
 1

 Abstract: Spiking Neural Networks (SNNs) are brain-inspired, event-driven machine learning algorithms that have
been widely recognized in producing ultra-high-energy-efficient hardware. Among existing SNNs, unsupervised
SNNs based on synaptic plasticity, especially Spike-Timing-Dependent Plasticity (STDP), are considered to have
great potential in imitating the learning process of the biological brain. Nevertheless, the existing STDP-based SNNs
have limitations in constrained learning capability and/or slow learning speed. Most STDP-based SNNs adopted a
slow-learning Fully-Connected (FC) architectures and used a sub-optimal vote-based scheme for spike decoding. In
this paper, we overcome these limitations with: 1) a design of high-parallelism network architecture, inspired by the
Inception module in Artificial Neural Networks (ANNs); 2) use of a Vote-for-All (VFA) decoding layer as a
replacement to the standard vote-based spike decoding scheme, to reduce the information loss in spike decoding and,
3) a proposed adaptive repolarization (resetting) mechanism that accelerates SNNs’ learning by enhancing spiking
activities. Our experimental results on two established benchmark datasets (MNIST/EMNIST) show that our network
architecture resulted in superior performance compared to the widely used FC architecture and a more advanced
Locally-Connected (LC) architecture, and that our SNN achieved competitive results with state-of-the-art
unsupervised SNNs (95.64%/80.11% accuracy on the MNIST/EMNISE dataset) while having superior learning
efficiency and robustness against hardware damage. Our SNN achieved great classification accuracy with only
hundreds of training iterations, and random destruction of large numbers of synapses or neurons only led to negligible
performance degradation.

 Keywords: Spiking Neural Network (SNN), Unsupervised Learning, Inception Module, Learning Efficiency, and Robustness.

1 Introduction
 Recently, Artificial Neural Networks (ANNs) have made good progress in many cognitive tasks (e.g., recognition,
analytics, and inference) [19-21]. However, ANNs are computational-intensive [16], and thus research directions have
been redirected to brain-inspired Spiking Neural Networks (SNNs) to reduce the computation cost [2]. Unlike the
traditional ANNs whose neurons are characterized by static, continuous-valued activation, SNNs resemble the brain’s
biological functions by using discrete spikes to compute and transmit information. SNNs are thus arguably the only
viable way to understand how the brain computes at the neuronal description level [2]. Besides, the power consumption
and latency of SNNs can be significantly reduced, compared to ANNs, due to their event-driven style of computing
[16-18].

Most existing SNNs can be divided into three categories: supervised, unsupervised, and conversion. Supervised/
Unsupervised denotes the algorithms of training SNNs with/without label information. Specifically, supervised SNNs
use a loss function to guide their training, which aims at reducing the differences between output and labels [3-6],
while unsupervised SNNs adjust their synaptic weights based on biological synaptic plasticity to learn the inner
structures of input unlabeled samples [7-14]. Conversion denotes the algorithms of converting a trained ANN into a

This work is supported in part by the grants 2017YFA0206200, 2018YFB2202601 from National Key R&D Program of China,
and the grants 61674173, 61834005, and 61902443 from National Natural Science Foundation of China (NSFC).
‡ M. Meng and X. Yang contributed equally to this paper. * S. Xiao and Z. Yu both are corresponding authors.
E-mail: mmen2292@uni.sydney.edu.au (M. Meng), yangxy266@mail2.sysu.edu.cn (X. Yang), lei.bi@sydney.edu.au (L. Bi),
 jinman.kim@sydney.edu.au (J. Kim), xiaoshlin@mail.sysu.edu.cn (S. Xiao), yuzhiyi@mail.sysu.edu.cn (Z. Yu).

Mingyuan Menga,b,‡, Xingyu Yanga,‡, Lei Bib, Jinman Kimb, Shanlin Xiaoa,*, and Zhiyi Yua,*

a School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
b Biomedical & Multimedia Information Technology Research Group, School of Computer Science, The

University of Sydney, Sydney, Australia

High-parallelism Inception-like Spiking Neural
Networks for Unsupervised Feature Learning

This paper has been published at Neurocomputing.
The published version is available at https://www.sciencedirect.com/science/article/abs/pii/S0925231221002733?via%3Dihub

 2

SNN to circumvent the difficulties in training SNNs directly [15-18]. In this paper, we focus on unsupervised SNNs
because the unsupervised SNNs based on synaptic plasticity are considered more biologically plausible with a higher
resemblance to the learning process of the biological brain [1].

Most existing unsupervised SNNs were trained through competitive learning based on Spike-Timing-Dependent
Plasticity (STDP) [7-13]. This STDP-based approach allows SNNs to learn in a fully unsupervised fashion without
any label information. Despite this advantage, existing unsupervised SNNs have several limitations: In a preliminary
study [7], a Fully-Connected (FC) SNN was proposed which exhibited sub-optimal learning capability (95.00%
accuracy on the MNIST) and extremely slow learning speed (900,000 iterations were needed). In later studies [9-10],
scholars focused on more advanced learning rules such as Adaptive Synaptic Plasticity (ASP) [9] and stochastic STDP
[10]. These works indeed improved SNNs’ learning capability, but they are still limited by the slow-learning FC
network architecture, and thus resulting in sub-optimal learning speed. More recently, Saunders et al. [8] incorporated
a Locally-Connected (LC) network architecture into SNNs (called LC SNNs), which improved SNNs’ learning speed
(60,000 iterations were needed) and robustness against hardware damage. Nonetheless, the LC SNNs’ improvement
in learning capability was still marginal (95.07% accuracy on the MNIST). In this paper, we focus on designing a
STDP-based SNN that improves in all learning efficiency (speed), robustness, and learning capability.

SNNs’ learning efficiency and robustness are highly relevant to their architecture parallelism because a high-
parallelism SNN consists of multiple independent sub-networks that can learn and compute in parallel (discussed in
Section 7.1). For improving SNNs’ architecture parallelism, we were motivated by the Inception module [22] in ANNs.
The Inception module uses a Split-and-Merge architecture: The input is split into a few parallel pathways with multi-
scale filters (e.g., 3×3, 5×5, 7×7 convolutional kernels, pooling, etc.), and then all pathways are concatenated together.
Through this Split-and-Merge architecture, the Inception module can process multi-scale spatial information and
improve the network’s parallelism. Inspired by this Split-and-Merge architecture, we designed an Inception-like multi-
pathway network architecture (Fig. 3). To further improve the architecture’s parallelism, we divided each pathway
into multiple parallel sub-networks by partitioning each competition area into multiple sub-areas during competitive
learning (see Section 4.1).

Most STDP-based SNNs adopted a standard vote-based scheme for spike decoding (see Section 3.4) [7, 9-13]. We,
however, found that the standard vote-based spike decoding scheme does not work well with the LC/our network
architecture. This is due to an underlying assumption of this standard scheme being violated, and being responsible
for a large information loss in spike decoding. The standard vote-based decoding scheme assumes that each output
neuron can only respond to one certain class and then builds a Vote-for-One (VFO) relationship between each output
neuron and a certain class. However, in the LC/our architecture, the Receptive Fields (RFs) of output neurons are
localized, and each output neuron can respond to multiple classes that share the same local features (discussed in
Section 7.2). To reduce the information loss in spike decoding, we extended this standard vote-based decoding scheme
to a Vote-for-All (VFA) decoding layer by building a VFA relationship between each output neuron and all possible
classes (see Section 4.2).

Besides, the learning speed of STDP-based SNNs is highly relevant to their spiking intensity, and this is because
the update of synaptic weights (i.e., learning) occurs when neurons fire spikes (discussed in Section 7.3). Based on
this relevance, we proposed an adaptive repolarization (resetting) mechanism to enhance SNNs’ spiking activities,
which thereby allows to accelerate SNN’s learning (see Section 4.3).

To sum up, in this paper we proposed a STDP-based unsupervised SNN including three key contributions:
• We designed a high-parallelism Inception-like network architecture for SNNs. This architecture integrates

multi-scale spatial information (features) and has high parallelism, thus exhibiting improved learning
capability, learning efficiency, and robustness against hardware damage.

• We extended the standard vote-based spike decoding scheme to a VFA decoding layer to reduce the
information loss during the spike decoding process.

• We proposed an adaptive repolarization mechanism that can enhance SNNs’ spiking intensity to accelerate
SNNs’ learning.

 We demonstrate the improvements to the state-of-the-art by experimenting with well-established hand-written
digit/letter classification tasks on two public, well-benchmarked datasets (MNIST [23]/EMNIST [24]).

