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Convolutional Neural Network with Median Layers
for Denoising Salt-and-Pepper Contaminations

Luming Liang†, Sen Deng‡, Lionel Gueguen§, Mingqiang Wei‡∗, Xinming Wu¶, and Jing Qin‖

Abstract—We propose a deep fully convolutional neural net-
work with a new type of layer, named median layer, to restore im-
ages contaminated by the salt-and-pepper (s&p) noise. A median
layer simply performs median filtering on all feature channels. By
adding this kind of layer into some widely used fully convolutional
deep neural networks, we develop an end-to-end network that
removes the extremely high-level s&p noise without performing
any non-trivial preprocessing tasks, which is different from all the
existing literature in s&p noise removal. Experiments show that
inserting median layers into a simple fully-convolutional network
with the L2 loss significantly boosts the signal-to-noise ratio.
Quantitative comparisons testify that our network outperforms
the state-of-the-art methods with a limited amount of training
data. The source code has been released for public evaluation
and use (https://github.com/llmpass/medianDenoise).

Index Terms—Median layer, Deep neural network, Salt-and-
pepper noise

I. INTRODUCTION

Image denoising is a well-studied yet not well-solved prob-
lem [1], [2], [3], [4], [5], [6], [7], where the goal is to recover
the underlying signal from its contaminated observation. The
contaminations can be categorized into many different types
according to their distributions and behaviors, e.g., additive
(Gaussian) noise, shot (Poisson) noise, JPEG noise, etc. We
focus on the salt-and-pepper (s&p) noise, which is an impulse
contamination to the image. In an image with the s&p noise,
pixels become maximal or minimal values with a predefined
probability, which is called the noise level, i.e. the higher
this value is, the more pixels will be contaminated. The s&p
noise is a special case of random-value impulse noise defined
in [4] and [5]. For a given noise level p ∈ (0, 1), an s&p
contaminated image could be defined as

I(i, j) =


0, r1 < p and r2 < 0.5

255, r1 < p and r2 ≥ 0.5,

I(i, j), r1 ≥ p

(1)

where both r1 and r2 are 2 random values generated on each
pixel, with the former one determining if a pixel will be
contaminated or not and later one controlling if that the pixel
will turn to be the maximal (salt) value or the minimal (pepper)
value. From Equation 1, one observes that the s&p noise
is neither like the additive (Gaussian) noise, which can be
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(a) Original (b) 70% s&p (c) Median5 (d) Median5 x2
PSNR 6.72 db 14.01 db 19.14 db

(e) Median5 x5 (f) Median5 x10(g) Median5 x25 (h) Our method
24.09 db 24.89 db 24.52 db 33.07 db

Fig. 1: Classic Lenna image with the high-level s&p noise contami-
nation and filtering results with repeated median filter.

fully separated from the signal [1]; nor like the shot (Poisson)
noise, which is signal dependent [5]. It appears as the pure
noise at the contaminated locations (called missing pixel in
[5]) and therefore erases all signals there. This fact prevents
us to use any optimization method in a continuous space to
recover the signal, since the gradients estimated from missing
pixels are totally not reliable and they will further scatter
to other unpolluted locations. Traditional ways to recover
images from s&p pollution all require nonlinear searches and
mappings. The search step [8], [9], [10] generally determines
the locations of the contaminated pixels and the mapping step
tries to give a feasible estimate at each contaminated pixel
by weightedly averaging the similar pixel values around it.
This set of filters are named switching filters. However, when
the noise level is increasing, the search step becomes more
and more unreliable. On the other hand, the signal estimation
step will also be degraded by the high-level noise since the
similarity estimation becomes intractable.

To alleviate this limitation, [4] uses switching templates to
avoid noise disturbance in the process of measuring similarity.
Based on the similarities, they extract repairable information
in non-local regions instead of local patches. This filter is
named as non-local switching filter (NLSF). The method uses
a trained Convolutional Neural Network to finally refine the
signal recovered by NLSF. Therefore, NLSF is considered as
a prepocessing step to the neural network. This method is
a combination of traditional methods and the learning-based
method.

