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Abstract

Variational Graph Autoencoders (VGAs) are generative models for unsuper-
vised learning of node representations within graph data. While VGAs have
been achieved state-of-the-art results for different predictive tasks on graph-
structured data, they are susceptible to the over-pruning problem where only
a small subset of the stochastic latent units are active. This can limit their
modeling capacity and their ability to learn meaningful representations. In
this paper, we present SOLI (Stacked auto-encoder for nOde cLusterIng),
an information maximization approach for learning graph representations by
leveraging maximal cliques. SOLI relies on aggregating useful representations
by assigning clique-based weights to various edges in a neighborhood while
maximizing mutual information. The learned representations are mindful of
graph patches centered around each node, and can be used for a range of
downstream tasks, and thus encouraging more active units. We demonstrate
strong performance across three graph benchmark datasets.1

Keywords: Graph representation learning, Graph neural network, Graph
auto-encoder, Node clustering, Link prediction

1. Introduction

In recent years, numerous attempts were made to extend neural networks
to graph data structures such as social networks [1, 2], recommender graphs
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[3], or molecular graphs [4]. Graph networks have recently made significant
strides on node classification [5, 6, 7], link prediction [8], and clustering [9, 10].
However, high dimensional data and computational complexity have made
such graph-based computational tasks deeply challenging [11].

A strong and increasingly common approach for dealing with complex
graph data is node embedding. By working in the embedding space, es-
tablished learning methods can be used and the complexity of integrating
complex node interactions can be bypassed [12]. Significant progress has
recently been made, notably with graph convolutional network (GCN) [5]
and variational graph auto-encoder (VGAE) [9] in order to learn useful node
embeddings.

While powerful, variational graph auto-encoders are susceptible to the
over-pruning problem as they are unable to obtain enough data about the
input graph and their latent variables generate standard Gaussian noise
[13]. This greatly mitigates the modeling capacity of variational graph auto-
encoders to learn meaningful latent representations. Quite a few meth-
ods have been recommended to overcome over-pruning by training schemes.
VGAE [9] enforces minimum KL contribution from subsets of latent units
while [14] uses KL cost annealing. Although these schemes mitigate the
over-pruning problem, they are hand-tuned and take away the principled
regularization scheme that is built into VAE.

In this paper, we propose an unsupervised node representation learning
pipeline that is based upon maximal clique and mutual information. SOLI
relies on aggregating node representations by focusing on the most signifi-
cant parts of the input graph, while maximizes the local mutual information.
These representations are then retrieved and used by a graph auto-encoder
(GAE) with random walk-based regularization enforcing the latent represen-
tations to capture the graphs’ local structural properties. We demonstrate
that the learned patch representations are competitive on three standard
datasets and outperform the state-of-the-art benchmarks in our experiments.
Our contributions, which will be presented in the rest of the paper, are as
follow:

• We introduce SOLI-GAE which learns a latent variable model by max-
imizing information across maximal cliques.

• We propose SOLI-VGAE that achieves high generative ability while
mitigates the over-pruning problem by contrasting between global and
local parts of a graph simultaneously.
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• We demonstrate strong results on a range of link prediction and node
clustering benchmark tasks.

2. Related Works

Several attempts have been made to extend neural networks to deal with
graph-structured data. Our proposed approach builds upon a rich line of
research on graph auto-encoders and graph embedding methods.

Graph auto-encoders [9, 15, 16] extend auto-encoders to graph-structured
data. Their goal is to obtain node embeddings that preserve important char-
acteristics of the original input. Variational graph auto-encoders are an unsu-
pervised learning approach to graph data structures based on the variational
auto-encoder [17]. The idea behind variational auto-encoders is that the en-
coder maps an input to a distribution instead of a fixed vector and feeds
a sample from this distribution to the decoder. VGAE [9], naturally in-
corporates structural and contextual information of the graph using a GCN
encoder and a simple inner product decoder. ARGA [18] uses convolutional
auto-encoder to regularize the latent information to match a prior distribu-
tion, while RWR-GAE [19], proposes a method based on a random walk that
regularizes the encoders’ learned representations.

