arXiv:2103.08971v1 [csIR] 16 Mar 2021

TLSAN: Time-aware Long- and Short-term Attention
Network for Next-item Recommendation

Jianging Zhang®, Dongjing Wang®*, Dongjin Yu?®

@School of Computer Science and Technology, Hangzhou Dianzi University, China

Abstract

Recently, deep neural networks are widely applied in recommender sys-
tems for their effectiveness in capturing/modeling users’ preferences. FEs-
pecially, the attention mechanism in deep learning enables recommender
systems to incorporate various features in an adaptive way. Specifically,
as for the next item recommendation task, we have the following three
observations: 1) users’ sequential behavior records aggregate at time po-
sitions (“time-aggregation”), 2) users have personalized taste that is related
to the “time-aggregation” phenomenon (“personalized time-aggregation”),
and 3) users’ short-term interests play an important role in the next item
prediction/recommendation. In this paper, we propose a new Time-aware
Long- and Short-term Attention Network (TLSAN) to address those obser-
vations mentioned above. Specifically, TLSAN consists of two main com-
ponents. Firstly, TLSAN models “personalized time-aggregation” and learn
user-specific temporal taste via trainable personalized time position embed-
dings with category-aware correlations in long-term behaviors. Secondly,
long- and short-term feature-wise attention layers are proposed to effectively
capture users’ long- and short-term preferences for accurate recommenda-
tion. Especially, the attention mechanism enables TLSAN to utilize users’
preferences in an adaptive way, and its usage in long- and short-term layers
enhances TLSAN’s ability of dealing with sparse interaction data. Extensive
experiments are conducted on Amazon datasets from different fields (also
with different size), and the results show that TLSAN outperforms state-of-
the-art baselines in both capturing users’ preferences and performing time-

*Corresponding author.
Email addresses: jqzy4869@gmail.com (Jianging Zhang),
dongjing.wang@hdu.edu.cn (Dongjing Wang), yudj@hdu.edu.cn (Dongjin Yu)

Preprint submitted to Neurocomputing March 17, 2021

sensitive next-item recommendation.

Keywords: personalized recommendation, next-item recommendation,
time-aware, long- and short-term, attention

1. Introduction

As people enjoy the convenience of the Internet every day, such as shop-
ping online, massive amounts of data have been generated and recorded.
Especially, those data may indicate important information, such as users’
preferences and behavior patterns, which can be utilized by recommender
systems [I, 2] to provide personalized services or contents for users and pro-
mote their experience.

Existing recommender systems are based on various methods and strate-
gies, such as collaborative filtering (CF) [3, [4], Markov chains [5] [6], matrix
factorization [3| [7], Bayesian probabilistic models [1} [8] and deep neural net-
works (DNN) [9, 10]. In recent years, attention mechanism [I1] [12] begins
to be used in many tasks, including recommendation, to incorporate various
features adaptively and increase model training speed. FEspecially, atten-
tion can be combined with various methods without adding too much model
complexity [13]. Furthermore, next-item recommender systems model users’
records and corresponding temporal context as behavior sequences to utilize
the context in a better way. Specifically, users’ preferences can be captured
from the entire sequence, and it can help make accurate predictions to pro-
vide personalized services.

However, existing approaches still face five main issues: (1) Category-
aware correlations modeling: Most existing approaches implicitly group
users, such as user-based CF [3], 14, 15] and social circle [16, 17], which can
not explicitly model the correlation between item category. Besides, some
works [I8], [19] explicitly incorporate user category information as users’ fea-
ture at the cost of high time complexity. Furthermore, users’ categories may
change dynamically over time and it is not accurate to model user as a par-
ticular category at each time position. (2) Feature-level representation
learning: As is shown in Figure [I| (Embeddings), each dimension in the
item’s embedding have specific effects, which may make different contribu-
tion to the tasks of prediction/recommendation. For example, the user in
Figure|l|is more interested in books (Book; and Books) than game (Game,),
so the weight of the feature that represents book is 9. Furthermore, the user

PP
d = B I i \\I
£ User l M = E U Electronics A
£ Records = _BOOK pgegyty~
g]] 7 Fruit id
a f \ “o . L_s
Category Book, Electronics Fruit Beauty Book, Notebook N SIy~-7
®
© © & g o g
g g 3 3 5 s ¢ = & g 3
, Book | 18| 1] .| s |1 [s s s o]a]s] user[2]e]s]-]s]o]s]e]s]-]o]s]
(=21
“E’ § Id Embedding Category Embedding Id Embedding Category Embedding
= é g g L2 g o § 2 £
w = 2 £ B EL Z 2 2
Book, ' 0 1 2 ... 0 9 | 9 | 9 | 5 | | 2 | 0 |Game1 2.0 0 ... 1 9 | 0 | 0 | 1 || 7 | 9 |
Id Embedding Category Embedding Id Embedding Category Embedding
= d o |
B : i =&) €9 ?
< i -5
g’g Records {7), !
o c
- l Book \ Category Book Electronics Fruit Beauty Book Game, Game, Next
Long-term Behavior Sequence Short-term Behavior Sequence
i S
- p |
, 2 Session, Session, Session, Session,
E8 (v | T 0 N 5
& T, T, Ts T, Ts T T,

Figure 1: The user’s long-term preferences can be inferred from her/his long-term behav-
iors, and the user’s short-term interests are reflected in her /his short-term behaviors, both
of which change over time and can be captured by the user’s embedding. Specifically,
Booky and Books are in long-term behaviors while Game; is in short-term behaviors. (1)
Long-term: If the prominent item category in user’s behavior records is book, her/his
category will be book. (2) Embeddings: We concatenate ID embedding and category
embedding as user embedding. Each dimension of the embedding is manually labeled
for convenience of description. (3) Long- and Short-term: Considering only long-term
preferences of users without strengthening the impact of recent interests can lead to inac-
curate recommendations. (4) Time-aggregation: Behavior records generally aggregate
at time positions, which may be different for each user who has personalized behavior
patterns.

prefers Book; to Booky, which should be incorporated when we calculate
her/his preference score. (3) Personalized time-aggregation: Each user’s
behavior records generally aggregate at time positions (“time-aggregation”),
as shown in Figure [1| (Time-aggregation layer). Furthermore, each person
has her /his own personalized behavior patterns, so different people react dif-
ferently to similar contexts, such as interval of “time-aggregation”. We call
this phenomenon as “personalized time-aggregation”, which is also consis-
tent with our daily behavior patterns. For example, some people who are
not active on normal days may generate a lot of shopping records on Ama-
zon on some certain days like Black Friday. Besides, some active users do
not enjoy the fun of Black Friday because of the complex coupons. There-
fore, the recommendation mechanism for two kinds of users are different
since they have personalized behavior patterns and “time-aggregation” phe-
nomenon. (4) Long- and short-term preferences integration: The next
recommendation task is time-sensitive, and users’ recent behaviors (short-
term) generally play a more important role than users’ actions/records that
happened long time ago (long-term) . As shown in Figure [l| (long- and short-
term), the user like books, and he/she become interested in games recently.
Therefore, both users’ long- and short-term preferences are important for
accurate prediction and recommendation, although they may have different
influences. (5) Data sparsity problem: The data in many real-world sce-
narios is quite sparse, since the amount of users or items may reach millions
easily. Especially, it is difficult to capture users’ current preferences accu-
rately only from sparse behaviors data.

Some recommendation methods are proposed to solve one or several of the
issues mentioned above. For example, ATRank [20] captures users’ long-term
preferences by self-attention and models the correlation between target item
and the historical items by vanilla attention, but it ignores users’ individ-
ual information, such as their category and temporal preferences. CSAN [21]
considers different features by feature-wise self-attention and describes “time-
aggregation” with position matrix. However, the position matrix is untrain-
able, which may fail to capture personalized position preferences and cause
an order of magnitude difference between position matrix and embeddings.
SHAN [22] adopt a hierarchical attention network to capture users’ long- and
short-term preferences separately, but the user embedding in SHAN does not
incorporate users’ information, such as category. Besides, SHAN ignores time
decay in long-term layer. In PACA [12], the trainable global position em-
bedding for modeling the effect of records in each position is the same for all

4

the users, which may influence its ability of generalize personalized results.
However, to the best of our knowledge, there is no attempt to address all
those four issues.