2 Related Works
The Inception module was first proposed by Szegedy et al. [22] and then evolved to many variants [25-26] in ANN

literature. The earlier instance of Inception with SNNs was reported by Xing et al. [15]; however, in this study, their

 3

SNN needed to be trained through a network conversion (i.e., from trained ANN to SNN). From our review, this is
the first study to incorporate the concept of Inception into unsupervised SNNs. This proposed study introduces an
Inception-like architecture and demonstrates its superior performance compared to the widely used FC/LC architecture
with a preprint in [33]. By using [33] as the baseline, we demonstrated that our Inception-like architecture can be
extended to be used as a multi-layer unsupervised SNN [38], and Yang et al. [40] also demonstrated that the proposed
adaptive repolarization mechanism can be extended to be a stochastic spiking neuron model.

Diehl et al. [7] proposed one of the earliest studies of training unsupervised SNNs through STDP-based competitive
learning, where they used a FC network architecture and a relatively simple learning rule. Their proposed FC
architecture was widely used in later studies [9-10, 12-13], but this SNN is limited by sub-optimal learning capability
(95.00% accuracy on the MNIST) and extremely low learning efficiency (900,000 training iterations were needed).
To overcome these limitations: 1) In the aspect of learning rules, Panda et al. [9] proposed an Adaptive Synaptic
Plasticity (ASP), inspired by the ‘ability to forget’ in the human brain, and She et al. [10] proposed to incorporate
stochastic STDP into SNNs. These studies indeed improved SNNs’ learning capability, but they are still limited by
the slow-learning FC architecture. 2) In the aspect of network architecture, Rathi et al. [11] proposed a STDP-based
pruning method to compress the FC architecture into a sparsely connected architecture, and Saunders et al. [8]
proposed a LC network architecture as a replacement to the FC architecture and got a LC SNN. These studies improved
SNNs’ learning efficiency and robustness against hardware damage, but the improvement in learning capability is still
marginal. Besides, some scholars focused on the implementations of unsupervised SNN on neuromorphic hardware
(e.g., Lammie et al. [12]).

Moreover, motivated by the Convolutional Neural Networks (CNNs) in ANN literature, Convolutional Spiking
Neural Networks (CSNNs) were proposed for feature extraction [27-30]. Unlike CNNs that are normally trained
through supervised learning, CSNNs allow for unsupervised learning of spiking features. However, CSNNs are
usually reliant on external supervised classifiers (e.g., SVM, KNN, etc.) to complete the classification process, and
therefore they are often considered as semi-supervised SNNs [8]. Furthermore, brain-inspired reservoir-based SNNs
were proposed for feature extraction [41-42]. Compared to widely used layer-based SNNs, these reservoir-based SNNs
use a 3D network architecture that is shaped like the primary visual cortex. Nikola K. Kasabov [41] proposed a
reservoir-based SNN, named NeuCube, to learn and understand spatio-temporal brain data, in which a recurrent 3D
SNN reservoir (SNNr) was used to learn spiking features in an unsupervised fashion. Based on NeuCube, Paulun et
al. [42] proposed a SNN for moving objects recognition and achieved a competitive result to layer-based SNNs.
Nevertheless, reservoir-based SNNs haven’t shown superior learning capability than the layer-based SNNs (e.g.,
Paulun et al. [42] acknowledged that Stromatias et al. [43] achieved higher accuracy using a semi-supervised layer-
based SNN), and they also require external supervised classifiers to complete the classification process.

3 Fundamentals
In this section, we describe the fundamental components of SNNs, including spiking neuron models, synapse

models, spike coding, and competitive learning implementations. The models/methods described in this section are
used in our SNN as default if no extra setting is stated.

3.1 Spiking Neuron Model
Spiking neurons are the basic computing units of SNNs. For computational efficiency, Integrate-and-Fire (IF) and

Leaky Integrate-and-Fire (LIF) models [39] are widely used due to their simplicity [7-11], but there are still many
variations of neuron models which implement more complex biological neuron behaviors. For example, the Hodgkin-
Huxley (HH) model proposed by Hodgkin et al. [31] is famous for approximating the electrical characteristics of real
biological neurons, but its limitation is that it cannot be used for large scale networks due to its excessive computation
load. In another study, the neuron model proposed by Izhikevich [32] can simulate rich firing patterns with less
computational load than the HH model; nonetheless, it’s still not as widely-used as the IF and LIF models because the
simplicity of IF and LIF models is more desirable for SNNs’ hardware implementations. In this study, since the LIF
model was used in most of the related studies [7-11], we also used a simple LIF model for a fair comparison. Other
more advanced spiking neuron models can be considered, but the simple LIF model has worked well (95.64%/80.11%
accuracy on the MNIST/EMNISE dataset; see Section 6.1). Following Diehl et al. [7], we give the dynamics of the
used LIF model as follows:

!"
#"

#$
= &'()$ − & + (&(-. − &)0(+ (&123 − &)01 , (1)

!45
#45
#$
= −0(+ ∑ 789(:8, <)

=5>?
8 !45 , (2)

 4

!4@
#4@
#$
= −01 + ∑ 789(:8, <)

=@AB
8 !4@ , (3)

9(:, <) = C		1 7ℎGH	I	:JKLG	K:	MGNGK&GO	I<	<
		0 GQ:G

 . (4)

In (1), & is the membrane voltage (membrane potential) of this neuron, &'()$ is the resting voltage, 0(/1 denotes the
total excitatory/inhibitory conductance that is input to the neuron, &(-./123 is the equilibrium voltage of excitatory/
inhibitory conductance, and !"/45/4@ is the time constant of &/0(/01 . In (2) and (3), S(-./123 is the number of
excitatory/inhibitory synapses connected to the neuron, :8 is a synapse, and 78 is the synaptic weight of :8. In (4),
the function 9(:, <) is equal to 1 when the neuron receives a spike through the synapse : at time <, otherwise it’s equal
to 0. According to (1), (2), (3) and (4), the & and 0(/1 decay exponentially to &'()$ and 0, respectively, when no spike
arrives. At the occurrence of a spike from an excitatory/inhibitory synapse, the 0(/1 increases by the weight of this
synapse, thus leading to the increase/decrease of the membrane voltage &. When the & reaches or exceeds a threshold
&$3'(), the neuron fires a spike (i.e., depolarization) to downstream neurons, and the & is reset (i.e., repolarization) to
a resetting voltage &'()($.	After firing a spike, the neuron does not integrate input spikes for a refractory period U'(V .
 Besides, the homeostasis mechanism used in [7] is adopted to ensure that no neuron can fire excessive spikes and
dominate the firing activities of SNNs. This mechanism is an adaptive threshold scheme as follows:

!W
#W

#$
= &$3'() − X + XYZ[)92(<)	!W , (5)

92(<) = C		1 7ℎGH	I	:JKLG	K:	\KMGO	I<	<
		0 GQ:G

 , (6)

where X is an adaptive threshold, !W is the time constant of X, and function 92(<) is equal to 1 when the neuron fires
a spike at time <, otherwise it’s equal to 0. According to (5) and (6), each time the neuron fires a spike, the threshold
X increases by a constant XYZ[), or it decays exponentially to the &$3'().

3.2 STDP Synapse Model
 A synapse is defined as the connection between two neurons (named pre/postsynaptic neuron). STDP synapse
models were widely used in unsupervised SNNs [7-13] to model the behaviors of synaptic weights. They have evolved
into many variants such as additive STDP [34], triplet STDP [35], and stochastic STDP [10]. In this study, following
[7] and [8], we adopted the triplet STDP and simplify it to:

∆7 = ^
		_Y`)$aY'(aY`)$b				7ℎGH	Jc:<:dHIJ<KN	:JKLG
−_Y'(aY`)$e										7ℎGH	JMG:dHIJ<KN	:JKLG

 , (7)

where aY'(and aY`)$e/Y`)$b are the presynaptic and postsynaptic traces [36], _Y'(/_Y`)$ is the pre/postsynaptic
learning rate. The synaptic weight 7 changes when the pre/postsynaptic neuron fires a spike (named pre/postsynaptic
spike). The aY'(and aY`)$e/Y`)$b are reset to 1, respectively, when presynaptic and postsynaptic spikes are fired, or
they decay exponentially to 0 with !Y'(/!Y`)$e/!Y`)$b as the time constant of aY'(/aY`)$e/aY`)$b . The use of these
synaptic traces is actually equivalent to recording the time when the last pre/postsynaptic spike is fired. Note that we
set _Y`)$ >> _Y'(to emphasize the effects of presynaptic neurons on postsynaptic neurons.

The triplet STDP described in (7) adjusts the synaptic weight based on the relative timing of pre/postsynaptic spikes.
Fig.1 is an illustration of the triplet STDP model, in which the <Y'(/<Y`)$ denotes the time when a pre/postsynaptic

Fig. 1. An illustration of the triplet STDP, which shows the behaviors of synaptic traces when (a) presynaptic spikes tend to occur immediately
before postsynaptic spikes, and when (b) presynaptic spikes tend to occur immediately after postsynaptic spikes.