Graph embedding [20, 21] is a low-dimensional representation of graph-
structured data. The Skip-gram model [22] is used by random-walk-based
approaches such as DeepWalk [1] and node2vec [23] by treating walks as sen-
tences while generating shortened random walks on graphs. Factorization
based methods like GraRep [24] and NetMF [25] apply matrix factoriza-
tion techniques to generate the embedding vectors. Deep learning-based ap-
proaches like Deep Graph Infomax (DGI) [26] and VGAE [9] use contrastive
methods to learn graph representations. Although random walk-based ap-
proaches have been successfully used for unsupervised graph representation
learning, the dominant algorithms are mutual information maximization in a
self-supervised manner. Despite their effectiveness in many applications, ran-
dom walk-based objectives emphasize maintaining the local graph structure,
while ignoring global information, such as community structure.

SOLI aims to solve over-pruning by leveraging information maximization
across maximal cliques. We seek to obtain node representations from the
most relevant parts of the graph while capturing global representations of
the entire graph, but, previous approaches [9, 18, 19] rely heavily on local
parts of the input graph. Our graph auto-encoder utilizes these learned
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representations for clustering by jointly optimizing cluster label assignment
and learning features that are suitable for clustering with local structure
preservation.

3. Preliminaries

Definition 1. Given a graph G = (V,E) with two finite sets of V nodes
and E edges, a clique is a subset of nodes such that each node in the set is
adjacent to all other nodes in the set, i.e., a subset C ⊆ V is a clique if and
only if (v, v′) ∈ E for all nodes v and v′ ∈ C [27]. Provided the notion of
cliques, a maximal clique in a graph is defined as follows:

Definition 2. A maximal clique in a graph is a clique that cannot
be extended by adding one more neighboring node without compromising
its connectivity property, i.e., a maximal clique is a clique which is not a
subgraph of a larger clique. A clique with the largest number of nodes is the
maximum clique.

4. Proposed Method

Motivation. We are interested in high-quality message passing by spec-
ifying clique-based edge weights, where nodes are able to attend to the most
relevant parts of their neighborhood. Our approach relies on a mutual infor-
mation maximization principle to learn representations, followed by a GAE
which makes the learned embeddings exhibit discernible clustering.

Notation. We are given a graph G with N nodes represented as a pair
(X,A) where X ∈ RN×F is the node feature matrix with F features per
node, and A ∈ RN×N is the adjacency matrix. We further introduce a latent
variable summarized in a D-dimensional vector representation, Z ∈ RN×D.
Additionally, our method assumes unweighted and undirected graphs, i.e.
Aij = 0 if there is no edge between i and j and Aij = 1 otherwise.

Model. As an initial step, we utilize a clique function, Q : RN×N →
RN×N , to find all maximal cliques from the original graph using Bron-
Kerbosch algorithm [28] and sample one-hop neighboring nodes such that
A′ij = c represents nodes i and j are in a (c + 1)-clique as shown in Figure
1. In extremely sparse settings, we find the two-hop neighboring nodes in
addition to the one-hop neighborhood. Our proposed method allows to as-
sign node-specific weights within a neighborhood. Indeed, densely connected
nodes receive higher weights than those with sparse connections.
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Figure 1: Clique function, Q, applied to the input graph (left) to obtain the weighted
graph (right), i.e. A′ij = c > 0 if i and j are in a (c+ 1)-clique and A′ij = 0 otherwise.