In this paper, we propose a new recommendation model named Time-
aware Long- and Short-term Attention Network (TLSAN) to ad-
dress those issues mentioned above. Especially, TLSAN can effectively in-
corporate features of users and items as well as their correlations. Besides,
the devised attention mechanism enables TLSAN to capture users’ long- and
short-term preferences from their behavior sequences and leverage both pref-
erences adaptively for accurate prediction/recommendation. Specifically, the
proposed approach TLSAN consists of two main parts: (1) Personalized
time position embedding module is designed to model users’ “person-
alized time-aggregation” and capture user-specific temporal preferences. Fs-
pecially, behavior records at different time positions may have different con-
tributions to the prediction/recommendation tasks, which depends on users’
personalized behavior patterns. (2) Long- and short-term feature-wise
attention layers use long-term layer to capture users’ long-term prefer-
ences and adopt a short-term layer to emphasize users’ short-term interests.
In sparse dataset, short-term interests can be the main determinants of pre-
dicting the next item and alleviating the data sparsity problem due to
its small data demands. Specifically, feature-wise attention (a more fine-
grained attention) can help to effectively capture users’ long and short-term
preferences in each dimension and leverage both preferences for better rec-
ommendation. Besides, we model the category-aware interactions between
features of users or items in user-user or user-item pairs by dynamic user
category extraction before model training, which does not increase model
complexity. What is more, multi-heads integration is adopt to model the
information from different semantic sub-spaces and integrate them as well
as their correlations in a unified and parallel way to further improve the
performance of recommendation.

Previous models utilized deep neural networks to incorporate a lot of
factors at the cost of more pre-training time and higher model complexity.
TLSAN utilizes attention mechanism comprehensively and adds more par-
allelism to itself, so that TLSAN can converge quickly and achieve good
results. Due to the lightness of attention mechanism as well as its concise
principle, TLSAN can be easily adjusted to various datasets and scenarios in
an efficient way.

The main contributions in this paper are as follows:

e We propose a Time-aware Long- and Short-term Attention
Network (TLSAN) to capture users’ temporal preferences from their
historical behavior sequences for accurate next item recommendation.

e To strengthen time-sensitive next-item recommendation ability and
deal with sparsity, we firstly capture weakened users’ long-term prefer-
ences by feature-wise attention in long-term layer with the personalized
time position embeddings dynamically weakening long-term behaviors.
Then we emphasize the effect of users’ short-term interests by feature-
wise attention in short-term layer.

e In the above two layers, we incorporate category-aware user-user and
user-item correlations without increasing model complexity by dynamic
user category extraction. Besides, multi-head strategy is introduced to
improve parallelism and find correlations between attention blocks.

e Experiments on several kinds of Amazon public datasets with different
size show that TLSAN outperforms state-of-the-art baselines and can
maintain effectiveness on different recommendation scenarios.

The remaining of this paper is organized as follows. Section [2| describes
existing works related to our approach TLSAN. Section |3|introduces TLSAN
in details, including the framework and the main components. In Section [4]
we evaluate TLSAN on several kinds of datasets with different size, and also
explore the impact of hyper-parameters as well as TLSAN’s key components.
Finally, the conclusion and future works are provided in Section [5]

2. Related Work

Earlier next-item and sequence recommendation utilized traditional
methods, such as collaborative filtering and Markov Chain. Later, the emer-
gence of neural networks further enhanced recommender systems’ ability of
extracting users’ preferences. However, most deep neural networks based
methods are generally more complex, which influences their parallelism and
interpretability, especially when many factors are incorporated. The atten-
tion mechanism that is widely applied in natural language processing (NLP)
and Computer vision (CV), has shown its effectiveness in recommender sys-
tems. The attention mechanism has more parallelism than convolutional
neural networks (CNN) and recurrent neural networks (RNN), and provides

more possibilities of constructing powerful networks. Besides, researchers
have proposed various methods and strategies, such as position embedding,
to capture time series information for better sequential recommendation.

2.1. Sequential Recommendation

The methods used in existing sequential recommender systems can be
classified into three main categories: collaborative filtering (CF), Markov
chain (MC) and neural networks.

CF based methods: Earlier, with the assumption that users who have
made similar behaviors may behave similarly next time, researchers utilize
CF [3, 4 23] to perform next item recommendation. However, this kind
of recommender systems are mainly based on statistical method [24], which
cannot accurately distinguish similar users.

MC based methods: To capture the sequential information in the se-
quence, researchers also introduce MC to the recommendation models [5, [6].
These methods can well model sequential patterns (short-term interests)
with context information as Fossil [6], and are also good at predicting the
next item. However, MC only considers the correlations between adjacent
items [5], so the models based on MC may have difficulty in capturing the
users’ long-term preferences. Besides, such methods cannot effectively model
the dynamic changes of original context over time.

Neural networks based methods: Multi-layer perceptions (MLPs) can in-
troduce non-linear user-item correlations [25], but it is not easy to determine
hyper-parameters, such as how many layers are sufficient for the tasks. CNN
can be utilized to extract features from texts, audios and pictures[9, 26, 27].
For example, Realtime-MF [27] employs a CNN to obtain event embedding
from the related words in reviews and the researchers find that the frequent
words can describe the event well, but it is not easy to capture seman-
tics without enough texts. RNN can capture dynamic time series informa-
tion [10, 28, 2]. As important variants of RNN, LSTM [29] and GRU [30] use
the gating mechanism to weaken the impact of long-term preferences, but
they need much time to train the effective models. To build representations
of both past and future contexts, recent approaches also apply bi-directional
encoders [3I]. Recent recurrent recommendation model CDHRM devises a
cross-domain user-level RNN to capture global users’ dynamic preferences
and two domain-specific session-level RNNs to separately capture users’ spe-
cific preferences in different domains, and fuse these two kinds of RNN to
obtain comprehensive users’ preferences [2§]. However, the concatenation

7

and product fusion method in CDHRM is still not adaptive enough to fuse
domain-specific RNNs together from different domains with different prefer-
ences, behavior distribution, etc.

2.2. Attention Mechanism

Attention mechanism is similar to human’s visual attention: we always
focus on the most important part of what we see. It has been widely utilized
in many other fields, such as NLP [32,[33] and CV [34]35]. Specifically, atten-
tion mechanism makes it easy to memorize various remote dependencies or
focus on important parts of the input. In addition, attention-based methods
are often more interpretable [36] than traditional deep learning models.

Parallelism of attention mechanism and its preferences that can be fused
with other models are widely applied in various kinds of task. For exam-
ple, Transformer [I1] has been widely utilized in NLP, CV, recommender
systems and other fields since proposed [37, [38]. It fully takes advantage of
attention mechanism, and further improves parallelism with multi-heads [39].
ATRank [20] applies multi-head self-attention components in Transformer to
recommendation tasks, speeding up training and improving prediction abil-
ity, but it does not introduce users’ individual information. CSAN [21] in-
troduces a feature-wise self-attention mechanism with bi-directional position
embedding on input sequence to better discover internal correlations within
sequences, which need lots of trainable parameters increasing model com-
plexity. SHAN [22] utilizes original attention mechanism to capture users’
long- and short-term preferences and introduce context information by user
embedding, but it ignores time decay in the long-term behaviors and the
user-item correlations in each feature dimensions. As we can see, existing
attention mechanisms still have much room to improve in modeling dynamic
and diverse preferences of users.

2.3. Position Embedding (PE)

In the field of recommender systems, how to deal with sequence infor-
mation has become a topic widely considered. For the next-item recommen-
dation, user preferences are not fixed but change with time. The temporal
recommendation of the Netfliz Prize utilized time series information on many
datasets, which greatly optimized the effect of models [40]. Recent studies
have also pointed out that PE can make improvements on models [211, [41].

CNNs implicitly capture time series information by adjusting the size of
the kernel and sequentially moving the kernel during training. If explicit PE

8

is utilized at the same time, it can make some improvements to the model [42].
One approach of explicit PE is to take time information (such as timestamps)
from datasets, and then concatenate its embedding or add its value directly
to the input embedding like ATRank, but it assumes that users all have
the same taste to the same time interval. Second approach of explicit PE
can be a deterministic function that calculates the value at each position by
sine and cosine, such as Transformer, with the same assumption mentioned
above. Another approach is to generate a position matrix and add its values
to input embeddings at corresponding position like CSAN, but untrainable
position matrix cannot capture personalized position preferences for users
and can cause an order of magnitude difference between position matrix
and embeddings. In addition, PACA [I2] treats each position as a position
embedding, and then multiply position embedding and session embedding to
capture time information of each session. But PACA’s trainable embedding
is only able to learn the effect of each position in the session for all the users,
it cannot recognize the different effects of the same position to two users.