Sy
na
pt
ic
Tr
ac
e

Time

1

"#$%&"#'()& "#$%* "#'()*

(a)

Sy
na
pt
ic
Tr
ac
e

Time

1

"#'()&"#$%& "#'()*"#$%*

(b)

+,-."1+,/0 +,-."2 +,-."1+,/0 +,-."2

 5

spike is fired. As shown in Fig.1, if presynaptic spikes tend to occur immediately before postsynaptic spikes (Fig.1(a)),
the synaptic weight tends to be larger. This is because the aY`)$e has already decayed to a relatively small value when
presynaptic spikes trigger the updates of the synaptic weight 7, while the aY'(is still a relatively large value when
postsynaptic spikes are fired. Similarly, if presynaptic spikes tend to occur immediately after postsynaptic spikes
(Fig.1(b)), the synaptic weight tends to be smaller. Competitive learning was proposed mainly based on the former
phenomenon (see Section 3.5), which explains why we set _Y`)$ >> _Y'(to emphasize the former phenomenon. In
addition, compared to typical STDP models that only have a single postsynaptic trace, the triplet STDP also considers
the time interval of postsynaptic spikes through aY`)$b. If the time interval between the current and last postsynaptic
spikes is too large, the aY`)$b will decay to a very small value. In this case, it is difficult for the synaptic weight 7 to
increase even when presynaptic spikes occur immediately before postsynaptic spikes.

3.3 Rate-based Input Encoding
 Normally, the natural input of many applications is analog values (e.g., image pixels), but SNNs expect spikes.
Therefore, encoding analog values into discrete spike trains is needed. In this study, we adopted a common rate-based
encoding scheme that has been widely used in many studies [7-13], where input neurons (i.e., the neurons in the input
layer) are generators of Poisson-distributed spike trains. Each input neuron corresponds to a pixel of input images.
During encoding, each pixel value is modeled by a Poisson-distributed spike train, and the average rate of the spike
train is determined by the pixel value multiplied by an encoding parameter g. Besides, since SNNs might be insensitive
to some training samples, thus resulting in sub-optimal training with these samples [7], we adopted the adaptive
encoding scheme used in [7], in which the g can be adaptive when SNNs’ output spiking intensity is too low.

3.4 Vote-based Spike Decoding
Since the output of SNNs is spike trains, we need to decode the output spike trains into recognizable results when

we apply a trained SNN to a classification task. In other words, we need to construct a mapping from the patterns of
output spike trains to the inference results, which is similar to finding the representation of each cluster in K-means
clustering. Note that this is the only step where labels are needed.

In general, unsupervised SNNs using rate-based input encoding rely on vote-based methods for spike decoding [7-
13]. A standard vote-based spike decoding scheme was widely used in many unsupervised SNNs [7, 9-13]. In this
decoding scheme: First, each output neuron (i.e., the neuron in the output layer) is assigned to a certain class based on
its highest spiking response, through which a VFO relationship between each output neuron and a certain class is built.
Then, during inference, each spike fired by the output neuron is a single vote for its assigned class. Finally, the class
having the most votes is the inference result.

The standard vote-based decoding scheme has worked well in most unsupervised SNNs using the FC architecture
[7, 9-13], but we found that this decoding scheme is not applicable to the LC architecture and our proposed architecture.
This part will be further discussed in Section 7.2.

3.5 Competitive Learning
Competitive learning has been widely used as a training approach in many unsupervised SNNs [7-13]. It’s based

on STDP models and its principle is that: it makes each output neuron compete with each other to learn a certain
feature. Each output neuron represents a randomly initialized feature at the beginning. Every time a new training
sample comes, only the winner neurons in the competition, whose represented features are the most similar to the
features in this training sample, can fire spikes and adjust their synaptic weights based on STDP. In doing so, the
winner neurons’ represented features will approximate to the real training features. After training, each output neuron
will become highly active to different features, and can be used to infer the classes of unseen samples.

Fig. 2. The implementations of competitive learning. (a) Preliminary version: An inhibitory layer is used to realize competition among output
neurons. (b) Alternative version: The inhibitory layer is removed, and the output neurons are directly interconnected with fixed inhibitory synapses.
Note that the output neurons in the same competition area are drawn in the same color.

����� ����� ������ �����

����� ����� ������ �����

��������� �����

��� ��

��	���������� �������

����� ���������� �������

����� ��������� �������

������

 6

The implementations of competitive learning are shown in Fig. 2: The output layer is connected to the input layer
using STDP-modifiable (i.e., modified based on STDP) synapses. Each output neuron competes with other output
neurons that are located in the same competition area. Here we define that the output neurons sharing the same RF
(i.e., sharing the same set of presynaptic neurons) are in the same competition area. Note that this design is also called
lateral inhibition in many studies [7, 9, 11-13]. Fig. 2(a) shows a preliminary version of competitive learning: The
output layer is connected to an inhibitory layer using fixed excitatory synapses in a one-to-one manner, and each
inhibitory neuron (i.e., the neuron in the inhibitory layer) corresponds to a output neuron. Then, each inhibitory neuron,
using fixed inhibitory synapses, is connected to all the output neurons that are located in the same competition area,
except for its corresponding one. Besides, there is an alternative version shown in Fig. 2(b): The inhibitory layer is
replaced by the inter-connections between output neurons. Each output neuron, using fixed inhibitory synapses, is
directly connected to other output neurons that are located in the same competition area. Since the alternative version
requires less spiking neurons compared to the preliminary version, it’s used in this study as default.

4 Method

4.1 High-Parallelism Network Architecture
Fig. 3 is an illustration of our proposed network architecture. Inspired by the Inception module in ANN literature,

we designed a high-parallelism Inception-like architecture. There are three independent pathways where an output
layer is connected to the input layer in a FC or LC manner. The three pathways can compute in parallel without any
interaction. A VFA decoding layer is connected to the three output layers in a FC manner to integrate information
from the three pathways and then to decode output spike trains into recognizable inference results.

The input neurons are the spike train generators described in Section 3.3, and the output neurons are modeled by
the LIF model described in Section 3.1. Following the principle of competitive learning described in Fig. 2(b), the
output layers are connected to the input layer using excitatory STDP-modified synapses, and the output neurons in the
same competition area (i.e., sharing the same RF) are interconnected using fixed inhibitory synapses.

The LC output layer has the same connection topology as the convolutional layer in ANNs but it does not use shared
weights. In this study, only square kernel is used, so we use one kernel size parameter L and one stride parameter : to
define RFs (denoted by (L, :) in Fig. 3), and use a parameter 9 to denote feature map number. Note that the FC output
layer actually is a special case of the LC output layer where the kernel size is equal to the size of input layer. Therefore,
we also use L, :, and 9 to define the FC output layer with (28,1) as (L, :). In this case, each output neuron in the FC
layer can be regarded as a feature map. The topology of each pathway is shown in Fig. 3: The RF settings of three
pathways are different, which means each pathway can cope with the image features at different scales. The multi-
scale features finally merge together in the VFA decoding layer.

Moreover, to further improve the architecture’s parallelism, we partition the original competition areas into multiple
sub-areas, and only allow the output neurons located in the same sub-area to compete. More specifically, as shown in
Fig. 3, the only competition area in the 1st output layer is partitioned into 4 sub-areas, and the 4 competition areas in
the 2nd output layer are partitioned into 8 sub-areas, while the 9 competition areas in the 3rd output layer remain
unchanged. Finally, we manually set each output layer’s 9 to make sure all sub-areas are equal in size. If we define a
parameter jKkGlm as the size of sub-areas, the 9 of the 1st/2nd/3rd output layer should be 4jKkGlm/2jKkGlm/jKkGlm. After
this partitioning, our architecture consists of 21 individual competition areas, which is equivalent to having 21 parallel
sub-networks. This part will be further discussed in Section 7.1.

Fig. 3. An illustration of our proposed high-parallelism network architecture. There are three parallel pathways connected to the input layer, each
of which has different RF and network topology to cope with image features at different scales. The multi-scale information is finally integrated
by a VFA decoding layer. Note that each cube in the output layer denotes a parallel competition area or sub-area.

FC, (28, 1)

LC, (24, 4)

LC, (16, 6)

Input Layer Output Layer

28×28

$ = 4×'()*+,

$ = 2×'()*+,

$ = '()*+,

1
1

2

2

3

3

VFA decoding Layer

 7

Note that the design of our architecture is highly empirical. Other designs can be considered if they meet the
following principles: 1) There are multiple independent pathways, each of which has different RF setting to cope with
the image features at different scales and, 2) The original competition areas can be partitioned into sub-areas, but all
sub-areas should be equal in size. This part will be further discussed in Section 7.1.

4.2 VFA Decoding Layer
The VFA decoding layer is connected to three pathways in a FC manner to receive the votes from all output neurons.