Our approach for unsupervised learning of node representations is to train
an encoder to be contrastive by increasing the score on the original input
(positive examples) and decreasing the score on the corrupted input (negative
examples). We pass node features, X, and the weighted adjacency matrix, A′,
as our positive examples and three corrupted versions of the original graph as
our negative examples through the encoder function, E : RN×N × RN×F →
RN×F′ , thus E(X,A′) = { ~h1, ~h2, . . . , ~hN} shows patch representations. We
find that expanding the pool of negative examples encourages diversity in
them and makes the model more robust against fake inputs at test time.
Following the intuitions from DGI [26], negative samples are provided from
the input graph by using a corruption function, C : RN×N×RN×F → RM×M×
RM×F , that maintains the adjacency matrix (Ã′ = A′), but row-wise shuffles
the features, (X̃ 6= X) as it is designed to encourage the representations
to properly encode structural similarities of different nodes in the graph; N
and M denote the number of nodes in the original and alternative graphs,
respectively. Our encoder is a one layer GCN model [5] with the following
layer-wise propagation rule:

H(l+1) = ReLU
(
D̂
−1
2 ÂD̂

−1
2 H(l)W (l)

)
(1)

where Â = A′ + IN is the newly generated adjacency matrix added by an
N × N identity matrix, IN , and D̂ii =

∑
j Âij is its corresponding degree
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matrix. H(l) ∈ RN×F ′ and H(l+1) ∈ RN×F ′′ are the input and output feature
matrices of l-th layer, and W (l) ∈ RF ′×F ′′ is a layer-wise linear transformation
applied to each node to compute F ′′ = 16 truncated features.

The discriminator, D : RF × RF → R, receives patch-summary pair,
(~hi, ~s) and assigns a probability score by employing a bilinear scoring func-

tion, σ(~hi
T
W~s), to this pair corresponding to whether a given patch contains

within the summary [26]; where σ is the logistic sigmoid nonlinearity and W
is a learnable scoring matrix. Graph-level summary vector, ~s, is obtained
using a readout function, R : RN×F → RF , which takes average of nodal
features, σ( 1

N

∑N
i=1

~hi), with σ as the logistic sigmoid nonlinearity. We pair
patch representations from the average of the alternative graphs with sum-
mary of the original graph for negative samples. Our objective follows the
intuition from Deep InfoMax [29] that minimizes the binary cross-entropy
loss between positive and negative samples:

L =
N∑
i=1

logD
(
~hi, ~s

)
+

M∑
j=1

log
(

1−D
(
~̃hj, ~s

))
(2)

We pass high-level node representations obtained from the most rele-
vant parts of the graph through either a GAE or a VGAE for downstream
node-wise learning tasks. Specifically, we train a generative model whose
representations are enforced to be globally relevant. This enables increased
utilization of the model capacity to model greater data variability and hence
mitigates over-pruning.

GAE. Inspired by previous successful unsupervised architecture [30], our
GAE uses a two-layer linear projection applied to the learnable linear trans-
formation, W , and high-level representations, H, to produce the feature rep-
resentation, Z, such as:

Z = F(H,W ) (3)

The feature representations are then processed using a two-layer linear
projection, which takes as an input the latent representations, Z, and learn-
able projection matrix W :

H ′ = G(Z,W ) (4)

We directly measure the Euclidean discrepancy between the high-level
node representations, H, and the output of the decoder, H ′, as the loss
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function. The network is trained by reducing the following least-square of
the reconstruction loss:

Lr = ‖H −H ′‖22 (5)

Given the latent features, we employ a Student t-distribution with one
degree of freedom to predict assignment of clusters using the following equa-
tion:

pij =
(1 + ‖zi − µj‖2)−1∑
k 6=1 (1 + ‖zk − µ1‖2)−1

(6)

where pij represents the probability of node i being in cluster j and µj is
the centroid of cluster j. Our clustering objective is to reduce the difference
between the probability distributions of the targets H ′ and predictions P
using the following Kullback Leibler (KL) divergence:

Lc = KL(H ′||P ) =
N∑
i=1

K∑
j=1

h′ik log
h′ik
pik

(7)

with

h′ik =
pik/ (

∑
i′ pi′k)

1
2∑

k′ pik′/ (
∑

i′ pi′k′)
1
2

(8)

SOLI-GAE objective is defined as a sum of the reconstruction loss which
is used to learn representations that can preserve intrinsic local structure in
data and the clustering loss which is responsible for manipulating embedded
space in order to scatter embedded points:

L = Lr + λLc (9)

where Lr and Lc are reconstruction loss and clustering loss respectively, and
λ > 0 controls the degree of distorting embedded space.