The PE methods mentioned above, except PACA, all generate the fixed
values obtained from original datasets. However, they ignore the fact that
difference between two persons even when their behavior records contain
the same position information such as intervals. We call the fact as the
“personalized position information”, combine it with the “time-aggregation”
phenomenon and name the combination as “personalized time-aggregation”
phenomenon. Then we describe this phenomenon by personalized time posi-
tion embedding and set a global trainable parameter that can automatically
tune the order of magnitude of the position embedding while training.

3. The Proposed Model

3.1. Problem Formulation

Before going into details of our proposed model, we first define the
problem and basic concepts. Formally, let 4 = {uy,us,...,u,...} and
Z = {j1,72, - J, .-} denote the user set and item set, respectively. C =
{c1,¢a,...,c,...} is the set of item categories. For each user u € U, her/his
sequential behaviors are represented as L} = {S}, Sy, ..., S}, where t is the
current time, and S* C Z(i € [1,t]) represents the session of user u at time
1. Specifically, we divide users’ behavior sequences into sessions by data,
and each session represents a user’s behaviors within a day. Obviously, the
session S;* contains user u’s recently purchased items which reflect her/his

9

short-term interests at time t. Besides, u’s long-term behavior sequence at

time 1 ~ (t—1) (before time t), denoted by L} | = {S}, S¥, ..., 5", }, indicate

u’s long-term preferences. We call £ | and S} long-term and short-term be-

havior sequences w.r.t time ¢, respectively. In summary, our task is to predict

the target users’ next behaviors and recommend appropriate items to them.
The key notations used in this paper are presented in Table

Table 1: Key Notations and Their Descriptions

Notations ‘ Explanations
Uu,z.c User, item and category ID sets
UlI,C User, item and category embedding sets
Ly, 8¢ Ly | Long-term, short-term and all sequential behaviors at time ¢
Ly, St Long-term and short-term sequential behavior embeddings at time ¢
H Time-aware history representation
Pt Personalized time position embedding for user u
W, b Trainable weight matrix and bias vector
L, Long-term sequence length
dy Embedding size
5y Trainable parameter for adjusting the order of magnitude
¢t Dynamic user category ID at time ¢
Ue s User embedding at time ¢ for user u
U1, Ug User long-term and current preferences representation for user u
Yj Label of item j
A L2-loss weight

3.2. Framework

The architecture diagram of our new model is shown in Figure 2l Specifi-
cally, TLSAN performs next item recommendation according to the following
four steps: (1) Dynamic user category extraction: We obtain dynamic
user category ID from £} and C, denoted by c. Then ¢} is utilized in
lookups from C' to get dynamic user category embedding at time ¢. User ID
embeddings U and other initial embeddings are shown in Table[I] Especially,
we limit the long-term sequence length to Ls, so Ly | = {lp—r,, ..., lj, ..., ln}
where n is the index of the last item in £ ;. Note that [; is the concate-
nation of item ID and category embedding, so as s; in S;. (2) Personal-
ized time position embedding: We propose trainable personalized time
position embeddings, denoted by P* = {p,_r,, ..., Dj, ..., Pn}, to model “per-
sonalized time-aggregation” phenomenon in long-term sequences and cap-
ture user-specific temporal preferences. Then, we can get time-aware history

10

Long-term Behavior Sequence

A
e)
i Session;
(Useru_| L otom | temy [femg, | - 3
i
| T; T
Id & Category Lookups
Long Embeddings Tiled Personalized Position Embeddings
e IEERE pmmem e m e PN T IS
i A ;
I U | ho [<O Py [P P |5
2, 2, 1
R R PSPPI PP PSPPI R PRSP
. . . Short-term Behavior Sequence
Time-aware History Representation A
P A) - N
i ' ; Session, i
! H, I ; li I ; e
i o als L | f_demy, | tem, [tem,, |
e e e e e e i imimim e im i m e im i m ; e e H
! T !
! ~ . 1
Long-term Feature-wise Attention Layer | 1 1d & Category Lookups —
i andom |
2d; - g‘
| Concatenation ;ﬂ
u , Uy Snt1 Sn+3 Sni2 g
G . T 2dy &
2 Next-item g
%
| Short-term Feature-wise Attention Layer
2d
Probability

Figure 2: The framework of TLSAN. Specifically, we divide user’s behavior records into
long-term and short-term behavior records by time, and randomly select an item in short-
term records as the next item to be predicted. We model user’s “personalized time-
aggregation” and capture user-specific temporal preferences by personalized time position
embeddings on long-term records and get time-aware history representation. Then we
can obtain user’s current preferences at time ¢ by the long- and short-term feature-wise
attention layers. To make the picture more concise, we have omitted some superscript .

11

representation Hy*; = {hy,_r,,..., hj,..., Ay }. (3) Long- and short-term
feature-wise attention layers: We propose long-term feature-wise atten-
tion layer to capture the long-term preferences of user u, denoted by u; 1.
Then we propose short-term feature-wise attention layer to combine long-
term preferences u;_; and short-term interests from S} to obtain u’s cur-
rent preferences, denoted by u;. Besides, multi-heads integration is adopt to
model the information from different semantic sub-spaces in a parallel way.
(4) Finally, we utilize TLSAN to recommend the next item that matches
the target user’s current preferences u;. Next, we will introduce each step in
details.

3.3. Dynamic User Category Eztraction

Most existing approaches implicitly group users, such as user-based
CF [3] [14) 15] and social circle [16, [I7], which cannot explicitly model the
correlations between item category. Besides, some works [I8] 19] explic-
itly incorporate user category information as users’ feature at the cost of
high time complexity. Furthermore, users’ categories may change dynami-
cally over time and it is not accurate to model user as a particular category
at each time position. Especially, the item category that the user is mostly
interested in at time ¢ can be considered as her/his current category to incor-
porate both strong user-user and user-item correlations in terms of category.
Therefore, we choose the most frequent item category from L of user u as
the category of user u at time ¢ to obtain dynamic user category, denoted
by ¢, which can be done before model training. Then we utilize lookups to
extract user category embeddings from C' and concatenate it vertically with
user ID embedding to get u.;. The specific implementation is as follows:

Uer = Conc(U(u),C(c})), (1)

where u.; € R*” U(.) and C(.) represent user ID lookups and category
embedding lookups. Conc(.) is the concatenation function. By replacing
U(u) with I(j) and ¢ with ¢/ we can also obtain the item embeddings,
where I(.) and ¢/ represent item ID lookups and item category, respectively.

3.4. Personalized time position embedding

Historical events such as promotions occurred to user (e.g. Black Friday)
all happened near a certain time, which results in dense and sparse gaps
in user’s behavior records. We call this phenomenon “time-aggregation”

12

Personalized Position Embeddings

Tiled Personalized Position Embeddings

Pn-Ls pj P e
!
O Tile 2d; " P,) ; !

Original Time-aggregation Embeddings

Figure 3: Original time-aggregation embedding can be obtained from the dataset, we
use reciprocal value to describe time decay. The darker the color, the smaller the value.
White color means no time decay. Then we multiply (mask) the personalized time position
embedding to it and tile the combination to 2d; dimensions.

which can implicitly reflect related environmental information, preferences
information, etc. Obviously, each user has her/his own personalized behav-
ior patterns, so different people react differently to similar context, such as
the same interval of “time-aggregation”, which is called “personalized time-
aggregation” phenomenon. To model the “personalized time-aggregation”
phenomenon in long-term sequences and capture user-specific temporal pref-
erences, we propose personalized time position embedding method. During
experiments, we find that the order of magnitude of position embedding is
smaller than item embedding, which can weaken the influence of position
embedding. Therefore, we multiply a global trainable parameter v (we take
the initial value as 1.0) to the position embedding. Because we use the re-
ciprocal of the absolute value of the bucketized time difference between the
past and the current time as the value of time position, the importance of
the items in the current sequence starts to decrease from the last one in the
time decreasing direction. At the same time, if the behaviors were generated
at the same day, the values in the original time-aggregation embedding will
be the same. The values in the original time-aggregation embedding can be
figuratively compared to a stair, and each rung is a time position. More
specifically, the personalized time position embedding method is shown in
Figure |3l Formally, we can obtain the time-aware historical representations
as follows:

hj =7©p; O (2)

where © denotes the element-wise product, h; and [; are the j-th item in
the time-aware historical representations and the corresponding long-term
embeddings, respectively. p; is the j-th personalized time position embedding

13

for user u. Then user u’s historical behavior records are represented as H;' | =
4dyx L
{hn,LS,...,h]’,...,hn} € R xbs

3.5. Long- and Short-term Feature-wise Attention Layers

The long- and short-term feature-wise attention layers consist of two
parts: long-term feature-wise attention layer and short-term feature-wise at-
tention layer.