Here the VFA(Vote-for-all) means each output neuron needs to vote for all classes. This decoding layer can integrate
multi-scale spatial information and then decode output spike trains into recognizable inference results. Each VFA
neuron (i.e., the neuron in the VFA decoding layer) corresponds to a class, so the number of VFA neurons is equal to
the number of all possible classes in the target classification task. The VFA neurons are modeled by a specially
designed voltage-based IF model whose threshold is set to be infinite, meaning that the VFA neurons have no ability
to fire spikes and their membrane voltage increases from 0 to infinity when they receive spikes. Actually, each VFA
neuron serve as a vote counter to accumulate the votes from the output neurons. During inference, the VFA neuron
having the highest membrane voltage indicates the final inference result.

The VFA decoding layer only works during inference and is excluded during training, so its synaptic weights are
fixed to be 0 during training. After the training is finished, the synaptic weights of the VFA decoding layer are
calculated based on output neuron’s spiking response to training samples. Here we define 71o as the synaptic weight
between the ith output neuron and the jth VFA neuron. The 71o can be calculated as follows:

71o =
)@p

q

∑)@rq
s
rtu

 , (8)

where v is an empirical constant, w is the number of all possible classes, and :1o represents the average number of the
spikes that the ith output neuron fired to respond to the training samples in the jth class.

4.3 Adaptive Repolarization
As we mentioned in Section 3.5, the principle of competitive learning is to make the winner neurons in competition

adjust their represented features to approximate to real training features. Since the updates of synaptic weights (i.e.,
learning) are triggered only when spikes are fired, we proposed an adaptive repolarization (resetting) mechanism to
enhance the spiking activities of the winner neurons, thereby accelerating competitive learning. This adaptive
repolarization mechanism is described as follows:

x = y
	&'()($ + z∆w								(∆0 > 0)
	&'()($ − z∆w								(∆0 < 0)
	&'()($																						(∆0 = 0)

 , (9)

∆0 = |0(}<V~ − 0(}<V�e + U'(V~Ä − |01}<V~ − 01}<V�e + U'(V~Ä , (10)

∆w = &$3'() − &'()$, (11)

where x is an adaptive resetting voltage, <V/<V�e denotes the time when this/last spike is fired, 0(/1(<) is the value of
0(/1 at the time <, and z is a hyperparameter ranging from 0 to 1. As shown in Fig. 4, the x increases by z∆w if the

Fig. 4. An illustration of the proposed adaptive repolarization mechanism. The resetting voltage x is adaptive based on the spikes received from
<V�e + U'(V to <V.

M
em

br
an
e
Vo

lta
ge

(m
V)

Time (ms)

!"−1 + &'(" !" !" + &'("

)'(*(!

+

Spike

+,∆.
−,∆.

Receive Spikes

 8

neuron gets more excitation than inhibition from <V�e + U'(V to <V, and vice versa. Therefore, the spiking activities of
winner neurons are enhanced, and other neurons are inhibited.
 Theoretically, a larger z can accelerate SNNs’ learning more, but it possibly lets a few neurons fire excessive spikes
and dominate the firing activities of the whole competition area. Therefore, there exists a tradeoff between learning
efficiency and learning capability. To ease this problem, we set a large z at the beginning of training, and then reduce
the z as the training goes, which allows SNNs to converge quickly at the beginning but finally still achieve the same-
level learning capability. This part will be further discussed in Section 7.3.

5 Experimental Setup
5.1 Datasets

• MNIST [23]: The MNIST dataset contains 70,000 hand-written digit images (28×28 in size), split into 60,000
images for training and 10,000 images for testing. These images are labeled into 10 classes from 0 to 9.

• EMNIST [24]: This dataset is an extension of MNIST to hand-written English alphabet letters. There are six
partitions in the EMNIST dataset, and we used the letter partition. This partition contains 145,600 hand-
written letter images (28×28 in size), split into 124,800 images for training and 20,800 images for testing.
These images are labeled into 26 classes corresponding to the 26 capital letters.

5.2 Baseline Methods
We evaluated SNNs in terms of learning capability (i.e., classification accuracy), learning efficiency, and robustness

against hardware damage. We compared our method with the following baseline methods:
• Diehl-FC [7]: A 3-layer unsupervised FC SNN using a conductance-based LIF model, triplet STDP [35], and

the preliminary version of competitive learning (Fig. 2(a)). This SNN has been widely adopted as a baseline
method in many studies [8-13]. The public code provided by Diehl et al. [7] was used in the experiments for
a fair comparison, which is available at https://github.com/peter-u-diehl/stdp-mnist.

• Saunders-LC [8]: A 2-layer unsupervised LC SNN using a current-based LIF model, a simplified typical
STDP, and the alternative version of competitive learning (Fig. 2(b)). This SNN is the first one to incorporate
LC architecture. For a fair comparison, we strictly followed [8] to implement this method in the experiments,
except that the size of input layer was changed from 20×20 to 28×28.

The two baseline methods above are chosen because the three of us (i.e., Diehl-FC, Saunders-LC, and ours) all focused
on the design of network architecture. Diehl-FC and Saunders-LC represent the widely used FC architecture and more
advanced LC architecture respectively. Other unsupervised SNNs (e.g., [9-10]) aren’t our opponents because they
didn’t innovate architecture, and their contributions (e.g., learning theory, advanced STDP rules, etc.) can be
assembled with our network architecture as well.

We also analyzed the effectiveness of our three contributions by ablation studies. We evaluated the performance
degradation when each contribution was removed or replaced by an existing method as follows:

• Ours-FC: Our Inception-like architecture is replaced by the FC architecture.
• Ours-LC: Our Inception-like architecture is replaced by the LC architecture.
• Ours-noVFA: The VFA decoding layer is replaced by the standard vote-based spike decoding scheme.
• Ours-noAR: The Adaptive Repolarization (AR) mechanism is removed, so the LIF model with a fixed

resetting voltage &'()($ are used to model output neurons.
 More details about the baseline methods are shown in Table 1.

5.3 Training Procedure
We used a training procedure similar to the one used in [7]: In each iteration, we presented an image in the training

set to the network for 350ms, and then there was a 150ms phase without any input to allow all variables of all neurons
to decay to their default values. We trained our SNNs with a single pass through the training set, which leaded to
60,000/124,800 training iterations in total (one image per iteration) for MNIST/EMNIST. After the training was done,
we set the learning rate to zero and fixed all synaptic weights. The synaptic weights of the VFA decoding layer were
calculated based on the output neurons’ spiking responses to the last 10,000 training images. Besides, we adopted the
weight normalization scheme used in [8]: After each iteration, the sum of synaptic weights incident to an output
neuron was normalized to be equal to a normalization constant N2`'Å. More implementation details including our code
are presented in Appendix A1.

 9

6 Evaluation
6.1 Learning Capability

In Table 2, we report the classification accuracy on the testing set of MNIST/EMNIST and the number of the
neurons/synapses used in SNNs (H2(['`2/H)Ç2ÉY)(). Here we use (L, :) × 9 to denote the kernel size (L), stride (:),
and feature map number (9) of a FC/LC architecture. As is mentioned in Section 4.1, each output neuron in the FC
architecture can be regarded as a feature map, so the (L, :) of a FC architecture is (28,1). As shown in Table2, our
SNNs achieved much improved testing results. Even more than 10% improvement on the EMINST was achieved by
our SNNs. Besides, the SNNs with a larger scale normally exhibit better performance, while, compared to Diehl-FC
and Saunders-LC, our SNNs achieved higher testing results using fewer neurons and synapses (Fig. 5). Note that we
didn’t test our SNN with jKkGlm>400 because the SNNs with jKkGlm�400 have exhibited superior performance, but
we anticipate that a larger jKkGlm will lead to a better result if computing resources are sufficient.

Table 3 shows the testing results of the ablation study where each our contribution was removed respectively. The
experimental results show that: 1) Ours-FC and Ours-LC degraded in testing result, which further demonstrates that
our proposed architecture outperforms the FC/LC architecture on learning capability; 2) Our-noAR exhibited lightly
improved testing results, which suggests that the adaptive repolarization mechanism only has a negligible impact on
learning capability but can obviously improve the SNNs’ learning speed (shown in Section 6.2) and, 3) The testing
results of Our-noVFA declined dramatically to even lower than Diehl-FC. This is because the standard vote-based
decoding scheme only works in the FC architecture, while, in other architectures (e.g., LC, ours), it will cause a large
information loss in spike decoding. Our architecture has superior learning capability, but this capability can’t be
reflected without the VFA decoding layer. This part will be further discussed in Section 7.2.