VGAE. For the variational autoencoder model, we follow intuitions from
VGAE [9] and employ a Gaussian prior parametrized by a two-layer GCN as
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our inference model:

q (Z|H,A′) =
N∏
i=1

q (zi|H,A′) , with q (zi|H,A′) = N
(
zi|µi, diag

(
σ2
i

))
(10)

where the mean vector, µi, and the variance vector, log σi, are the ith row of
the output of a two layer GCN and GCNµ (H,A′) and GCNσ (H,A′) share
the weight parameters of the first layer, W0. Our generative model is a simple
inner product between hidden representations:

p (A′′|Z) =
N∏
i=1

N∏
j=1

p (A′′ij|zi, zj) , with p (A′′ij = 1|zi, zj) = σ
(
zTi zj

)
,

(11)
where σ is the logistic sigmoid nonlinearity. VGAE model is trained using
backpropagation to minimize the loss, L, by balancing between explaining
the data (first term) and ensuring that the posterior distribution is close to
the prior p(Z) (second term) as follow:

L = Eq(Z|H,A′) [log p (A′′|Z)]− λKL [q (Z|H,A′) ||p (Z)] , (12)

where λ manages the significance of keeping the information encoded in Z;
λ = 0 leads to a vanilla autoencoder while λ = 1 corresponds to the VGAE
objective. For every sparse adjacency matrix, we re-weight terms with A′ij =
1 in L. We further take a Gaussian prior p(Z) =

∏
i p(zi) =

∏
iN (zi|0, I).

Assuming the single-graph setup (i.e., (X, A) provided as input), we now
summarize the steps of the SOLI procedure:

1. Find all maximal cliques from the original graph by passing it through
the clique function: A′ = Q(A).

2. Sample negative examples by using the corruption function:
(
X̃, Ã′

)
∼

C (X,A′).

3. Obtain high-level representations, ~hi, for the input graph by passing it
through the encoder: H = E(X,A′) = { ~h1, ~h2, . . . , ~hN}.

4. Obtain high-level representations,
~̃
hij, for the negative examples by

passing them through the encoder: H̃i = E(X̃, Ã′) = { ~̃hi1, ~̃hi2, . . . , ~̃hiN}.
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Figure 2: SOLI learns representations and evaluates the node-level clustering utility of
these representations in a fully unsupervised manner.
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5. Take an average of patch representations of the negative samples by
passing them through the average function: H̃ = avg(H̃i).

6. Summarize patch representations of the input graph by passing it through
the readout function: ~s = R(H).

7. Update parameters of E , R and D by applying gradient descent to
maximize Equation (2).

8. Obtain latent representations, Z, by passing high-level representations
through either GAE (or VGAE) encoder: Z = F(H).

9. Reconstruct high-level representations by passing latent representations
through GAE (or VGAE) decoder: H ′ = G(Z).

10. Update parameters of Q and P by applying gradient descent to mini-
mize Equation (7) for GAE or optimize λ parameter to balance Equa-
tion (12) for VGAE.

This algorithm is graphically summarized in Figure 2.

5. Experiments

Datasets. Our experiments were conducted on Cora, Citeseer, and
Pubmed citation network benchmark datasets [31]. A brief statistics of these
datasets can be found in Table 1. Nodes correspond to scientific papers and
(undirected) edges to citations in all of these datasets, i.e. when a document
cites another document, there will be an undirected link between them. Fea-
tures represent bag-of-words components of a research paper. Cora, Citeseer,
and Pubmed datasets are divided into seven, six, and three classes respec-
tively.

Table 1: Statistics of the citation network datasets.

Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
PubMed 19,717 44,338 500 3

Baselines. Representations learned by SOLI have been assessed against
Spectral Clustering (SC) [32], DeepWalk (DW) [1], GAE [9], VGAE [9],
ARGA [18], ARVGA [18], RWR-GAE [19], and RWR-VGAE [19].
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Tasks. Following intuitions from [33], we utilize the following metrics
to assess the performance of the SOLI on the clustering task: Average rand
index (ARI), normalized mutual information (NMI), precision, F-score (F1),
and accuracy (Acc). Following intuitions from [9], we evaluate the average
precision (AP) and the area under a receiver operating characteristic curve
(AUC) to validate the performance of our strong baselines on the link pre-
diction task.

Settings. Our model is initialized using Glorot initialization [34] and
trained with an initial learning rate of 0.01 for a maximum of 200 epochs
using Adam SGD optimizer [35]. We terminate the training if the validation
accuracy does not improve for 10 consecutive steps; as a result, most runs
finish in less than 200 steps. It is applied a fixed dropout [36] rate of 0.7 to the
input and hidden layers. A L2 regularization of 0.0005 on the weights is also
considered. We use a one-layer GCN model as an encoder with an effective
hidden size of 512 (especially 256 on Pubmed due to memory limitation) and
the parametric ReLU (PReLU) [37] nonlinearity. For training the variational
auto-encoder, we use hyper-parameters provided by [9] and apply full-batch
gradient descent while making use of the reparameterization trick [17].

Results. Table 2 reports the mean AP and AUC for the link prediction
task over 10 runs for each dataset. Our proposed approach demonstrates
state-of-the-art performance being achieved across all three datasets for two
evaluation metrics. The best results are highlighted in bold.

Tables 3 to 5 demonstrate how our model performs on the node clustering
task across three benchmark datasets. We report the mean of the clustering
metrics after 10 runs of each experiment. For the Cora dataset, we find
that the SOLI-GAE method improves Acc by 25% and 7% comparing to
DeepWalk and ARGA respectively. On the Citeseer dataset, SOLI-VGAE
outperforms ARVGA by 10% on Acc, F1, and Precision. For the PubMed
dataset, SOLI-VGAE outperforms RWR-VGAE by 6% and 8% on ARI and
NMI respectively.
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Table 2: Performance comparison of different models for the Link Prediction task

Model Cora Citeseer Pubmed

AUC AP AUC AP AUC AP
SC 84.6 88.5 80.5 85.0 84.2 87.8
DW 83.1 85.0 80.5 83.6 84.4 84.1
GAE 91.0 92.0 89.5 89.9 96.4 96.5
VGAE 91.4 92.6 90.8 92.0 94.4 94.7
ARGA 92.4 93.2 91.9 93.0 96.8 97.1
ARVGA 92.4 92.6 92.4 93.0 96.5 96.8
RWR-GAE 92.9 92.7 92.1 91.5 96.2 96.3
RWR-VGAE 92.6 92.7 92.3 92.4 95.3 95.2

SOLI-GAE 99.4 99.3 98.3 98.9 98.0 97.2
SOLI-VGAE 94.4 94 95.4 94.3 96.9 96.8

Table 3: Performance comparison of different models for the Clustering task on Cora.

Model Acc NMI F1 Precision ARI

SC 0.367 0.127 0.318 0.193 0.031
DW 0.484 0.327 0.392 0.361 0.243
GAE 0.596 0.374 0.595 0.596 0.274
VGAE 0.625 0.371 0.625 0.625 0.319
ARGA 0.668 0.489 0.668 0.668 0.422
ARVGA 0.544 0.433 0.544 0.544 0.310
RWR-GAE 0.593 0.431 0.577 0.577 0.341
RWR-VGAE 0.577 0.431 0.577 0.577 0.372

SOLI-GAE 0.739 0.56 0.737 0.730 0.506
SOLI-VGAE 0.726 0.546 0.726 0.726 0.520
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Table 4: Performance comparison of different models for the Clustering task on Citeseer.