3.5.1. Long-term Feature-wise Attention Layer

In fact, user’s behavior records always contain a lot of timestamps, and
earlier behavior records are generally less important than recent behavior
records. Feature-wise attention is utilized on time-aware history representa-
tion H,_; to capture the changes of user’s preferences in each dimension by
the following formulas:

atté-ong — Attds (Wl, Wa, by, ba, hj)

3
= W] o(Wah; + ba) + by, ®)

[att?")
lon e
a7k = L. [, (4)
2 et
Ls
=3 d" 6y, (5)

j=1

where Wy, Wy € R?¥7%247 - and by, by € R?¥ are trainable parameters. The
superscript 2d ; means the dimensions of the embeddings in At(.). Especially,
we choose ReLLU for activation function o(.) to enhance non-linear capability.
Now we have captured the long-term preferences of user u, denoted by u;_ 1.

3.5.2. Short-term Feature-wise Attention Layer

Users’ long-term preferences can be inferred from their long-term be-
havior records, which cannot represent their recent interests well. For the
next-item recommendation, short-term interests are generally more impor-
tant than users’ long-term preferences, especially in sparse dataset. There-
fore, we separate short-term behaviors out to emphasize the role of recent
user’s behavior records. However, it still requires careful consideration how
to select the number of items in the short-term session. According to the
“Peak-End Rule” [43] in behavior economics, the most impressive and last

14

items generally have the most significant impact on the current decision.
The previous most concentrated item has been taken into account in the
long-term layer, and the behaviors happened in the latest day become the
focus in the short-term layer.

Besides, short-term layer combines user’s short-term interests and long-
term preferences together. Because the behaviors in the short-term session
only happened within a day, we do not utilize time information and posi-
tion embedding here to emphasize short-term interests and reduce model
complexity. Formally, the short-term layer is defined as:

atts"rt = Att* (W3, Wy, by, b, ;)
= WgO'(W4(Sj) + b4) + b3,

e[att;hort} &

(6)

short .
[aj] - ZLS:"OH»I 6[att‘;h°”]k ? (7>
|S¢]+1
Up = Uet D Z ajhm © s, (8)
j=1

where @ is an element-wise addition, W5, W, € R?¥*24; and bs, by € R?%
are trainable parameters, s; € R*7 s; € S* when j > 0 and s; = w4
when j = 0. We apply u.; to add context information. Similarly, we keep
activation function the same as long-term attention layer.

Finally, user’s current preferences are captured and represented as uy,
which leverages long-term preferences and short-term interests. Especially,
we can obtain all the user’s current preferences in the same way. Now with
these user profiles, we can recommend the next item that is appropriate for
the target user.

3.6. Multi-heads integration
Multi-heads method can improve parallelism and find correlations be-
tween different semantic sub-spaces [44, 21], 20], 12]. Considering those ad-
vantages, we implement multi-heads on the attention mechanism mentioned
above to model the information from different semantic sub-spaces and inte-
grate them as well as their correlations in a unified and parallel way to fur-
ther improve the performance of recommendation. Formally, with m-heads
method, the attention function is defined as (superscript * means “modi-
fied”):
*Att*Y = Conc(Ahead,, Aheads, ..., Ahead,y,), (9)

15

Aheady, = Attidf/m (parameters). (10)

We equally separate the features of the embeddings into Aheady (k =
1,2,...,m), and then concatenate them in original order to avoid extra com-
putational cost.

3.7. Network Training

We train TLSAN with the all users’ behavior records in the training set,
and then predict the labels(items) in the test set. Specifically, the closer the
predicted label is to the truth, the more effective the model is. In this paper,
we only need to predict whether the next item will be purchased or not.
Therefore, we choose the unified sigmoid cross entropy loss [20] for model
optimization:

Loss = =Y y;log(o(f(us,5;)))+(1=y;) log(1=o(f(ur, 5,))) +AO], (11)

u7j

where f(.) denotes a ranking function, which can be either a dot-product
function or a more complex deep neural network, © = {U, I, W,, b,} and
A is the 12-loss weight. Labels are denoted by y € {0,1}, and o(.) repre-
sents the sigmoid function. The detailed learning algorithm is presented in
Algorithm [1}

Algorithm 1 Learning Algorithm of TLSAN

Input: £: long-term item behaviors, S: short-term item behaviors, a: learn-
ing rate, dy: number of features, \: 12-loss weight
Output: optimal model parameters © = {U, I, W,, b, }
1: repeat
2 shuffle the set of observations {(u, £} ;,S}*)} for all users.
3 for each observation (u, L} ;,S}') do
4: obtain user’s current preferences u,; according to Equation (T])-(10)
5
6
7

compute Loss according to Equation ([11)
update © with gradient descent
end for
8: until convergence
9: return ©

16

4. Experiments

In order to evaluate whether the proposed approach TLSAN performs
well in scenarios from various fields, we utilize the datasets which cover most
fields in our daily life. Specifically, the purpose of the experiments is to
answer the following three questions:

RQ1: Does TLSAN has better performance than other state-of-the-art
models?

RQ2: How does the parameter setting influence TLSAN?

RQ3: How does each component of TLSAN contribute to its performance
on recommendation tasks?

4.1. Ezxperimental Designs

4.1.1. Datasets

Amazon is the world’s largest e-commerce platform, which has the largest
and most extensive behavior data volume. Especially, its products cover
most fields in life and have good diversity. Amazon also exposes the official
datasetdl] which have filtered out users and items with less than 5 reviews
and removed a large amount of invalid data. In the following experiments,
only users, items, interactions, and category information are utilized. Then
we perform the preprocessing according to the following two steps and the
statistics for the datasets is shown in Table 2|

Firstly, the users whose interactions less than 10 and the items with
interactions less than 8 are removed to ensure the effectiveness of each user
and item. Secondly, we choose the users whose number of transactions is
more than 4 but less than 90. This step guarantees the existence of long-
and short-term behavior records and all behavior records occurred within
recent three months.

We divide all users’ behavior records into ordered sessions by day and
randomly choose the item in the newest session at time ¢ as the next item
while training. If the session at time ¢ contains only one item, the first item
in the session at time (¢4 1) is chosen. For the models that explicitly consider
long- and short-term (SHAN, LSPM [45], TLSAN), we consider the newest
session without the chosen item as short-term session, and 1 ~ (¢t — 1)-th
sessions as long-term sessions to generate the training set. As for the other
models, all sessions before time ¢ are regarded as historical sessions to get

thttp://jmcauley.ucsd.edu/data/amazon/

17

Table 2: Amazon Datasets Statistics (After preprocessing)

avg. avg. avg.
Datasets #users Fitems Fcategories #samples items behaviors behaviors
Jeategory fitem Juser

Electronics 39991 22048 673 561100 32.8 254 14.0
CDs-Vinyl 24179 27602 310 470087 89.0 17.0 194
Clothing-Shoes | 2010 1723 226 13157 7.6 7.6 6.5
Digital-Music | 1659 1583 53 28852 29.9 18.2 174
Office-Products | 1720 901 170 20387 5.3 32.6 17.0
Movies-TV 35896 28589 15 752676 1905.9 20.9 26.3

Beauty 3783 2698 179 54225 14.8 204 14.3
Home-Kitchen | 11567 7722 683 143088 11.3 12.3 18.5
Video-Games | 5436 4295 58 83748 741 19.5 154

Toys-Games 2677 2474 21 37515 11.2 15.2 14.0

the training set. Furthermore, we consider the item immediately after the
newest session as the test item to generate the test set.

