates the training data, and sub-figure (b) indicates the
generated data produced by JDGAN. Sub-figure (c) shows the generated data produced
by DeLiGAN.

1) for DCGAN [1], WGAN [4], RaGAN [20], MGAN [18] and LSGAN [34],
and sample noise samples from the Mixture-of-Gaussians model for DeLi-
GAN [15]. For MGAN, we employ 10 generators and each one is expected
to produce one instance. Similar to MNIST dataset, we still sample 10 im-

22

ages from CIFAR10 dataset, and each image represents a specific category.
The generated images of different models are shown in Fig.9. From these
generated data, we can observe that there are many identical images in sub-
figures (a), (b), (d) and (f), and we even observe the noise generated images
in sub-figures (c), (d) and (f).

(a) DCGAN (b) LSGAN (c) WGAN

(d) RaGAN (e) DeLiGAN (f) MGAN

Figure 9: The generated images are produced by DCGAN, LSGAN, WGAN, RaGAN,
DeLiGAN and MGAN, respectively. In this case, the training data only contain 10 sam-
ples, and each one represents a specific category. The generator samples noise from stan-
dard Gaussian distribution (0, 1) for DCGAN, LSGAN, WGAN, RaGAN and MGAN,
and samples noise from a Mixture-of-Gaussians model for DeLiGAN.

Similar to MNIST, we continue to construct the randomized space Z by
using only multiple Gaussian distributions, only multiple Uniform distribu-
tions and the joint distribution of these two distributions respectively. The
generated results are shown in Table.4 and Table.5, respectively.

From Table.4 and Table.5, We can observe that the best performance is
achieved with the number=3 in Table.4 when the randomized space is deter-
mined by three same distributions, and that is achieved with the number=2
in Table.5 if the randomized space is determined by two different distribu-
tions.

We think that the information possessed by CIFAR-10 dataset is richer
than MNIST dataset, and there is a need to sample noise from more compli-
cated distributions for the generator to capture more diverse modes. Similar
to MNIST dataset, the more distributions could also cause generating iden-
tical simulated images, for transforming complicated distributions into a rel-
atively simpler distribution could abandon some information of diversity. As
for less distributions (e.g., number=2 in Table.4), such a combination cannot

23

Number Simulation Data1 Simulation Data2

2

3

4

Table 4: We jointly employ multiple Gaussian distributions (Simulation Data1) and mul-
tiple Uniform distributions (Simulation Data2). The best performance is achieved with
the number=3, which means we employing three same distributions to construct Z.

satisfy the rich diversity and the overlapping area could not be enough, thus,
the generator tends to generate “realistic” but identical simulation images.
In conclusion, we recommend the number of distributions as two different
distributions. We now report the Fréchet Inception Distance (FID) scores
and overlapping areas obtained by our JDGAN (Row 1 in Table.5) and base-
lines (Fig.9) in Table.6 and Fig.10. From Table.6, we can observe that the
JDGAN still achieves the smallest score; from Fig.10, we can observe that
the JDGAN holds the most similar distribution as original data distribution
than other GAN variants. Both results further prove the effectiveness of our
proposed JDGAN.

We continue to test its performance on adequate CIFAR10 training sam-
ples (50000 images), and the generated images are shown in Fig.11. The
experimental results also further illustrate that the JDGAN is not only good
at generating diverse simulation data in the extremely limited dataset but
also suitable for the adequate data samples.

24

Number Simulation Data

1

2

3

Table 5: We jointly employ multiple Uniform and Gaussian distributions, and the best
performance is achieved with the number=1.

5.4. Other distributions

The Uniform distribution and Gaussian distribution are the most com-
mon distributions in statistics, so they are widely used in many GAN variants
(e.g, Uniform for the vanilla GAN and DCGAN, Gaussian for the LSGAN
and WGAN). To validate the performance of proposed JDGAN on other
distributions, we employ the Cauchy distribution, Exponential distribution,
Uniform distribution and Gaussian distribution to form the joint distribu-
tion, and samples noise code Z from this joint distribution. According to
the previous experimental results, we form the joint distributions of Cauchy
and Exponential, Cauchy and Exponential and Uniform, Cauchy and Ex-
ponential and Uniform and Gaussian to construct the latent space. In this
case, the training data is still the extremely limited samples, and the gener-
ated results are shown in Table.7. From Table.7, we can see that the best
performance is still in the case of number=2, larger number resulting in iden-
tical instances. We compare the FID score of combination of Cauchy and
Exponential (FIDCE) with that of combination of Gaussian and Uniform
(FIDGU), we get FIDCE on MNIST and CIFAR10 are 101.4 and 352.1 re-
spectively, which are larger than FIDGU 66.2 and 310.8. In this way, the

25

Models FID Score

DCGAN 389.6
DeLiGAN 381.9
LSGAN 436.7
WGAN 444.3
RaGAN 453.3
MGAN 456.7
JDGAN 310.8

Table 6: FID scores of generated data shown in Fig.9.