Table 2. Comparison of Learning Capability

SNN Topology ÖÖÜáàâÖ ÖäãÖåçäÜ MNIST EMNIST

Diehl-FC

(28,1) × 400 800 473K 87.88% 66.41%
(28,1) × 800 1600 1267K 90.22% 67.45%
(28,1) × 1600 3200 3814K 91.96% 68.23%
(28,1) × 6400 12800 45977K 94.97% 47.41%*

Saunders-LC

(16,6) × 100 900 320K 91.36% 62.37%
(16,6) × 400 3600 2361K 93.97% 66.78%
(16,6) × 800 7200 7603K 94.83% 68.83%
(16,6) × 1000 9000 11304K 95.02% 69.68%

Ours

jKkGlm = 100 2100 1214K 93.16% 73.93%
jKkGlm = 200 4200 2849K 94.19% 76.45%
jKkGlm = 300 6300 4904K 94.95% 78.76%
jKkGlm = 400 8400 7379K 95.64% 80.11%

 * The training is divergent, and the highest result before divergence is listed.
9

Table 1. Details of Baseline/Our Methods

SNN Architecture Spike Decoding Adaptive
Repolarization

Competitive
Learning Neuron Model STDP Model

Diehl-FC [7] FC Standard vote-
based decoding [7] no Preliminary version

(Fig. 2(a))
conductance-based

LIF [7] Triplet STDP [35]

Saunders-LC [8] LC 2-gram [8] no Alternative version
(Fig. 2(b))

current-based LIF
[8]

Simplified typical
STDP [8]

Ours Ours (Fig. 3) VFA decoding
layer yes Alternative version

(Fig. 2(b))
conductance-based

LIF (1)-(6)
Simplified triplet

STDP (7)

Ours-FC FC VFA decoding
layer yes Alternative version

(Fig. 2(b))
conductance-based

LIF (1)-(6)
Simplified triplet

STDP (7)

Ours-LC LC VFA decoding
layer yes Alternative version

(Fig. 2(b))
conductance-based

LIF (1)-(6)
Simplified triplet

STDP (7)

Ours-noVFA Ours (Fig. 3) Standard vote-
based decoding [7] yes Alternative version

(Fig. 2(b))
conductance-based

LIF (1)-(6)
Simplified triplet

STDP (7)

Ours-noAR Ours (Fig. 3) VFA decoding
layer no Alternative version

(Fig. 2(b))
conductance-based

LIF (1)-(6)
Simplified triplet

STDP (7)

 10

In Table 4, we compared our method with the various existing unsupervised SNN algorithms on the MNIST dataset.
The results of the comparison algorithms were derived from the corresponding references. Note that semi-supervised
SNN algorithms (e.g., [27-30, 41-42]) are excluded because they require extra supervised classifiers. Our method
reached a superior performance than most of the comparison algorithms. Panda et al. [9] and She et al. [10] achieved
higher results using more advanced learning rules (ASP, stochastic STDP), but they are still limited by the slow-
learning FC architecture. Our contributions are mainly on architecture design and decoding mechanism, so other SNN
components (e.g., neuron model, learning rules, etc.) used in the experiments are kept similar with Diehl-FC and
Saunders-LC for a fair comparison. Nevertheless, our contributions are flexible and can work independently, which
suggests that they can be in conjunction with other more advanced SNN components to achieve higher performance.

6.2 Learning Efficiency
In Fig. 6, we report the MNIST testing results of the SNNs trained with varying number of training iterations. In

Fig. 6(a), we compared the SNNs with similar learning capability: Diehl-FC with (28,1) × 6400, Saunders-LC with
(16,6) × 800, and our SNN with jKkGlm = 300. These three SNNs all exhibited close learning capabilities of about
94.9% accuracy when fully trained. It’s shown in Fig. 6(a) that our SNN exhibited much superior learning efficiency.
The testing results of our SNN can achieve nearly 80%, 90% accuracy with only 500, 2500 training iterations, while
Saunders-LC just achieved nearly 30%, 75% accuracy with 500, 2500 training iterations, and worst of all, Diehl-FC
only reached nearly 42% accuracy with even 10,000 training iterations. Note that Saunders-LC and our SNN can be
fully trained within one pass through the training set, but Diehl-FC needs to be trained with 15 passes through the
training set, resulting in 900,000 training iterations in total.

Table 4. Comparison of Testing Results on the MNIST Dataset among the Existing Unsupervised SNN Algorithms

Paper Description Result
Diehl et al. 2015 [7] FC SNN (Diehl-FC) 95.00%

Saunders et al. 2019 [8] LC SNN (Saunders-LC) 95.07%
Panda et al. 2017 [9] FC SNN with Adaptive Synaptic Plasticity (ASP) 96.80%
She et al. 2019 [10] FC SNN with stochastic STDP 96.10%

Rathi et al. 2018 [11] Sparsely connected SNN with STDP-based connection pruning 90.10%
Lammie et al. 2018 [12] FPGA neuromorphic system based on FC SNN 94.00%
Allred et al. 2016 [13] FC SNN using forced firing of dormant or idle neurons 85.90%

Querlioz et al. 2011 [14] Memristor-Based SNN 93.50%
Ours High-parallelism Inception-like SNN 95.64%

Table 3. Testing Results of Ablation Study

SNN Topology MNIST EMNIST
Ours jKkGlm = 400 95.64% 80.11%

Ours-FC (28,1) × 6400 95.06% 56.16%*
Ours-LC (16,6) × 1000 95.26% 77.85%

Our-noAR jKkGlm = 400 95.67% 80.21%
Our-noVFA jKkGlm = 400 94.88% 69.27%

* The training is divergent, and the highest result before divergence is listed.

Fig. 5. A bar plot illustrating the number of the neurons/synapses (H2(['`2/H)Ç2ÉY)() used in Diehl-FC, Saunders-LC, and our SNN. The testing
accuracy is written above the bars.

0

6000

12000

18000

24000

30000

36000

42000

48000

54000

60000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

 Diehl-FC Saunders-LC Ours

Synapse
num

ber(×
1000)

Ne
ur

on
nu

m
be

r

n_neuron
n_synapse

94.97% (MNIST)
47.41% (EMNIST)

95.02% (MNIST)
69.68% (EMNIST)

95.64% (MNIST)
80.11% (EMNIST)

nneuron

nsynapse

 11

Fig. 6(b) shows the results of the ablation study where Ours-FC with (28,1) × 6400, Ours-LC with (16,6) × 800,
and Ours/Ours-noVFA/Ours-noAR with jKkGlm = 300 were tested for learning efficiency. The experimental results
show that: 1) Ours-FC and Ours-LC exhibited much slower learning speed than our original SNN, which demonstrates
that our proposed architecture outperforms the FC/LC architecture on learning efficiency; 2) The learning efficiency
of Our-noAR also degraded, meaning that the adaptive repolarization mechanism is capable of accelerating our SNN’s
learning and, 3) The testing curve of Our-noVFA is below the one of our original SNN, but they have a similar growing
pace, which suggests that the VFA decoding layer improves our SNN’s inference accuracy but doesn’t have any
obvious impact on our SNN’s learning efficiency.

6.3 Robustness
Following Saunders et al. [8], by ‘Robustness’ we mean SNNs’ resistance against hardware damage and destruction.

To evaluate it, we followed the experiments used in [8]. This experiment simulates a situation when SNN-based
hardware gets physical damage or even destructed. Concretely, we randomly deleted the output neurons or learnable
synapses of trained SNNs with probability ê#(Z($(, then report their testing results on the MNIST dataset in Fig. 7.

Fig. 7(a)/(b) shows the experimental results of Diehl-FC with (28,1) × 6400, Saunders-LC with (16,6) × 800,
and our SNN with jKkGlm = 300 . The three SNNs without any neuron/synapse deletion have similar learning
capability, all reaching a result of about 94.9%, while deleting neuron/synapse leads to performance degradation. Fig.
7(a) shows the testing results after deleting neurons with probability ê#(Z($(, and our SNN exhibited the highest
robustness: Our SNN achieved nearly 90%, 80% accuracy even if 90%, 95% of neurons were deleted, while Diehl-

Fig. 6. Testing results of the SNNs trained with varying number of training iterations. (a) Comparison among Diehl-FC, Saunders-LC, and ours.
(b) Ablation study.