4.1.2. Baselines

BPR-MF (traditional): Bayesian personalized ranking [I] trains user’s
positive and negative behavior pairs to minimize the posterior probability of
the difference for each user. Each item embedding is the concatenation of
item ID embedding and category embedding.

CNN+Pooling (deep neural networks; multi-head): Max pooling op-
eration is applied over the feature map which has kernel size 32 in the CNN
structure [44]. We utilize this method to encode users’ historical behaviors
and pass all pooled features to a fully connected layer to generate user be-
havior embeddings.

Bi-LSTM (deep neural networks): LSTM [29] is renown by its capa-
bility of capturing implicit long- and short-term sequential data. In order
to capture both forward and backward correlations among sequences, bi-
directional long- and short-term memory network, called as Bi-LSTM, comes
into being. In this paper, we implement this method on recommendation
tasks.

ATRank (attention; multi-head): It considers heterogeneous users’

18

behaviors by projecting all types of behaviors into latent semantic spaces.
ATRank then utilizes self-attention layer and vanilla attention layer with
DNN to obtain users’ preferences [20].

PACA (attention; position embedding): Position-aware context at-
tention [12] considers each time position as a trainable position vector. Then
PACA captures the context of each item and the corresponding session as
a session-specific feature vector by multi-layer perceptron (MLP). Attention
values are generated by these two vectors.

CSAN— (attention; feature-wise; position embedding; multi-
head): Feature-wise self-attention is introduced after the embedding layer in
CSAN. This model then [21] simply adds the untrainable position encoding
matrices to feature-wise self-attention. Finally, it generates user behavior
embeddings through vanilla self-attention network. Since CSAN also uti-
lizes texts, audios and images, and we do not utilize them, we represent this
incomplete model in our experiments as CSAN—.

LSPM (long- and short-term behaviors): Long- and short-term pref-
erence model (LSPM) [45] captures each user’s long-term preferences by the
vector in a trainable matrix. Then it combines each user’s most recent k
items’ embeddings together to model her/his short-term preferences. Finally,
LSPM combines these two preferences to obtain users’ profile.

SHAN (attention; long- and short-term behaviors): Long- and
short-term behavior records are both important, so SHAN [22] proposes non-
linear hierarchical attention networks to capture long- and short-term users’
preferences.

4.1.3. Evaluation Metrics

We utilize three kinds of evaluation methods, area under the curve (AUC),
precision and recall to evaluate models’ abilities of capturing users’ prefer-
ences and performing time-sensitive next-item recommendations.

AUC [20] is the area enclosed by the coordinate axis under Receiver Op-
erating Characteristic (ROC) curve. The points on ROC curve represent the
value of the true tax rate (TPR) at a certain false positive rate (FPR). If
the model works well, the FPR should decrease and the TPR should increase
during the process of training. In other words, the better the model works,
the higher the AUC value is. Formally, AUC is defined as:

1 1
A O:_ 6 U,S u,s’)y
v |U|%|S||5/|ZZ (Pus > Pus) (12)

seS s'es’

19

where S and S’ denote positive and negative sample sets, respectively. p,. s
means the predicted probability that user u may choose positive item s in
the test set, and s’ means the negative item. 0(.) is an indicator function. If
Dus > Dus 0(Dus > Pu,s) returns 1 and 0 otherwise.

Precision@K and Recall@K [2]: Precision rate refers to the ratio of the
number of positive samples classified by the model to the total number of
positive samples. Recall rate is the ratio of the number of positive samples
classified by the model to the total number of the considered positive samples,
and K means only considering the top-K items. Formally, their definitions
are shown below:

- 1 2, fp(s, pos(u))

PrecisionQK = — 5 13

0 UGZU I , (13)

¥ fp(s,pos(u))
NK (u) ’

RecallQK = 1 Z 2 (14)
Ul =

where pos(u) denotes the set of the ground-truth items related to user u, and

N K (u) represents the number of positive items in the top-K predicted items

of user u. fp(s,pos(u)) is an indicator which returns 1 if item s is in pos(u),

and 0 otherwise.

AUC can measure classification ability of a classifier. For a binary clas-
sification problem, it is the ability of classifying the target values as true or
false. However, AUC does not set fixed thresholds when measuring classifica-
tion capabilities but considers all thresholds [46]. In this way, when positive
and negative sample sizes are very different, the AUC value will be abnor-
mally high, thus losing the reference value. As for next item recommendation
tasks, high AUC means that the model is able to capture users’ preferences,
but the meaning of “the most likely next item” for each user is not reflected,
especially in time-sensitive next-item recommendations. On the other hand,
Recall@K and Precision@QK can address this problem, so we utilize those
three kinds of evaluation metrics together to make the experiments more
comprehensive.

4.1.4. Implementation Detail

To ensure the fairness and comparability of the experiments, we keep the
common parameters in each model the same and the unique parameters the
optimal. For all models, we set the embedding size to 32, training batch size

20

to 32 and testing batch size to 128. As for the specific parameters, we set
the number of heads to 8 for ATRank, CNN+Pooling, CSAN— and TLSAN,
L2-loss weight to 0.01 for LSPM and to 0.00005 for other models using L2-
loss. Besides, we set position kernel size to 10 for PACA, the length of
recent sessions to 5 and 90 for LSPM and PACA, the length of recent long-
term sessions to 10 for TLSAN. Moreover, the weight of short preferences
is set to 1.0 for LSPM. The detailed process and analysis of choosing the
critical parameters for our model TLSAN are shown in Section [4.3] Note
that the parameters for other baselines are already tuned by us, but we will
not show the details for them since the limited space in this paper. During
the experiments, we uniformly utilize stochastic gradient descent (SGD) for
training, and dynamically adjust learning rate. The initial learning rate is
set to 1.0 for fast training. When each model reaches about 80% of total
training steps, learning rate is set to 0.1. All the experiments in this paper
are implemented with Python 3.5 and Tensorflow 1.8.0, and run on a server
with two 2.1 GHz Intel Xeon E5-2620V4 CPU, 128 GB 2133 MHz DDRA4
RAM, Nvidia Tesla K40 GPU with 12 GB memory, running Ubuntu 16.04
LST. The source code of our model and the baselines with the processed
datasets are publicly availabld?|

4.2. RQ1: Performance Analysis

We have trained each model to converge during the experiments. The
performances of them are shown in Table [3] and Figure [d] The main obser-
vations, which are classified into traditional method, deep neural networks,
attention methods, considering position embedding and considering long- and
short-term behaviors, are as follows:

(1) Traditional method: BPR-MF performs not as good as other
methods on AUC, because it performs prediction based on Bayesian pos-
terior probability, which cannot utilize temporal sequential information well.
Therefore, temporal sequential information is important for recommenda-
tion. The proposed model TLSAN is time-aware, which inherently captures
this information. (2) Deep neural networks: On average CNN is about
16.5% better than BPR-MF for the ability of discovering users’ preferences
with time series information. However, its convolution kernel cannot exploit
much data at one time. In the kernel, the importance of each position is the

Zhttps://github.com/TsingZ0/TLSAN

21

Table 3: AUC on the Amazon public datasets. Bold font and underlined value indicate
the optimal result and the suboptimal result, separately.

Datasets ‘ATRank BPR-MF CNN CSAN- LSPM PACA Bi-LSTM SHAN TLSAN
Electronics 0.8659 0.7457 0.8450 0.8005 0.7333 0.8322 0.8495 0.7542 0.9230
CDs-Vinyl 0.8999 0.7684 0.8438 0.7943 0.8594 0.8919 0.8969 0.7138 0.9651

Clothing-Shoes | 0.6761 0.6283 0.6712 0.5866 0.6443 0.5313 0.7004 0.7284 0.9363
Digital-Music | 0.8601 0.7896 08131 0.7685 0.8270 0.9638 0.8468 0.7794 0.9753
Office-Products | 0.9162 0.5610 0.8930 0.8401 0.7889 0.8994 0.8628 0.9576 0.9773
Movies-TV 0.8662 0.7654 0.7479 0.7958 0.8003 0.8055 0.8743 0.7771 0.8986
Beauty 0.8160 0.6846 0.7639 0.7620 0.7748 0.9016 0.8231 0.8953 0.9368
Home-Kitchen | 0.7039 0.6352 0.7075 0.6820 0.6672 0.8165 0.7373 0.8230 0.8950
Video-Games 0.8809 0.6609 0.8598 0.8033 0.8449 0.8763 0.8598 0.9216 0.9459