Figure 10: The overlapping area on CIFAR-10 dataset. The blue line indicates the original
data distribution, other lines indicate the simulation data distribution, which are generated
by JDGAN, MGAN, WGAN, LSGAN, RaGAN and DCGAN respectively. Obviously,
JDGAN captures the distribution with the highest similarity to that of the original data.

combination of Uniform and Gaussian could be the better choice in our cases.

5.5. Mass Spectrometry Dataset

Protein is highly complex biochemical entity, and is present in all liv-
ing organisms. Proteins are the downstream products from genes which

26

(a) DCGAN (b) LSGAN (c) WGAN

(d) RaGAN (e) MGAN (f) JDGAN

Figure 11: Generated images produced by GAN variants and JDGAN on adequate CI-
FAR10 training samples.

carry out almost all essential biological and chemical functions in a living
body. Primary structure of a protein is determined by the sequence of spe-
cific amino acids (peptide). In recent years, mass spectrometry has become
the core analytical technique in studying protein identification and quantifi-
cation [38]. Mass spectrometry works by ionizing chemical compounds to
generate charged molecules or molecule fragments and measuring their mass
to charge ratios (m/z). The generated peak spectra reflect the identification
and abundance of a specific protein.

In a typical tandem mass spectrometry (MS/MS) experiment, protein
mixture is digested by an enzyme into smaller peptides. The sample pep-
tides are then ionized and subjected to MS. As a medical dataset, the main
problem is that enough available data collection could be expensive and unre-
alistic (here we just hold 5 patients and the number of peptide in each patient

27

Number Simulation Data on MNIST Simulation Data on CIFAR10

2

3

4

Table 7: Number=2 indicates that one single Cauchy and one single Exponential are em-
ployed; number=3 indicates that one single Cauchy, one single Exponential and one single
Uniform are employed; number=4 indicates that one single Cauchy, one single Exponen-
tial, one single Uniform and one single Gaussian are employed.

is 74552). Thus, we hope to use the generative model to generate more sim-
ulation data to supplement the original data. We then apply our proposed
JDGAN (Eq.(6)) to MS dataset, and the hyper parameters are shown in the
right part of Fig.5. Although there are many features for each patient, we
just pick up 6 features (Acq Time, Intensity, Precursor Intensity Acquisi-
tion, Apex Time, Elution Peak Width, MS2Counts) because the 6 features
correlate to the differential protein expressions under different biological con-
ditions. In most of the cases, between healthy and disease conditions.

The results are shown in Fig.12. In Fig.12, the blue line indicates the
threshold, which is a group of mean values calculated by the healthy pro-
teomic values and diseased proteomic values. In most cases, a proteomic
value is below the threshold if this proteomic value belongs to the healthy
set, while a proteomic value is larger than the threshold as the proteomic
value belongs to the diseased set. The red points and green points are simu-
lation data generated by JDGAN, we can see that most simulation data are
below the threshold as they belong to healthy set and that are above the

28

Figure 12: The green points and red points are belonging to the simulated data generated
by JDGAN. The blue line indicates a threshold calculated by original proteomic values
included by peptide, which can distinguish whether the peptides within a biological tissue
is healthy or not. The tissue is healthy if the corresponding proteomic value is below the
threshold, or diseased as the proteomic value is larger than the threshold.

threshold as they belong to the diseased set.

5.6. Discussion

In fact, it is hard to obtain the original data distribution. It becomes
even harder for extremely limited data with rich information (e.g., many cat-
egories, color or shape information, pixel details). Let pz 99K z and pr 99K x
where the dash line indicates model drawing samples from a certain distribu-
tion. In the traditional GAN generating mechanism, G always specializes in
z 7→ x. Considering pz(z) is contained in pG, the generated data distribution
cannot be complicated to match the original data distribution completely.
Under such a scenario, the generated data diversity cannot be guaranteed.
See Fig.2 and Fig.9. JDGAN increases the diversity of generated instances
by employing the joint distribution to construct the randomized space. See
Table.1, Table.2, Table.4 and Table.5.

Note that the crucial point of JDGAN is how to determine the number
of distributions. In this paper, we utilize the Intrinsic Dimension strategy

29

to evaluate the Intrinsic Dimensions of original data and generated data,
because the Intrinsic Dimension can loyally reflect the minimal dimension
of data manifold [26]. By calculating the Intrinsic Dimensions of original
data and generated data (Fig.2 (a)) with Eq.(8), we get m̂(x)raw data = 5.79
and m̂(x)generated data = 3.30. This suggests that two distributions may be
the optimal choice in our cases, and greater or less than this number would
decrease the performance. We still use Eq.(8) to calculate the Intrinsic Di-
mension of synthetic data produced by JDGAN (Table.5 row1), and get
m̂(x)synthetic data = 5.73, which is very close to that of raw data. Under such
a scenario, the generated distribution is closer to original data distribution
(See Table.3 and Table.6) and the diversity of generated data can also be
guaranteed (See Table.1, Table.2, Table.4, Table.5 and Table.7).