�
�

�

�

�
�

�

�
	�

�
��
��
�
��
��
��
��
	��

� 	���
��� ���� ���� ��� ���� ���� ���� ���� 	����

�!
)*
$&
"
�
��
+(
��
,
��
�

�(�$&$&" �*!(�*$'&)
���

�$!#%���
��+& !()���
�+()

�
	�

�
��
��
�
��
��
��
��
	��

� 	���
��� ���� ���� ��� ���� ���� ���� ���� 	����

�!
)*
$&
"
�
��
+(
��
,
��
�

�(�$&$&" �*!(�*$'&)
���

�+()���
�+()���
�+()�&'���
�+()�&'��
�+()

�
�

�

�

�
�

�

�
	�

�
��
��
�
��
��
��
��
	��

� 	���
��� ���� ���� ��� ���� ���� ���� ���� 	����

�!
)*
$&
"
�
��
+(
��
,
��
�

�(�$&$&" �*!(�*$'&)
���

�$!#%���
��+& !()���
�+()

�
	�

�
��
��
�
��
��
��
��
	��

� 	���
��� ���� ���� ��� ���� ���� ���� ���� 	����

�!
)*
$&
"
�
��
+(
��
,
��
�

�(�$&$&" �*!(�*$'&)
���

�+()���
�+()���
�+()�&'���
�+()�&'��
�+()

Fig. 7. Testing results of the SNNs whose neurons/synapses are randomly deleted with varying probability ê#(Z($(. (a) Neuron deletion. (b)Synapse
deletion. (c)/(d) Ablation studies for neuron/synapse deletion.

�

�

�

�

�

�

�

�

�

�

�
��
	�

�
��
��
�
��
��
��

���

� ��� ��	 ��
 ��� ��� �� ��� ��� ��� �

�
)*
#%
!
�
��
+(
��
,
��
�

� +(&% � $ *#&% �(&���#$#*, !"#$#%#
���

�# "$���
��+%� ()���

�+()

�
��
	�

�
��
��
�
��
��
��

���

� ��� ��	 ��
 ��� ��� �� ��� ��� ��� �

�
)*
#%
!
�
��
+(
��
,
��
�

�,%�') � $ *#&%��(&���#$#*,�!"#$#%#
���

�# "$���

��+%� ()���

�+()

�

�

�

�

�

�

�

�

�

�

�
��
	�

�
��
��
�
��
��
��

���

� ��� ��	 ��
 ��� ��� �� ��� ��� ��� �

�
)*
#%
!
�
��
+(
��
,
��
�

� +(&% � $ *#&% �(&���#$#*, !"#$#%#
���

�# "$���
��+%� ()���

�+()

�
��
	�

�
��
��
�
��
��
��

���

� ��� ��	 ��
 ��� ��� �� ��� ��� ��� �

�
)*
#%
!
�
��
+(
��
,
��
�

�,%�') � $ *#&%��(&���#$#*,�!"#$#%#
���

�# "$���

��+%� ()���

�+()

�

�

�

�

�

�

�
��
	�

�
��
��
�
��
��
��

���

� ��� ��	 ��
 ��� ��� �� ��� ��� ��� �

�
)*
#%
!
�
��
+(
��
,
��
�

� +(&% � $ *#&% �(&���#$#*, !"#$#%#
���

�+()���
�+()���
�+()�%&���
�+()

�
��
	�

�
��
��
�
��
��
��

���

� ��� ��	 ��
 ��� ��� �� ��� ��� ��� �

�
)*
#%
!
�
��
+(
��
,
��
�

�,%�') � $ *#&%��(&���#$#*,�!"#$#%#
���

�+()���
�+()���
�+()�%&���
�+()

�

�

�

�

�

�

�
��
	�

�
��
��
�
��
��
��

���

� ��� ��	 ��
 ��� ��� �� ��� ��� ��� �

�
)*
#%
!
�
��
+(
��
,
��
�

� +(&% � $ *#&% �(&���#$#*, !"#$#%#
���

�+()���
�+()���
�+()�%&���
�+()

�
��
	�

�
��
��
�
��
��
��

���

� ��� ��	 ��
 ��� ��� �� ��� ��� ��� �

�
)*
#%
!
�
��
+(
��
,
��
�

�,%�') � $ *#&%��(&���#$#*,�!"#$#%#
���

�+()���
�+()���
�+()�%&���
�+()

 12

FC and Saunders-LC achieved nearly 80% and 85% accuracy, respectively, with only 80% of neurons deleted.
Similarly, Fig. 7(b) shows the testing results after deleting synapses with probability ê#(Z($(, and our SNN still
exhibited the highest robustness: Our SNN achieved nearly 90%, 80% results even if 80%, 90% of synapses were
deleted, while Diehl-FC and Saunders-LC just achieved nearly 70% and 65% results with only 80% of synapses
deleted. This experiment demonstrates that our SNN have higher robustness against hardware damage and can work
well even when most of its learnable synapses or computing neurons have broken down.

Also, we tested Ours-FC with (28,1) × 6400, Ours-LC with (16,6) × 800, and Ours/Ours-noVFA with jKkGlm =
300 in Fig. 7(c)/(d). The experimental results show that: 1) Ours-FC and Ours-LC exhibited much degraded
robustness compared to our original SNN, which demonstrates that our proposed architecture outperforms the FC/LC
architecture on robustness and, 2) Surprisingly, Ours-noVFA also exhibited degraded robustness, especially in Fig.
7(c) (neuron deletion), which suggests that the VFA decoding layer helps improving SNNs’ robustness. This is an
unintended benefit because the VFA decoding layer was originally designed to reduce the information loss in spike
decoding and to improve inference accuracy. Detailed discussion is shown in Section 7.2. Note that the curve of Ours-
noAR is not drawn in Fig. 7(c)/(d) because the curve of Ours-noAR is almost the same as the one of our original SNN.
This suggests that our adaptive repolarization mechanism only has a negligible impact on SNNs’ robustness.

7 Discussion
 In Section 7.1, we analyze the parallelism of FC/LC/our architecture. Our architecture consists of 21 sub-networks
that can learn and compute in parallel, which explains our SNN’s improved learning efficiency and robustness. In
Section 7.2, the information loss in spike decoding is analyzed. Our VFA decoding layer matches the learning nature
of our architecture, thus resulting in less information loss. In Section 7.3, we discuss the relationship between spiking
intensity and learning efficiency. The spiking intensity is tested to demonstrate that our adaptive repolarization
mechanism can enhance the spiking activities of winner neurons, and thereby accelerates learning.

7.1 Architecture Parallelism
A SNN’s learning efficiency and robustness against hardware damage is highly relevant to its architecture

parallelism. We assumed that, if a SNN consists of multiple independent sub-networks and these sub-networks can
compute in parallel, this SNN can exhibit superior learning efficiency and robustness because all sub-networks can
learn simultaneously and work independently when other sub-networks get damaged or even destructed.

In competitive learning, as we mentioned in Section 3.5, a competition area is defined as a set of output neurons
sharing the same RF, and each output neuron only competes with other neurons in the same competition area.
According to this principle, a competition area can be regarded as a sub-network, because there is no interaction
between two competition areas and each competition area can compute independently. Fig. 8 shows the partitions of
FC/LC/our SNN’s competition areas (sub-networks). The widely used FC architecture has only a single competition
area because all output neurons share the same global RF (Fig. 8(a)). A large number of output neurons are located in
one competition area, leading to sub-optimal learning efficiency and robustness. The LC architecture eased this
limitation by localizing the RF (Fig. 8(b)), which allows multiple competition areas (sub-networks). Therefore, the
LC architecture can exhibit improved learning efficiency and robustness. We took a further step based on the LC
architecture: 1) Inspired by the Inception module in ANN literature, we designed an Inception-like multi-pathway
architecture to integrate multi-scale spatial information and improve the network’s parallelism and, 2) We partitioned
the original competition area into multiple sub-areas to further increase the number of competition areas. As shown in
Fig. 8(c), our architecture has 21 competition areas (sub-networks) in total, which explains why our architecture can
outperform the FC/LC architecture in terms of learning efficiency and robustness.

Fig. 8. An illustration of SNN’s competition areas. (a) FC architecture contains only a single competition area. (b) LC architecture contains 9
competition areas. (c) Our architecture contains 21 competition areas. Note that a cube denotes a competition area here.

(a)

Input layer Output layer

(b)

Input layer Output layer

(28,1) (16,6)

(c)

Input layer Output layer
(28,1)

(16,6)

 13

7.2 Information Loss in Spike Decoding
In the experiments, we found that the standard vote-based decoding scheme (denote by VFO here) worked well in

the FC architecture but performed poorly in the LC/our architecture (Fig. 10). We attribute this because one underlying
assumption of the VFO is violated: The VFO assigns each output neuron to a certain class, and builds a Vote-for-One
(VFO) relationship between each output neuron and a certain class. Under this strategy, each output neuron can only
vote for one certain class. This approach is based on an assumption that each output neuron is only highly active to
one certain class. This assumption is feasible in the FC architecture because each output neuron can receive global
information (Fig. 9(a)). This assumption, however, is violated in the LC architecture because the output neurons in
this architecture can only receive local information (Fig. 9(b)). Since the images belonging to different classes might
have similar local features, theoretically an output neuron in the LC architecture can be highly active to multiple
classes. For example, as shown in Fig. 9(b), the local features of digits ‘2’ and ‘3’ in the red square are quite similar,
so the output neurons corresponding to these RFs might be highly active to both ‘2’ and ‘3’ because they cannot
classify them based on the local features. Violating this underlying assumption leads to a large information loss in
spike decoding. Similarly, the VFO is not applicable to our architecture due to the same reason. In contrast to the VFO,
the proposed VFA decoding layer (denoted by VFA here) builds a Vote-for-All (VFA) relationship between each
output neuron and all possible classes, and thus allows each output neuron to vote for all classes, which greatly reduces
the information loss in spike decoding.