Toys-Games 08139 0.6294 0.7788 0.7157 0.7708 0.8495 0.8012 0.8797 0.9309

same, which ignores user’s personalized preferences on position. The perfor-
mance of Bi-LSTM is quite good and the AUC value on the Clothing-Shoes
datasets exceeds ATRank for its excellent ability of capturing time series in-
formation. However, both CNN and Bi-LSTM have slow training speeds as
shown in Figure 5| for using deep neural networks. Due to the comprehensive
utilization of attention mechanism, although TLSAN takes so many factors
into consideration, it is not too complicated and can be trained faster than
baselines shown as Figure [5| because of parallelism. (3) Attention meth-
ods: As shown in Table[3] ATRank performs best on the Electronics dataset
(second largest) except for TLSAN, which indicates that ATRank has better
prediction ability on large datasets with attention mechanism. Specifically,
ATRank performs worse than CSAN— at Precision@1, and one reason is that
it fails to explicitly consider “time-aggregation”. As one of state-of-the-art
models, PACA achieves good performance for attention mechanism. How-
ever, TLSAN performs the best among them for it explores correlations on
each feature through feature-wise attention, as for attention mechanism. (4)
Considering position embedding: Although PACA introduces position
embedding, the embeddings in PACA are global and they are the same for
all the users, which loses personalization to some extent and causes its un-
stable performance as shown in Table 3] CSAN-— still performs well on large
datasets for the position matrix describes “time-aggregation” phenomenon.
However, it does not perform as good as the proposed approach TLSAN.

22

., | —— BPR-MF —e— BPR-MF
14.0% CNN 12% CNN
—=— CSAN —=— CSAN
12.0% | TLSAN TLSAN
LSPM 1.0% 1 LSPM
10.0% | —— PACA —— PACA
—« Bi-LSTM ¥ —« Bi-LSTM
5) —— SHAN C] 0.8% —— SHAN
Z 8.0%1 s
5 @
¢ 8 0.6%
6.0% [N

S
B
X

4.0% 1

e
]
B

2.0%

0.0%

-

i 1b Zb 3b 4h 5‘0 1‘0 2‘0 3‘0 4I0 5‘0
K K

(a) RecallaK (b) Precision@K

Figure 4: Recall@K and Precision@K on Amazon Electronics dataset.

The reason is that its consistent position matrix may have different order
of magnitude with historical embedding and CSAN— does not incorporate
user-specific temporal taste to the position embeddings, while TLSAN does.
(5) Considering long- and short-term behaviors: LSPM and its simple
version achieves good results on most datasets even on sparse dataset. The
reason is that they distinguish long- and short-term preferences. However,
it is not good as the proposed approach TLSAN. The reason is that LSPM
only models short-term preferences from behavior sequences, and it regards
users’ embedding as the long-term preferences, which may lose both time se-
ries information and personalized position preferences. For example, LSPM
gets a relatively good score on Recall@l and Precision@1, but it becomes
powerless when K is larger for the reason mentioned above. The Clothing-
Shoes dataset is the smallest datasets with many categories but few records
(sparser) as shown in Table , which influences most baselines’ ability of cap-
turing users’ preferences. Especially, PACA cannot deal with sparse or small
interaction data effectively since it does not fully exploit short-term prefer-
ences. SHAN captures long- and short-term users’ preference, so it performs
well on this sparse dataset as well as most remaining datasets in Table [3]
TLSAN performs better than these baselines, since TLSAN explicitly con-
siders “personalized time-aggregation” and captures users’ long-term pref-

23

erences and short-term interests when generating users’ current preferences.
Besides, it incorporate category-aware user-user and user-item correlations
through dynamic user categories to capture more information.

Similarly, SHAN considers both long-term and short-term behavior
records, but it does not emphasize short-term interests. Moreover, both
PACA and SHAN ignore time decay, which also influence their performance
on time-sensitive next-item recommendation. Especially, Recall@K and Pre-
cision@K can evaluate the ability of time-sensitive next-item recommenda-
tion, while AUC is used to evaluate the ability of capturing users’ preferences,
as mentioned in Section {.1.3] So, PACA and SHAN both perform well on
AUC but poorly on Recall@K and Precision@K. When it lacks long-term
behaviors such as sparse dataset (e.g. Clothing-Shoes dataset), short-term
layer in SHAN dominates and helps the model get nice performance as shown
in Table [3] Whether on AUC or Recall@K and Precision@K, TLSAN has
improved a lot compared to other baselines especially on Recall@Q K and Pre-
cision@K, which means its time-sensitive next-item recommendation ability
is excellent.

4.3. RQ2: Parameters Analysis

Results of experiments for parameters analysis on the Amazon Electronics
dataset are shown in Table and Figure 0] Specifically, we analyze the
critical parameters (embedding size (ES), heads (H) and long-term sequence
length (L)) as follows (Note that we only change the parameter currently
being considered and keep others the same as TLSAN.):

Table 4: AUC on embedding size (ES).

Parameters ‘ ES=16 TLSAN ES=48
AUC ‘0.9129 0.9230 0.9240

Table 5: AUC on heads (H).

Parameters‘ H=1 H=2 H=4 TLSAN H=16
AUC [0.9199 0.9220 0.9201 0.9230 0.9186

(1) Embedding Size (ES): As the embedding size increases by 16 every
time, the AUC rises and plateaus when ES is 32 according to Table 4] and

24

0.9 -

ATrank
—— BPR-MF
CNN

—— CSAN-
TLSAN
LSPM
PACA
Bi-LSTM
SHAN

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Training time (s)

Figure 5: AUC progress on Amazon Electronics dataset. We only show the curve within 5
hours (18000 seconds) to show the different training speeds. TLSAN has already converged
with the excellent performance, but some models (CNN, CSAN—, PACA, Bi-LSTM) have
not converged within 5 hours.

Figure[f] (a). The reason is that as the embedding size increases, the number
of features also increases, which enable the model to capture more features
or information for higher accuracy at the cost of efficiency. Besides, although
the AUC on “TLSAN (ES = 48)” is higher than “TLSAN (ES = 32)”, the
improvement (0.108%) is not significant compared with the improvement
(1.106%) from “ES = 16" to “TLSAN (ES = 32)”. Simply adding features
not only consumes computing power (slow down the speed), but also may
force a certain feature to be split into sub-features, which may influence the
performance. According to the results of Recall@20 and Precision@20 in
Figure |§| (a), as the embedding size increases, the ability of time-sensitive
next-item recommendation also reach the summit. To achieve a balance
between efficieny and accuracy, ES is set to 32.

(2) Heads (H): When multi-heads method is not adopted (that is, heads =
1), TLSAN'’s performance is not bad. As the number of heads increases, the

25

11.0%

10.0%

Recall@20

Table 6: AUC on long-term sequence length (Ls).

Recall@20

Precision@20

047%

047%

0.50%

0.45%

0.40%

0.35%

0.30%

Precision@20

Parameters ‘ L,=5

TLSAN L,=15

AUC

| 0.9157

0.9230

0.9243

11.0%

10.0%

9.0%

Recall@20
Fd
2
B

Recall@20

7.5% 0.38%

Precision@20

047%

0.50%

4% |0.45%

0.40%

0.35%

0.30%

Precision@20

Recall@20

9.0%
0.45%

Recall@20

Precision@20

9.4% 047%

90%
0.45%

0.50%
0.48%
0.46%

o
0.44%

@

isions

0.42%

Preci

0.40%

0.38%

0.36%
4.0%

0% ES =16 -0.25%

ES =32 ES=48 H=1
Embedding Size

(a) H=38, L, = 10

60% §L=5 sL=10 SL=15

Long-term Sequence Length

H=2 H=4

Heads

(b) ES =32, L, = 10

H=8 H=16

(c) ES =32, H=38

Figure 6: Recall@20 and Precision@20 on embedding size (ES), heads (H) and long-term
sequence length (L,) parameters

AUC reaches the optima when the heads = 8 as shown in Table [5|and Figure
[6] (b). On the one hand, the multi-heads can increase parallelism and capture
the interconnections between various heads. On the other hand, because the
embedding size is limited to 32, the number of features of items is inversely
proportional to the number of heads. Only with the proper number of heads
can the two factors reach equilibrium. H = 8 achieves the best for TLSAN
on the Amazon Electronics dataset.