6. Conclusion

In this paper, instead of modifying the framework of a GAN model, we
explore another direction, which is to modify the randomized space by jointly
employing multiple distributions and learn these distributions together with
the generator with reparameterization method, to increase the diversity of
simulated data and the overlapping area between the raw data distribution
and the generating distribution. Also, we explore how to combine these distri-
butions and display the different performance on different numbers of distri-
butions. Specifically, we jointly employ only multiple Gaussian distributions,
only multiple Uniform distributions and the mixture of two distributions re-
spectively, and test each performance. We conducted extensive experiments
with MNIST and CIFAR-10 as well as mass spectrometry datasets to val-
idate our proposed JDGAN. The results have shown that our approach is
effective and better than other GAN-based models.

Acknowledgment

This work was supported in part by the National Key R&D Program of
China (No.2018YFC1604000), in part by the RGC Collaborative Research
Fund (CRF) 2018/19 - Group Research Grant (No.:C5026-18G), and in part
by the RGC General Research Fund GRF (No.15102015/15M).

[1] Luke Metz Alec Radford and Soumith Chintala. Unsupervised represen-
tation learning with deep convolutional generative adversarial networks.
2015.

30

[2] Laurent Amsaleg, Oussama Chelly, Teddy Furon, Stéphane Girard,
Michael E Houle, Ken-ichi Kawarabayashi, and Michael Nett. Esti-
mating local intrinsic dimensionality. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 29–38, 2015.

[3] Martin Arjovsky and Léon Bottou. Towards principled meth-
ods for training generative adversarial networks. arXiv preprint
arXiv:1701.04862, 2017.

[4] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan.
arXiv preprint arXiv:1701.07875, 2017.

[5] Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang.
Generalization and equilibrium in generative adversarial nets (gans). In
Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 224–232. JMLR. org, 2017.

[6] Léon Bottou. Large-scale machine learning with stochastic gradient
descent. In Proceedings of COMPSTAT’2010, pages 177–186. Springer,
2010.

[7] Miguel A. Carreira-Perpinan. Mode-finding for mixtures of gaussian
distributions. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 22(11):1318–1323, 2000.

[8] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadim-
itriou. The complexity of computing a Nash equilibrium. ACM, 2009.

[9] Dominik Maria Endres and Johannes E Schindelin. A new metric for
probability distributions. IEEE Transactions on Information theory,
2003.

[10] Jesse Engel, Kumar Krishna Agrawal, Shuo Chen, Ishaan Gulrajani,
Chris Donahue, and Adam Roberts. Gansynth: Adversarial neural audio
synthesis. The International Conference on Learning Representations,
2019.

[11] Arnab Ghosh, Viveka Kulharia, Vinay P Namboodiri, Philip HS Torr,
and Puneet K Dokania. Multi-agent diverse generative adversarial net-
works. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 8513–8521, 2018.

31

[12] Bordes A. Glort, X. and Y. Bengio. Deep sparse rectifier neural net-
works. International Conference on Artificial Intelligence and Statistics,
pages 315–323, 2011.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Advances in neural information processing
systems, pages 2672–2680, 2014.

[14] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin,
and Aaron C Courville. Improved training of wasserstein gans. In
Advances in Neural Information Processing Systems, pages 5769–5779,
2017.

[15] Swaminathan Gurumurthy, Ravi Kiran Sarvadevabhatla, and
R Venkatesh Babu. Deligan: Generative adversarial networks for
diverse and limited data. In CVPR, pages 4941–4949, 2017.

[16] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard
Nessler, and Sepp Hochreiter. Gans trained by a two time-scale up-
date rule converge to a local nash equilibrium. In Advances in neural
information processing systems, pages 6626–6637, 2017.

[17] CC Heyde. Central limit theorem. Encyclopedia of Actuarial Science,
2006.

[18] Quan Hoang, Tu Dinh Nguyen, Trung Le, and Dinh Phung. Mgan:
Training generative adversarial nets with multiple generators. 2018.

[19] Sicong Huang, Qiyang Li, Cem Anil, Xuchan Bao, Sageev Oore, and
Roger B Grosse. Timbretron: A wavenet (cyclegan (cqt (audio)))
pipeline for musical timbre transfer. The International Conference on
Learning Representations, 2019.

[20] Alexia Jolicoeur-Martineau. The relativistic discriminator: a key el-
ement missing from standard gan. The International Conference on
Learning Representations, 2019.