Besides the usual learning-based ideas that train models to
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Fig. 2: Peak Signal to Noise Ratio trends with respect to the number
of iterations of repeated 5× 5 median filters.

denoise using pairs of clean images and their noisy versions,
the noise-to-noise method [5] trains models only on noisy
images. They discover that training without using clean images
can achieve, sometimes even exceeds, the result obtained by
training using ground truths. Following this paradigm, [5]
shows the ability to remove the random-valued impulse noise,
which can be considered as a superset of s&p noise. To
deal with the gradient loss problem introduced by pure noisy
pixels, they adopt an annealed version of the “L0 loss” to
replace the traditional L2 loss. The loss function is gradually
changing from L2 to L0 as the training progress. However, the
speed of this annealing procedure must be carefully chosen
(usually reducing the power of the norm on the loss function
according to the number of iterations). When the prediction is
far from the truth, the loss function must be closer to L2;
when the prediction is getting closer enough, L0 becomes
more favorable, since L0 loss emphasis the number of different
pixels, which leads the learning process to a detail amendment
stage.

We introduce the use of local nonlinear search into the
neural network without performing any pre-processing step
and also avoid changing the loss function from L2 loss to some
other losses that are not easy to optimize. We resort to median
filter [11], which is the first efficient method to denoise the
salt-and-pepper noise. By incorporating the median-filter-like
operations into deep neural networks, our method outperforms
state-of-the-art methods. Details of our methodology as well
as the model design can be found in Section II, evaluations are
presented in Section III. Section IV is for conclusion of our
work. We release our source code, training dataset and pre-
trained models at https://github.com/llmpass/medianDenoise
for reproducibility.

II. METHODOLOGY

Median filter is a traditional nonlinear filter which is espe-
cially efficient for removing impulse noise. It replaces the pixel
centered in a given window with the median of this window.
As shown in Figure 1, applying median filter on a highly
contaminated image (b) removes spikes and therefore greatly
improves the signal to noise ratio. Applying a 5×5 median
filter once (Figure 1c) and twice (Figure 1d),respectively,

removes about 50% and 90% noise. A natural idea is to
repeatedly apply the median filter upon the image until all
spikes are replaced by the median in a fixed-size local window.
It does remove the noise, however, it fails to recover the
signal. The Peak Signal to Noise Ratio (PSNR) increases in the
first several iterations but drops finally as the image becomes
blocky and blurry, see Figure 1g. This phenomena indicates
that the median filter deviates the signal too much from its
original shape, which is also the main reason why modern
researchers abandon median filter in denoising s&p noise.

In addition, the best PSNR value appears at different iter-
ations of repeated median filtering when denoising different
levels of noise. Figure 2 shows the higher density the noise
is, the more iterations of median filters are required.

Our basic idea is to keep the ability of spike removal from
the traditional median filter but try to recover the degradations
introduced by it. Figure 3 illustrates a simple 1D synthetic
example. We contaminate an evenly-sampled 1D sine function
(dotted curves in Figure 3a) by 50%-level s&p noise. After
that, we tried to use different ways to recover the clean signal:

1) Repeated Median filters, see Figure 3b-d;
2) Repeated Gaussian filters, see Figure 3e-f;
3) Alternating Median and Gaussian filters, see Figure 3h-j.

Here, all Median and Gaussian filters have the same window
size that equals to 5 pixels. One may observe the third schema
yields the best approximations (green curves) to the original
sine function, no matter in the aspect of the signal shape or
mean square errors (mse) between the smoothed curves (solid)
and the true signal (dotted) curve. Using only Median filters
creates plateau-like artifacts; using only Gaussian filters over
smooth the noisy curves. By alternating Median and Gaussian
filters, apparent plateau-like artifacts are washed out while the
resulting curve still stays close to the true signal. The quick-
dropping mse values between smoothed curves generated by
the third schema and the truth quantitatively support our
observation.

We leverage these observations to design our deep neu-
ral network model for 2d image denoising. We replace the
Gaussian filter, which is a fix-parameter smoothing filter, by
a set of learnable convolution operations and thus design an
end-to-end fully convolutional network with Median and other
convolutions alternatingly appearing.

Instead of directly applying median filters on the images,
we implement median filtering as a neural network operation
and perform it on different feature channels. In this way,
we essentially remove spikes in different feature spaces and
then combine the de-spiked features to predict a better noise
removed image. On one hand, the median filtering in the
feature space acts just like the switch filters in the traditional
methods [8], [4]; on the other hand, the de-spike ability
introduced by median operations allow the gradients to pass
through the non-noisy pixels.