To validate our above hypothesis, in Fig. 10, we compared the performance improvements when replacing VFO
with VFA in three network architectures (FC with (28,1) × 6400, LC with (16,6) × 1000, and Ours with jKkGlm =
400) on the MNIST. For a fair comparison, these three SNNs were implemented using the same LIF model, same
STDP rules, and the alternative version (Fig. 2(b)) of competitive learning. The adaptive repolarization was not used
here. The experimental results show that the LC/our architecture gained more performance improvement than the FC
architecture. This suggests that, without VFA, LC/our architecture cannot fully exhibit its superior learning capability.
We suppose that, in previous studies, scholars might have tried to use Inception-like architecture as well, but they
failed to get improvement without VFA.

Moreover, in Fig.7(c)/(d), we surprisingly found that the VFA decoding layer helped to improve our SNN’s
robustness. The possible explanation is that, under the VFO approach, each class can only get votes from the output
neurons assigned to this class, while, under the VFA approach, each class can get votes from all output neurons. In
the latter case, even many broken neurons won’t have a fatal impact on the final inference result because the remaining
output neurons can still work together to infer a reliable result.

Fig. 9. An example of output neurons’ RFs in the (a) FC and (b) LC architectures when input images are digit ‘2’ or ‘3’. The output neurons in
the (a) can see the whole input images, while the ones in the (b) only can see a part of the input images.

�a� �b�

Digit 2

Digit 3

Fig. 10. A bar plot illustrating the improvements in testing results when VFO is replaced with VFA in the FC/LC/Our architecture.

94

94.2

94.4

94.6

94.8

95

95.2

95.4

95.6

95.8

FC LC Ours

Te
st
in
g
Ac
cu
ra
cy

(%
) VFO VFA

 14

7.3 Spiking Intensity and Learning Efficiency
Theoretically, the learning efficiency of a STDP-based SNN is highly relevant to its spiking intensity, because,

according to the STDP rules, the update of synaptic weights (i.e., learning) occurs when neurons fire spikes. To
validate this hypothesis, we tested the average spiking intensity of Diehl-FC with (28,1) × 6400, Saunders-LC with
(16,6) × 1000, and our SNN with jKkGlm = 400, and report the results in Table 5. The experimental results show
that the Saunders-LC and our SNN have higher spiking intensity than Diehl-FC, and ours has the highest spiking
intensity. These results conform to the hypothesis that the SNN with higher spiking intensity exhibits faster learning
speed. This also allows us to explain why our SNN can learn faster from another point of view.

The effect of our adaptive repolarization mechanism on learning capability and learning efficiency is shown in Fig.
11, where we tested the average spiking intensity of our SNN with varying parameter z of adaptive repolarization on
the MNIST dataset. Note that, in this experiment, the jKkGlm was set to be 400, and the z was fixed once it’s set at the
beginning of the training. Here we use the testing result of the SNN trained with 500 iterations to represent the learning
efficiency, and use the testing result of the fully trained SNN to represent the learning capability. As shown in Fig.
11, there is a trade-off between learning capability and learning efficiency: A larger z leaded to higher spiking
intensity and higher learning efficiency but lower learning capability. This experiment further demonstrates the
relationship between learning efficiency and spiking intensity and also explains why we used a declined z in our
training procedure. Note that, as we mentioned in Section 4.3, the adaptive repolarization mechanism can enhance the
spiking activities of the winner neurons but hinder the ones of other neurons. However, since SNNs’ spiking intensity
is dominated by winner neurons, we only observed an increase of spiking intensity when the adaptive repolarization
mechanism is used.

8 Conclusion and Future Work
We proposed a fast-learning and high-robustness unsupervised SNN using a high-parallelism Inception-like

network architecture. In our experiments, our architecture outperformed the widely used FC architecture and more
advanced LC architecture, and our SNN achieved improvements in all learning capability, learning efficiency, and
robustness against hardware damage. Moreover, the proposed VFA decoding layer was recognized in reducing the
information loss in spike decoding.

Our method can be further improved. To emphasize the effectiveness of our contributions, other SNN components
used in our experiments are relatively simple to the optimized state-of-the-art counterparts. We suggest that more
advanced SNN components (e.g., ASP [9], stochastic STDP [10], etc.) can be used to achieve better performance.
Besides, although we used our Inception-like architecture on unsupervised SNNs, there is a possibility of it being
added to supervised SNNs because our architecture can integrate multi-scale information (features), which is helpful
for supervised feature learning as well.

Table 5. Comparison of Average Spiking Intensity

SNN Spiking Intensity
(spikes/iteration)

Diehl-FC 7.84
Saunders -LC 58.26

Ours 154.63

Fig. 11. Testing results and average spiking intensity of our SNN with varying z of adaptive repolarization.

100

120

140

160

180

200

220

240

65

70

75

80

85

90

95

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Spiking
Intensity

(spikes/iteration)
Te

st
in

g
A

cc
ur

ac
y

(%
)

Adaptive repolarization parameter !

Accuracy when fully trained
Accuracy when trained with 500 iterations
Average spiking intensity

 15

Appendix
A.1 Implementation Details

Our experiments ran on an Ubuntu system with Python 2.7. Our code is based on an open-source simulator, Brian
[37], and is available at https://github.com/MungoMeng/Spiking-Inception.

All hyperparameters used in our experiments are empirical values (in Table 6). The z of the adaptive repolarization
mechanism is 0.6 initially, and then halves every 5000 iterations. Finally, the z is set to 0 after the 20,000th training
iteration. We decided the hyperparameters through cross-validation, in which we randomly picked up 10,000/20,800
images from the training set of MNIST/EMNIST as the validation set.

References
[1] O'reilly, Randall C., and Yuko Munakata. "Computational explorations in cognitive neuroscience: Understanding the mind by simulating the

brain." MIT press (2000): 116-117.
[2] Tavanaei, Amirhossein, et al. "Deep learning in spiking neural networks." Neural Networks 111 (2019): 47-63.
[3] Wade, John J., et al. "SWAT: a spiking neural network training algorithm for classification problems." IEEE Transactions on Neural Networks

21.11 (2010): 1817-1830.
[4] Ponulak, Filip, and Andrzej Kasiński. "Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and

spike shifting." Neural computation 22.2 (2010): 467-510.
[5] Xie, Xiurui, et al. "Efficient training of supervised spiking neural network via accurate synaptic-efficiency adjustment method." IEEE

transactions on neural networks and learning systems 28.6 (2016): 1411-1424.
[6] McKennoch, Sam, Dingding Liu, and Linda G. Bushnell. "Fast Modifications of the SpikeProp Algorithm." The 2006 IEEE International Joint

Conference on Neural Network Proceedings (2006): 3970-3977.
[7] Diehl, Peter U., and Matthew Cook. "Unsupervised learning of digit recognition using spike-timing-dependent plasticity." Frontiers in

computational neuroscience 9 (2015): 99.
[8] Saunders, Daniel J., et al. "Locally connected spiking neural networks for unsupervised feature learning." Neural Networks 119 (2019): 332-

340.
[9] Panda, Priyadarshini, et al. "Asp: Learning to forget with adaptive synaptic plasticity in spiking neural networks." IEEE Journal on Emerging

and Selected Topics in Circuits and Systems 8.1 (2017): 51-64.
[10] She, Xueyuan, Yun Long, and Saibal Mukhopadhyay. "Fast and Low-Precision Learning in GPU-Accelerated Spiking Neural Network."

2019 Design, Automation & Test in Europe Conference & Exhibition (DATE) (2019): 450-455.
[11] Rathi, Nitin, Priyadarshini Panda, and Kaushik Roy. "STDP-based pruning of connections and weight quantization in spiking neural networks

for energy-efficient recognition." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 38.4 (2018): 668-677.
[12] Lammie, Corey, Tara Hamilton, and Mostafa Rahimi Azghadi. "Unsupervised Character Recognition with a Simplified FPGA Neuromorphic

System." 2018 IEEE International Symposium on Circuits and Systems (ISCAS) (2018): 1-5.
[13] Allred, Jason M., and Kaushik Roy. "Unsupervised incremental STDP learning using forced firing of dormant or idle neurons." 2016

International Joint Conference on Neural Networks (IJCNN) (2016): 2492-2499.
[14] Querlioz, Damien, Olivier Bichler, and Christian Gamrat. "Simulation of a memristor-based spiking neural network immune to device

variations." The 2011 International Joint Conference on Neural Networks (2011): 1775-1781.
[15] Xing, Fu, et al. "Homeostasis-Based CNN-to-SNN Conversion of Inception and Residual Architectures." International Conference on Neural

Information Processing (2019): 173-184.
[16] Neil, Daniel, Michael Pfeiffer, and Shih-Chii Liu. "Learning to be efficient: Algorithms for training low-latency, low-compute deep spiking

neural networks." Proceedings of the 31st annual ACM symposium on applied computing (2016): 293-298.