[21] Mahyar Khayatkhoei, Maneesh K Singh, and Ahmed Elgammal. Dis-
connected manifold learning for generative adversarial networks. In

32

Advances in Neural Information Processing Systems, pages 7343–7353,
2018.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[23] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114, 2013.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[25] Dirk P Kroese, Reuven Y Rubinstein, Izack Cohen, Sergey Porotsky, and
Thomas Taimre. Cross-entropy method. In Encyclopedia of Operations
Research and Management Science, pages 326–333. Springer, 2013.

[26] Elizaveta Levina and Peter J Bickel. Maximum likelihood estimation
of intrinsic dimension. In Advances in neural information processing
systems, pages 777–784, 2005.

[27] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. Efficient
mini-batch training for stochastic optimization. In Proceedings of the
20th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 661–670. ACM, 2014.

[28] Wei Li, Wei Ding, Rajani Sadasivam, Xiaohui Cui, and Ping Chen. His-
gan: A histogram-based gan model to improve data generation quality.
Neural Networks, 119:31–45, 2019.

[29] Wei Li, Li Fan, Zhenyu Wang, Chao Ma, and Xiaohui Cui. Tackling
mode collapse in multi-generator gans with orthogonal vectors. Pattern
Recognition, 110:107646.

[30] Wei Li, Linchuan Xu, Zhixuan Liang, Senzhang Wang, Jiannong Cao,
Chao Ma, and Xiaohui Cui. Sketch-then-edit generative adversarial net-
work. Knowledge-Based Systems, page 106102, 2020.

[31] Yijun Li, Sifei Liu, Jimei Yang, and Ming-Hsuan Yang. Generative face
completion. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, volume 1, page 6, 2017.

33

[32] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier
Bousquet. Are gans created equal? a large-scale study. In Advances in
neural information processing systems, pages 700–709, 2018.

[33] Christopher D Manning and Hinrich Schütze. Foundations of statistical
natural language processing. MIT press, 1999.

[34] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and
Stephen Paul Smolley. Least squares generative adversarial networks.
In 2017 IEEE International Conference on Computer Vision (ICCV),
pages 2813–2821. IEEE, 2017.

[35] Mehdi Mirza and Simon Osindero. Conditional generative adversarial
nets. arXiv preprint arXiv:1411.1784, 2014.

[36] James R Norris. Markov chains. Number 2. Cambridge university press,
1998.

[37] Ludger Rüschendorf. The wasserstein distance and approximation the-
orems. Probability Theory and Related Fields, 70(1):117–129, 1985.

[38] Eduard Sabidó, Nathalie Selevsek, and Ruedi Aebersold. Mass
spectrometry-based proteomics for systems biology. Current opinion
in biotechnology, 23(4):591–597, 2012.

[39] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec
Radford, and Xi Chen. Improved techniques for training gans. In
Advances in Neural Information Processing Systems, pages 2234–2242,
2016.

[40] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural net-
works from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958, 2014.

[41] T Tieleman and G Hinton. Rmsprop: Divide the gradient by a running
average of its recent magnitude. coursera: Neural networks for machine
learning. Tech. Rep., Technical report, page 31, 2012.

[42] Ilya O Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-
Gabriel, and Bernhard Schölkopf. Adagan: Boosting generative models.

34

In Advances in Neural Information Processing Systems, pages 5424–
5433, 2017.

[43] Curtis R Vogel. Computational methods for inverse problems, volume 23.
Siam, 2002.

[44] Jia Wang, Jiannong Cao, Wei Li, and Senzhang Wang. Cane:
community-aware network embedding via adversarial training. Knowl-
edge and Information Systems, pages 1–28, 2020.

[45] Jia Wang, Jiannong Cao, Senzhang Wang, Zhongyu Yao, and Wengen
Li. Irda: Incremental reinforcement learning for dynamic resource allo-
cation. IEEE Transactions on Big Data, 2020.

[46] Senzhang Wang, Jiannong Cao, and Philip Yu. Deep learning for spatio-
temporal data mining: A survey. IEEE Transactions on Knowledge and
Data Engineering, 2020.

[47] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation
of rectified activations in convolutional network. Computer Science,
2015.

[48] Guoshen Yu, Guillermo Sapiro, and Stéphane Mallat. Solving inverse
problems with piecewise linear estimators: From gaussian mixture mod-
els to structured sparsity. IEEE Transactions on Image Processing,
21(5):2481–2499, 2012.

[49] Kai Yu, Tong Zhang, and Yihong Gong. Nonlinear learning using lo-
cal coordinate coding. In Advances in neural information processing
systems, pages 2223–2231, 2009.

[50] Ning Zhang, Evan Shelhamer, Yang Gao, and Trevor Darrell. Fine-
grained pose prediction, normalization, and recognition. arXiv preprint
arXiv:1511.07063, 2015.

35