A. Median layer definition

Median filter is applied to each element of a feature channel
in a moving window fashion. For example, an input image that
consists of RGB channels, corresponds to 3 feature channels;
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(a) Noisy signal

(b) Median filtered

(c) Median filter applied twice

(d) Median filter applied 3 times

(e) Gaussian filtered

(f) Gaussian filter applied twice

(g) Gaussian filter applied 3 times

(h) Median filtered followed by Gaussian filtered

(i) filters applied: Median, Gaussian and Median

(j) filters applied: Median, Gaussian, Median and Gaussian

Fig. 3: 1D signal denoising example using median filters and gaussian
filters.

a set of features generated after the convolution generally
contains many number of channels. For each feature channel,
we first extract a set of given size (3 × 3, 5 × 5, ...) size
patches centered at each pixel. Then, we find the median of
the sequence formed by all elements in that patch. We show a
simple tensorflow/python implementation of this median filter
layer in Listing 1. Here, parameter x is a channel of the input
tensor and k denotes an integer kernel size.
def f i n d m e d i a n s ( x , k = 3 ) :

p a t c h e s = t f . e x t r a c t i m a g e p a t c h e s (
x ,
k s i z e s = [1 , k , k , 1 ] ,
s t r i d e s = [ 1 , 1 , 1 , 1 ] ,
r a t e s = [1 , 1 , 1 , 1 ] ,
padd ing = ’SAME’ )

m idx = i n t ( k∗k / 2 + 1)
top , = t f . nn . top k ( p a t c h e s , m idx , s o r t e d =True )
median = t f . s l i c e ( top , [ 0 , 0 , 0 , m idx−1], [−1, −1, −1, 1 ] )
re turn media

Listing 1: Tensorflow implementation of Median layer

In practice, this median layer is applied on each feature
channel and then we concatenate them to form a new set of
features, e.g. median layer will be applied 64 times given a
set of 64 feature channels generated by Convolutions.

B. Network architecture

As shown in Figure 4a, our network is a fully convolutional
network, so that no restrictions are posed on the size of the
input. It starts with 2 consecutive median layers, which are
then followed by a sequence of residual blocks and median
layers. The last part of the network is just residual blocks
without inserting median layers in between them. In practice,
we only insert median layers into the first half of the sequence
of residual blocks. The first part of the network is dedicated to
remove noise from the image, the second half of the network
is designed for recovering the signal.

We choose to generate 64 features per convolution layer
and our residual block is designed as a skip connection over 2
64-convolutions, followed by batch normalization layers and
nonlinear activations (relu in practice), as shown in Figure 4b.

As mentioned beforehand, we stick to use the simplest L2

loss as our objective function. This loss is simply defined as the
the mean square error of the estimated image and the ground
truth image, as minimizing mse directly relates to increase of
denoise metrics psnr. Details can be found in Equation 3.

III. EVALUATION

We design several experiments to evaluate the properties
of median layers (Section III-B) and performances of the
proposed network (Section III-C).

A. Training and testing setup

For fair comparisons, we train all models with the same data
set described in [12] that contains 91 different images, which
is also employed in other works [4]. Since our network is a
fully convolutional network, the input size can be arbitrary. We
first resize these 91 images to 200×200 and then we generate
70× 70 patches from them as clean images. We degrade each
patch by the s&p noise with levels from 10% to 90% with
a step equals to 10% as a sequence of noisy images. The



4

(a) Fully convolutional network with median layers in between residual blocks. (b) Our residual blocks.

Fig. 4: Our network structure.

noise level ConvRelu 16 ConvRelu 16 ResBlock 16 ResBlock 16 ResBlock 32 ResBlock 32
without median with median without median with median without median with median

30% 31.15 33.82 40.38 40.89 36.86 40.90
50% 30.15 32.01 36.55 36.93 36.86 37.28
70% 28.88 29.37 31.98 32.23 32.22 32.40

TABLE I: PSNR (db) comparisons w/o Median layers on BSD300.

models are trained to learn a series of weights in layers that
can transfer the input noisy image to the clean image.