(3) Long-term sequence length (Lg): The behaviors that happened too
long ago may hardly contribute to current prediction task, and considering all
the behaviors will not only weaken users’ current interests but also influence
efficiency. As shown in Table [6] AUC keeps increasing when L grows. The
reason is that TLSAN can capture users’ long-term preferences better with
larger L,, while the ability of capturing user short-term interests is already
optimal in Figure @ (c). Besides, TLSAN performs best on Recall@20 and
Precision@20 when L, is 10, which means time-sensitive prediction ability
has reached the summit. In the balance, we set L, to 10. Because of GPU
memory saving, the training speed is also increased.

26

Table 7: AUC on TLSAN, NS (without short-term layer), NC (without categories), NU
(without user categories), NP (without position embedding) and NG (without).

components ‘ TLSAN NS NC NU NP NG

AUC ‘ 0.9230 0.8395 0.8643 0.9225 0.9229 0.9017
Recall@20 Precision@20 0.50%
0.47% 0.47%
10.0%
°1 9a% 0.44% 9.4% 0.45%
8.7%
8.0% 7.9 0:39% 0.40%
S
Q 0.35% @)
® c
=]
g 6.0% 0.30% ‘&
9 5.2%)
4 0.26% [
0.25% o
4.0% 3.8%
0.19% 0.20%
2.0% 0.15%
0.10%
TLSAN NS NC NU NP NG
Components

Figure 7: Recall@20 and Precision@20 on TLSAN, NS (without short-term layer), NC

(without categories), NU (without user categories) NP (without position embedding) and
NG (without).

27

4.4. RQ3: Component Analysis

The purpose of this section is to explore how each main component in
TLSAN contributes to the recommendation performance. Specifically, the
main components of TLSAN are short-term feature-wise attention layer, dy-
namic user category extraction and personalized time position embedding
module. Therefore, we will remove the corresponding components to obtain
the following variants and compare them with TLSAN: NS (without short-
term layer), NC (without user and item categories), NU (without dynamic
user categories), NP (without personalized time position embedding) and
NG (without 7). The results on the Amazon Electronics dataset are shown
in Table [7] and Figure [7]

As can be seen from Table [7] and Figure [7 the performance of those
variants (incomplete models) is not as good as TLSAN, although some of
them achieve better performance than baselines. Specifically, we will explain
in the following four aspects:

(1) Many existing models consider long-term preferences of users, but they
do not distinguish long-term preferences and short-term interests explicitly,
so we remove short-term layer here to study its validity. As shown in Table
[7 and Figure[7, we find that the NS model with short-term layer removed is
not as good as other variants. For we set the long-term sequence length limit
to L, the model needs short-term sequence to provide enough information
to learn both long-term preferences and short-term interests. Besides, we
find that, the AUC of NS is better than some baselines such as PACA, but
its performance on Recall@20 and Precision@20 is almost worse than all the
baselines, which means short-term layer not only helps capture users’ long-
term preferences but also plays an important role in time-sensitive next-item
recommendation.

(2) The comparisons between NC and NU show the effects of category
attributes. As shown in in Table [7] and Figure [we can observe that cat-
egories are important for improving the performance of recommendation.
Due to the effectiveness of other components, the performance of NC is still
better than most of the baselines and almost the same with ATRank which
utilizes categories. The improvement of introducing dynamic user category
is not obvious on AUC, but obvious on Recall@20 and Precision@20. Es-
pecially, the improvement on capturing users’ current preferences is greater
than capturing users’ long-term preferences when we introduce dynamic user
category.

28

(3) TLSAN has improvement on Recall@20 and Precision@20, but al-
most no improvement on AUC compared to NP. The reason is that, in the
personalized time position embedding module, the original time-aggregation
embeddings can weaken the effect of long-term behaviors and emphasize
short-term interests. Owing to personalized time position embedding, the
time-sensitive next-item recommendation capability of our model TLSAN is
improved further.

(4) NG considers personalized time position embedding, so it can capture
users’ short-term interests well. However, the AUC of NG is worse than
NP, which means that personalized time position embedding without + has
difference in the order of magnitude with historical embedding. We utilize a
global trainable parameter v to automatically adjust the order of magnitude
between them.

Considering the evaluation results by AUC, Recall@20 and Precision@20,
we come to the following four conclusions: 1) both long and short-term prefer-
ences are important in performing accurate recommendation, and especially
the latter plays a more significant role in strong time-sensitive next-item
recommendations. 2) Dynamically classifying user categories according to
their favorite item categories helps greatly in both capturing users’ prefer-
ences and improving the recommendation performance. 3) The “personalized
time-aggregation” effect is a phenomenon that exists in our daily life, which
inspires us how to fully exploit users’ behavior patterns. 4) Automatically
tuning the order of magnitude between personalized time position embedding
and historical embedding is helpful.

5. Conclusion and Future Work

In summary, we propose a new model: Time-aware Long- and Short-term
Attention Network (TLSAN), which recommends the next most suitable item
for the target users based on their historical behavior records in the follow-
ing four steps: (1) To reinforce the category-aware correlations of user-user
and user-item, we consider user dynamic favorite item category as dynamic
user category. (2) Then we propose a new personalized time position embed-
ding method to describe the “personalized time-aggregation” phenomenon.
(3) Long- and short-term feature-wise attention can generate long-term pref-
erences and strengthened short-term interests of users to get their current
preferences. (4)Finally, TLSAN can perform personalized sequential recom-
mendation to target users based on their preferences. Extensive experiments

29

are performed on Amazon datasets of different size and from different fields,
and the results show that the proposed approach TLSAN outperforms state-
of-the-art baselines. We further conduct parameter experiments to explore
the process of parameter settings on TLSAN, and also show the effectiveness
of each component through ablation experiments.

For future work, we plan to further exploit the phenomenon of “personal-
ized time-aggregation” by non-linear operations for better recommendation.
In addition, we will also try to incorporate more auxilary/side information
such as images, audio, and comments, to further improve TLSAN’s recom-
mendation performance.

Acknowledgment

This research was supported by Zhejiang Provincial Natural Science Foun-
dation of China under No. LQ20F020015, and the Fundamental Research
Funds for the Provincial University of Zhejiang under No. GK199900299012-
017.

References

[1] S. Rendle, C. Freudenthaler, Z. Gantner, L. Schmidt-Thieme, Bpr:
Bayesian personalized ranking from implicit feedback, in: Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence,
2009, pp. 452-461.

[2] C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, H. Jing, Recurrent rec-
ommender networks, in: Proceedings of the tenth ACM international
conference on web search and data mining, 2017, pp. 495-503.

[3] J. Chen, X. Wang, S. Zhao, F. Qian, Y. Zhang, Deep attention user-
based collaborative filtering for recommendation, Neurocomputing 383
(2020) 57-68.

[4] J. Qin, K. Ren, Y. Fang, W. Zhang, Y. Yu, Sequential recommendation
with dual side neighbor-based collaborative relation modeling, in: Pro-
ceedings of the 13th International Conference on Web Search and Data
Mining, 2020, pp. 465-473.

30

[5]

[10]

[11]

[12]

[14]

S. Rendle, C. Freudenthaler, .. Schmidt-Thieme, Factorizing personal-
ized markov chains for next-basket recommendation, in: Proceedings of
the 19th international conference on World wide web, 2010, pp. 811-820.

R. He, J. McAuley, Fusing similarity models with markov chains for
sparse sequential recommendation, in: 2016 IEEE 16th International
Conference on Data Mining (ICDM), IEEE, 2016, pp. 191-200.

Z.Khan, N. Iltaf, H. Afzal, H. Abbas, Enriching non-negative matrix fac-
torization with contextual embeddings for recommender systems, Neu-
rocomputing 380 (2020) 246-258.

H. Morise, S. Oyama, M. Kurihara, Bayesian probabilistic tensor fac-
torization for recommendation and rating aggregation with multicriteria
evaluation data, Expert Systems with Applications 131 (2019) 1-8.

R. He, J. McAuley, VBPR: visual bayesian personalized ranking from
implicit feedback, in: Thirtieth AAAI Conference on Artificial Intelli-
gence, 2016, pp. 144-150.

Y. Zhou, C. Huang, Q. Hu, J. Zhu, Y. Tang, Personalized learning
full-path recommendation model based on LSTM neural networks, In-
formation Sciences 444 (2018) 135-152.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, I. Polosukhin, Attention is all you need, in: Advances in neural
information processing systems, 2017, pp. 5998-6008.