Table 6. Hyperparameter Settings in the Experiments

Hyperparameter Description Value
_Y`)$ Postsynaptic learning rate 0.01
_Y'(Presynaptic learning rate 0.0001
!Y'(Time constant of aY'(20ms

!Y`)$e/!Y`)$b Time constant of aY`)$e/aY`)$b 20ms/40ms
&$3'() Threshold voltage -52mv
&'()$ Resting voltage -65mv
&'()($ Reseting voltage -65mv

&(-./&123 Equilibrium voltage 0mv/-100mv
XYZ[) Increment for adaptive threshold 0.05mv
U'(V Time length of refractory period 5ms
!"� Time constant of & 100ms
!W� Time constant of adaptive X 107ms

!45 /!4@ Time constant of 0(/0(1ms/2ms
N2`'Å Weight normalization constant 78.4
v VFA decoding layer constant 0.1

 16

[17] Rueckauer, Bodo, et al. "Conversion of continuous-valued deep networks to efficient event-driven networks for image classification." Frontiers
in neuroscience 11 (2017): 682.

[18] Cao, Yongqiang, Yang Chen, and Deepak Khosla. "Spiking deep convolutional neural networks for energy-efficient object recognition."
International Journal of Computer Vision 113.1 (2015): 54-66.

[19] He, Kaiming, et al. "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification." 2015 IEEE
International Conference on Computer Vision (ICCV) (2015): 1026-1034.

[20] Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489.
[21] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." nature 521.7553 (2015): 436-444.
[22] Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision and pattern recognition

(CVPR) (2015): 1-9.
[23] LeCun, Yann, Corinna Cortes, and C. J. Burges. "Mnist handwritten digit database. AT&T Labs." (2010): 18.
[24] Cohen, Gregory, et al. "EMNIST: Extending MNIST to handwritten letters." 2017 International Joint Conference on Neural Networks (IJCNN)

(2017): 2921-2926.
[25] Szegedy, Christian, et al. "Rethinking the inception architecture for computer vision." Proceedings of the IEEE conference on computer vision

and pattern recognition (CVPR) (2016): 2818-2826.
[26] Szegedy, Christian, et al. "Inception-v4, inception-resnet and the impact of residual connections on learning." arXiv preprint arXiv:1602.07261

(2016).
[27] Kheradpisheh, Saeed Reza, et al. "STDP-based spiking deep convolutional neural networks for object recognition." Neural Networks 99 (2018):

56-67.
[28] Falez, Pierre, et al. "Multi-layered Spiking Neural Network with Target Timestamp Threshold Adaptation and STDP." 2019 International Joint

Conference on Neural Networks (IJCNN) (2019): 1-8.
[29] Tavanaei, Amirhossein, and Anthony S. Maida. "Multi-layer unsupervised learning in a spiking convolutional neural network." 2017

International Joint Conference on Neural Networks (IJCNN) (2017): 2023-2030.
[30] Lee, Chankyu, et al. "Deep spiking convolutional neural network trained with unsupervised spike-timing-dependent plasticity." IEEE

Transactions on Cognitive and Developmental Systems 11.3 (2018): 384-394.
[31] Hodgkin, Alan L., and Andrew F. Huxley. "A quantitative description of membrane current and its application to conduction and excitation in

nerve." The Journal of physiology 117.4 (1952): 500-544.
[32] Izhikevich, Eugene M. "Simple model of spiking neurons." IEEE Transactions on neural networks 14.6 (2003): 1569-1572.
[33] Meng, Mingyuan, et al. "High-parallelism Inception-like Spiking Neural Networks for Unsupervised Feature Learning." arXiv preprint

arXiv:2001.01680 (2019).
[34] Bichler, Olivier, et al. "Unsupervised features extraction from asynchronous silicon retina through Spike-Timing-Dependent Plasticity." The

2011 International Joint Conference on Neural Networks (2011): 859-866.
[35] Pfister, Jean-Pascal, and Wulfram Gerstner. "Triplets of spikes in a model of spike timing-dependent plasticity." Journal of Neuroscience 26.38

(2006): 9673-9682.
[36] Morrison, Abigail, Ad Aertsen, and Markus Diesmann. "Spike-timing-dependent plasticity in balanced random networks." Neural computation

19.6 (2007): 1437-1467.
[37] Goodman, Dan FM, and Romain Brette. "The brian simulator." Frontiers in neuroscience 3 (2009): 26.
[38] Meng, Mingyuan, et al. "Spiking Inception Module for Multi-layer Unsupervised Spiking Neural Networks." 2020 International Joint

Conference on Neural Networks (IJCNN) (2020): 1-8.
[39] Abbott, Larry F. "Lapicque’s introduction of the integrate-and-fire model neuron (1907)." Brain research bulletin 50.5-6 (1999): 303-304.
[40] Yang, Xingyu, et al. " SPA: Stochastic Probability Adjustment for System Balance of Unsupervised SNNs." arXiv preprint arXiv: 2010.09690

(2020).
[41] Kasabov, Nikola K. "NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data."

Neural Networks 52 (2014): 62-76.
[42] Paulun, Lukas, Anne Wendt, and Nikola Kasabov. "A retinotopic spiking neural network system for accurate recognition of moving objects

using NeuCube and dynamic vision sensors." Frontiers in Computational Neuroscience 12 (2018): 42.
[43] Stromatias, Evangelos, et al. "An event-driven classifier for spiking neural networks fed with synthetic or dynamic vision sensor data." Frontiers

in neuroscience 11 (2017): 350.

Mingyuan Meng received the B.E. degree in electronic information science and technology from
Tsinghua University, Beijing, China, in 2018. He is currently pursuing a Ph.D. degree with the
School of Computer Science, the University of Sydney, Sydney, Australia.
He was a research assistant at the School of Electronics and Information Technology, Sun Yat-
Sen University, Guangzhou, China, in 2019. His current research interests include machine
learning, artificial/spiking neural networks, and medical image analysis.

 17

Xingyu Yang is currently pursuing the graduate degree with the School of Electronic
Information and Engineering, Sun Yat-Sen University of China, Guangzhou, China, from 2019.
Her current research interests include spiking neural networks, spiking neuron models, and
neuromorphic hardware.

Lei Bi received his master of information technology, master of philosophy (research) and PhD
from the University of Sydney, in 2011, 2013 and 2018, respectively.
Currently, he is a research fellow with the Australia Research Council Training Centre in
Innovative BioEngineering, the University of Sydney. His research interests include in using
deep learning technologies for computer-aided diagnosis and medical image analysis.

Jinman Kim received the B.S. (honours) degree in computer science and PhD degree from the
University of Sydney, Australia, in 2001 and 2006, respectively.
Since his PhD, he has been a Research Associate at the leading teaching hospital, the Royal
Prince Alfred. In 2008 until 2012, he was an ARC postdoc research fellow, one year leave (2009-
2010) to join MIRALab research group, Geneva, Switzerland, as a Marie Curie senior research
fellow. Since 2013, he has been with the School of Computer Science, The University of Sydney,
where he was a Senior Lecturer, and became an Associate Professor in 2016. His research
interests include medical image analysis and visualization, computer aided diagnosis, and
Telehealth technologies.

Shanlin Xiao received the B.S. degree in communications engineering and the M.S. degree in
communications and information systems from the University of Electronic Science and
Technology of China (UESTC), Chengdu, China, in 2009 and 2012, respectively. He received
his Ph.D. degree in Communications and Computer Engineering from the Tokyo Institute of
Technology, Tokyo, Japan, in 2017.
He is currently an associate research professor at the School of Electronics and Information
Technology in Sun Yat-Sen University, Guangzhou, China. His research interests include
domain-specific architecture for artificial intelligence and neuromorphic computing.

Zhiyi Yu received the B.S. and M.S. degrees in EE from Fudan University, China, in 2000 and
2003, respectively, and the Ph.D. degree in ECE from the University of California at Davis, CA,
USA, in 2007.
He was with IntellaSys Corporation, CA, USA, from 2007 to 2008. From 2009 to 2014, he was
an associate professor in the Department of Microelectronics, Fudan University, China.
Currently, he is a professor at the school of electronics and information technology, Sun Yat-sen
University, China. His research interests include digital VLSI design and computer architecture.
Dr. Yu serves as TPC member on many conference committees, such as the ASSCC, VLSI-SOC,
ISLPED, APSIPA, SASIM.