To quantitatively compare the performance of different
methods, we perform denoising on 3 sets of the images.
The first set of image consist of some classical images
in the image processing field (also used in [4]); the
second set is BSD300 [13] (https://www2.eecs.berkeley.edu/
Research/Projects/CS/vision/grouping/segbench/BSDS300/
html/dataset/images.html); the third set is Kodak Image
Dataset (http://r0k.us/graphics/kodak/), which has been
widely used as the evaluation set [1], [2], [5].

The metric considered in the comparison is Peak Signal to
Noise Ratio (PSNR). It is defined by

PSNR = 10 log10(
2552

MSE
), (2)

where MSE is the mean-squared error between two M ×N
8-bit images I1 and I2, defined by

MSE =

∑
M,N [I1(m,n)− I2(m,n)]2

M ×N
. (3)

B. Effects of the median layer

The first experiment is designed to show the effectiveness
of the median layer. We trained several pairs of fully convolu-
tional networks mainly consisting of residual or convolution-
batchNorm-relu blocks, but one with median layers and one
without them.

We train two sets of deep fully convolutional networks, the
first set of networks are traditional ones that do not contain any
median layers, the second set of networks are the counterparts
of the first set with median layers inserted into them with
the same strategy shown in Figure 4a, i.e. the first half of
the network contains median layers, the second half does not.
The networks in the first set consist of repeated blocks of
convolution, batch normalization and activation or repeated
residual blocks as shown in Figure 4b.

(a) Original (b) 70% s&p (6.72 db)

(c) W/ medians (32.16db) (d) W/O medians (28.70db)

Fig. 5: Denoise results with and without median layers on an image
of BSD300, measured by PSNR (db).

Fig. 6: Training losses with and without median layers.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
90% s&p noise2noise ours ground truth

Fig. 7: Detailed comparisons between noise2noise and our model. Our model outperforms noise2noise consistently on different challenges:
1) smoothly changing background (the first row); 2) white and black strips (the second row) and 3) noise-like natural scene.
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Image Noise level DBA [14] NASNLM [9] PARIGI [10] NLSF [4] NLSF-MLP [15] NLSF-CNN [4] Noise2Noise [5] Ours

30% 34.42 28.09 33.90 34.20 30.80 35.38 36.39 37.04
50% 30.11 26.15 29.91 30.12 29.28 32.55 34.68 35.00
70% 25.84 25.97 25.22 25.79 27.63 30.18 32.83 33.07

30% 28.07 23.68 25.19 28.21 25.19 28.71 30.89 40.46
50% 24.24 22.91 22.61 24.45 23.86 26.01 27.96 34.83
70% 21.12 22.63 20.06 21.02 22.61 24.11 25.09 29.96

30% 29.41 20.61 29.74 32.88 29.64 33.47 39.98 40.65
50% 27.47 16.69 27.25 29.66 28.28 30.92 36.13 38.84
70% 24.99 16.32 24.29 26.33 26.90 29.06 30.55 33.29

30% 26.85 22.38 28.88 32.27 30.01 32.99 30.70 30.83
50% 25.27 21.82 25.44 27.99 28.57 30.23 29.86 30.07
70% 22.11 21.58 21.46 23.04 27.04 27.70 28.79 29.05

BSD300 30% 29.92 25.74 12.04 30.01 29.77 30.87 39.83 40.90

average 50% 26.32 24.50 6.01 26.25 26.19 27.84 35.92 37.28
70% 22.81 24.65 5.42 22.85 26.19 25.35 31.42 32.40

TABLE II: PSNR (db) Comparisons with state-of-the-arts on a set of classic images and BSD300 image database. Best performances of
every noise levels of different images are in bold.

Noise level DeepBoosting [7] Noise2Noise [5] Ours

30% 21.69 34.95 36.39
50% 19.50 32.27 34.35
70% 15.74 30.49 31.56

TABLE III: PSNR (db) Comparisons with state-of-the-arts on Kodak
image database. Best performances of every noise levels of different
images are in bold.

Losses in Figure 6 shows how median layers boost the
PSNR value of the network. Training losses of two net-
works with median layers inserted converge to a better
minima comparing to the losses without the median layers.
The “ConvRelu 16” network in Figure 6 is a DnCnn [1]
style network, which consists of 16 stacked Convolution-
BatchNormalization-Activation units. The “ResBlock 16”
network in Figure 6 is formed by simply replacing the
Convolution-BatchNormalization-Activation units to residual
blocks shown in Figure 4b. All convolution layers here gen-
erate 64 features.