Y. Cao, W. Zhang, B. Song, W. Pan, C. Xu, Position-aware context at-
tention for session-based recommendation, Neurocomputing 376 (2020)
65-72.

W. Cheng, Y. Shen, Y. Zhu, L. Huang, A neural attention model for
urban air quality inference: Learning the weights of monitoring stations,
in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018, pp.
2151-2158.

H. Koohi, K. Kiani, User based collaborative filtering using fuzzy c-
means, Measurement 91 (2016) 134-139.

31

[15]

[16]

[17]

[22]

23]

[24]

A. Bellogin, J. Parapar, Using graph partitioning techniques for neigh-
bour selection in user-based collaborative filtering, in: Proceedings of the
sixth ACM conference on Recommender systems, 2012, pp. 213-216.

S. Purushotham, Y. Liu, C.-C. J. Kuo, Collaborative topic regression
with social matrix factorization for recommendation systems, arXiv
preprint arXiv:1206.4684 (2012).

X. Qian, H. Feng, G. Zhao, T. Mei, Personalized recommendation com-
bining user interest and social circle, IEEE transactions on knowledge
and data engineering 26 (7) (2013) 1763-1777.

M. Papagelis, D. Plexousakis, Qualitative analysis of user-based and
item-based prediction algorithms for recommendation agents, Engineer-
ing Applications of Artificial Intelligence 18 (7) (2005) 781-789.

X. Yang, H. Steck, Y. Liu, Circle-based recommendation in online social
networks, in: Proceedings of the 18th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, 2012, pp. 1267-1275.

C. Zhou, J. Bai, J. Song, X. Liu, Z. Zhao, X. Chen, J. Gao, Atrank: An
attention-based user behavior modeling framework for recommendation,
in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018, pp.
4564-4571.

X. Huang, S. Qian, Q. Fang, J. Sang, C. Xu, Csan: Contextual self-
attention network for user sequential recommendation, in: Proceedings
of the 26th ACM international conference on Multimedia, 2018, pp.
447-455.

H. Ying, F. Zhuang, F. Zhang, Y. Liu, G. Xu, X. Xie, H. Xiong, J. Wu,
Sequential recommender system based on hierarchical attention network,

in: IJCAI International Joint Conference on Artificial Intelligence, 2018,
pp. 3926-3932.

R. He, J. McAuley, Ups and downs: Modeling the visual evolution of
fashion trends with one-class collaborative filtering, in: proceedings of
the 25th international conference on world wide web, 2016, pp. 507-517.

L. Ungar, D. P. Foster, A formal statistical approach to collaborative
filtering, CONALD’98 (1998).

32

[25]

[20]

[27]

[28]

[31]

[32]

[33]

[34]

X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.-S. Chua, Neural collabo-
rative filtering, in: Proceedings of the 26th international conference on
world wide web, 2017, pp. 173-182.

A. den Oord, S. Dieleman, B. Schrauwen, Deep content-based music rec-
ommendation, in: Advances in neural information processing systems,
2013, pp. 2643-2651.

P.-Y. Hao, W.-H. Cheang, J.-H. Chiang, Real-time event embedding for
poi recommendation, Neurocomputing 349 (2019) 1-11.

Y. Wang, C. Guo, Y. Chu, J.-N. Hwang, C. Feng, A cross-domain hierar-
chical recurrent model for personalized session-based recommendations,
Neurocomputing (2019).

R. Jozefowicz, W. Zaremba, . Sutskever, An empirical exploration of
recurrent network architectures, in: International conference on machine
learning, 2015, pp. 2342-2350.

A. Luo, P. Zhao, Y. Liu, J. Xu, Z. Li, L. Zhao, V. S. Sheng, Z. Cui,
Adaptive attention-aware gated recurrent unit for sequential recommen-
dation, in: International Conference on Database Systems for Advanced
Applications, Springer, 2019, pp. 317-332.

T. Bansal, D. Belanger, A. McCallum, Ask the gru: Multi-task learn-
ing for deep text recommendations, in: Proceedings of the 10th ACM
Conference on Recommender Systems, 2016, pp. 107-114.

T. Shen, T. Zhou, G. Long, J. Jiang, S. Pan, C. Zhang, Disan: Direc-
tional self-attention network for rnn/cnn-free language understanding,
in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018, pp.
5446-5455.

W. Yin, H. Schiitze, B. Xiang, B. Zhou, Abcnn: Attention-based con-
volutional neural network for modeling sentence pairs, Transactions of
the Association for Computational Linguistics 4 (2016) 259-272.

K. Thanikasalam, C. Fookes, S. Sridharan, A. Ramanan, A. Pini-
diyaarachchi, Target-specific siamese attention network for real-time ob-

ject tracking, IEEE Transactions on Information Forensics and Security
15 (2019) 1276-1289.

33

[35]

[36]

W. Zhang, J. Yu, H. Hu, H. Hu, Z. Qin, Multimodal feature fusion by
relational reasoning and attention for visual question answering, Infor-
mation Fusion 55 (2020) 116-126.

Y. Sha, M. D. Wang, Interpretable predictions of clinical outcomes with
an attention-based recurrent neural network, in: Proceedings of the 8th
ACM International Conference on Bioinformatics, Computational Biol-
ogy, and Health Informatics, 2017, pp. 233-240.

J. Ni, L. Muhlstein, J. McAuley, Modeling Heart Rate and Activity
Data for Personalized Fitness Recommendation, in: The World Wide
Web Conference, 2019, pp. 1343-1353.

J. Cao, H. Zhao, K. Yu, Cross aggregation of multi-head attention for
neural machine translation, in: CCF International Conference on Nat-
ural Language Processing and Chinese Computing, Springer, 2019, pp.
380-392.

K. Lyu, Y. Li, Z. Zhang, Attention-Aware Multi-Task Convolutional
Neural Networks, IEEE Transactions on Image Processing 29 (2019)
1867-1878.

W.-C. Kang, J. McAuley, Self-attentive sequential recommendation, in:
2018 IEEE International Conference on Data Mining (ICDM), IEEE,
2018, pp. 197-206.

J. Gehring, M. Auli, D. Grangier, D. Yarats, Y. N. Dauphin, Con-
volutional sequence to sequence learning, in: Proceedings of the 34th
International Conference on Machine Learning-Volume 70, JMLR. org,
2017, pp. 1243-1252.

T. H. Nguyen, R. Grishman, Event detection and domain adaptation
with convolutional neural networks, in: Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume
2: Short Papers), 2015, pp. 365-371.

A. M. Do, A. V. Rupert, G. Wolford, Evaluations of pleasurable experi-
ences: The peak-end rule, Psychonomic Bulletin & Review 15 (1) (2008)
96-98.

34

[44]

[45]

L. Zheng, V. Noroozi, P. S. Yu, Joint deep modeling of users and items
using reviews for recommendation, in: Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining, 2017, pp.
425-434.

Y. Du, H. Liu, Y. Qu, Z. Wu, Online personalized next-item recom-
mendation via long short term preference learning, in: X. Geng, B.-H.
Kang (Eds.), PRICAT 2018: Trends in Artificial Intelligence, Springer
International Publishing, Cham, 2018, pp. 915-927.

L. E. Dodd, M. S. Pepe, Partial auc estimation and regression, Biomet-
rics 59 (3) (2003) 614-623.

35

	1 Introduction
	2 Related Work
	2.1 Sequential Recommendation
	2.2 Attention Mechanism
	2.3 Position Embedding (PE)

	3 The Proposed Model
	3.1 Problem Formulation
	3.2 Framework
	3.3 Dynamic User Category Extraction
	3.4 Personalized time position embedding
	3.5 Long- and Short-term Feature-wise Attention Layers
	3.5.1 Long-term Feature-wise Attention Layer
	3.5.2 Short-term Feature-wise Attention Layer

	3.6 Multi-heads integration
	3.7 Network Training

	4 Experiments
	4.1 Experimental Designs
	4.1.1 Datasets
	4.1.2 Baselines
	4.1.3 Evaluation Metrics
	4.1.4 Implementation Detail

	4.2 RQ1: Performance Analysis
	4.3 RQ2: Parameters Analysis
	4.4 RQ3: Component Analysis

	5 Conclusion and Future Work