PSNR comparisons of models with and without median
layers inserted (Table I) show the improvements of PSNR.
The PSNR values of models with median layers are usually
0.5db higher than the ones that do not have them.

C. Comparisons to the state-of-the-arts

Both quantitative and qualitative comparisons to the state-
of-the-arts are performed in this section.

1) Quantitative comparisons: We quantitatively compare
our network in Figure 4a to several state-of-the-art meth-
ods. Baselines include 5 traditional methods: Decision-Based
Algorithm (DBA) [14], Adaptive Switching Non-local Filter
(NASNLM) [9], PARIGI [10], NLSF [4] (prepocessing part of
NLSF-CNN), NLSF-MLP (NLSF with multi-layer perception
proposed in [15]) and 2 most recent neural network based
methods: NLSF-CNN [4] and Noise2Noise [5], as shown in
Table II. Many methods here are designed for denoising s&p
noise with moderate levels, therefore, we choose to evaluate
the methods under noise levels equal to 30%, 50% and 70%.

In addition, we also compare our method to DeepBoosting
[7] and Noise2Noise [5] on Kodak image dataset, as shown
in Table III.

Our method outperforms most of the state-of-the-arts be-
sides the pepper image. Comparing to current best baseline
method Noise2Noise [5], PSNR values achieved by our model
is about 1-2db higher in average and the severer the noise
contamination, the comparably better our method performs.

2) Qualitative comparisons on extremely high-level noise:
We further qualitatively compare our method to noise2noise
method [5] on denoising extremely high-level s&p noise (noise
level equals to 90%). In Figure 7, we choose three images
from BSD300 dataset, where different challenges can be found
there:

• both sharp feature and smooth background exist in the
first image (Figure 7d);

• pure black and white interphase pattern in the second
image (Figure 7h);

• noise-like nature scene background (Figure 7l).

The left-most column in Figure 7 shows the contaminated
images, which are the noisy version of their counterparts in
the right-most column. One may hardly see the contours of
the original salient objects there, since 90% of pixels become
either maximal or minimal values.

Our method performs consistently better than noise2noise
on all of these challenges. In Figure 7b, noise2noise generates
many small white blocky artifacts on the sky (red rectangle)
and also blurs the sharp edges (blue rectangle) of the windows.
Both of these 2 degradations are alleviated in our result shown
in Figure 7c.

Recovering underlying signal with pure black and white
interphase pattern from high-level s&p noise contamination
is a very difficult problem because both signal and noise are
almost binary in each channel. The method may have a hard
time to distinguish which pixel is contaminated. By comparing
the results shown in Figure 7f (noise2noise) and Figure 7g
(ours), one may observe that our method produces higher
quality images.
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Noise-like patterns are common to many nature scene
images, for example, the grass and the feathers of the owl in
Figure 7l and the leaves in the bridge image in Table II. We
observe that the image still looks noisy after being processed
by noise2noise method, where apparent small blue and red
dots stand out on the grass (Figure 7j). However, such dots
are invisible in our result, as shown in Figure 7k.

IV. CONCLUSION

In this paper, we show that incorporating the median fil-
tering technique in the deep neural network helps achieving
compelling results in denoising the s&p noise, especially
when the noise level is high. The ability of the median layer
to denoise is also experimentally testified with increasing
PSNR. Our work opens the door in adopting traditional low-
level nonlinear signal processing techniques in deep neural
networks. The methodology of inserting non-linear spatial
layers may boost the performances of some well-known deep
networks.

The median is the optimum point of a set of values under L1

norm, which minimizes the sum of absolute deviations. This
fact makes median layers act as a regularizer to the feature
channels. Unlike the annealing procedure on the loss function
adopted in [5], where the speed of evolving the loss from
L2 to L0 must be carefully chosen to achieve the best result
(with respect to the amount of noises), median layers is a more
feasible way to control the quality of the extracted features.
A single model can be trained to recover latent images with
different levels of noise contaminations only using L2 loss.

Spatial filtering have been invented and could be lever-
aged into convolutional neural networks to deal with images
affected by non-linear noise. More study on the median
placements could result in understanding its impact in the
process.
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