Model Acc NMI F1 Precision ARI

SC 0.239 0.056 0.299 0.179 0.031
DW 0.337 0.088 0.270 0.248 0.243
GAE 0.412 0.142 0.412 0.412 0.097
VGAE 0.391 0.133 0.391 0.391 0.070
ARGA 0.508 0.269 0.508 0.508 0.214
ARVGA 0.597 0.339 0.597 0.597 0.330
RWR-GAE 0.440 0.252 0.440 0.440 0.180
RWR-VGAE 0.519 0.289 0.519 0.519 0.257

SOLI-GAE 0.682 0.408 0.682 0.682 0.400
SOLI-VGAE 0.698 0.442 0.698 0.698 0.457

Table 5: Performance comparison of different models for the Clustering task on Pubmed.

Model Acc NMI F1 Precision ARI

GAE 0.672 0.224 0.672 0.672 0.245
VGAE 0.673 0.225 0.673 0.673 0.245
ARGA 0.618 0.214 0.618 0.618 0.197
ARVGA 0.418 0.045 0.418 0.418 0.019
RWR-GAE 0.664 0.268 0.651 0.681 0.267
RWR-VGAE 0.672 0.264 0.672 0.673 0.273

SOLI-GAE 0.702 0.325 0.70 0.707 0.320
SOLI-VGAE 0.706 0.345 0.702 0.732 0.337

Figure 3 illustrates the activity level and KL-divergence in VGAE, RWR-
VGAE, and SOLI-VGAE for each component of a 16-unit VAE trained
on Cora dataset. Following [38], we define a unit as an active, if Au =
Covx(Eu∼q(u|x)[u]) > 0.02. While all the hidden units in VGAE, RWR-VGAE,
and SOLI-VGAE are active, the value of KL-divergence for all latent vari-
ables in VGAE and RWR-VGAE is quite high (1.5 and higher), revealing
negligible matching of the posterior distribution with the prior. This nega-
tively influences the models’ generative capacity. We observe that in SOLI-
VGAE, latent variables have KL-divergence of 1.5 and lower, indicating that
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they are highly correlated with standard Gaussian distribution.
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(a) KL-divergence of latent variables
in VGAE
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(b) Unit activity of 16 hidden units in
VGAE
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(c) KL-divergence of latent variables
in RWR-VGAE
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(d) Unit activity of 16 hidden units in
RWR-VGAE
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(e) KL-divergence of latent variables
in SOLI-VGAE
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SOLI-VGAE

Figure 3: Unit activity and KL term for a 16-unit VGAE, RWR-VGAE, and SOLI-VGAE.
SOLI-VGAE is able to utilize the full latent capacity with all units active.

Figure 4 shows the effect of λ on unit activity in VGAE, RWR-VGAE,
and SOLI-VGAE on Cora dataset. When λ = 1, the activity is at its lowest
level. Unlike VGAE that has its highest activity at λ = 0.5, RWR-VGAE
and SOLI-VGAE reach their maximum activity at λ = 0.2.
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(c) Soli-VGAE

Figure 4: Activity of latent units in VGAE, RWR-VGAE, and SOLI-VGAE on Cora,
shown for varying values of the KL weight λ.

6. Qualitative Analysis

To better understand the effectiveness of SOLI, we provide a range of
standard t-SNE plots [39] of the representations learned by the SOLI-GAE
algorithm on the Cora, CiteSeer, and Pubmed dataset in Figure 5. Colors
denote document class. Compared to the raw features, the learned repre-
sentations, projected in the 2D space, exhibit discernible clustering, which
respects the number of topic classes in each dataset.
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(a) Cora Raw Features (b) Cora Learned Features

(c) CiteSeer Raw Features (d) CiteSeer Learned Features

(e) Pubmed Raw Features (f) Pubmed Learned Features

Figure 5: t-SNE embeddings of the nodes in the Cora, CiteSeer, and Pubmed datasets
from the raw features (left) and features from a learned model (right). The clusters of
the learned SOLI-GAE model’s representations are clearly defined.

7. Conclusions

This paper introduces a model-based approach for unsupervised graph
representation learning. By maximizing local mutual information across
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maximal cliques, we are able to learn patch representations that are mindful
of the globally relevant graph information. By facilitating more latent vari-
ables to actively play their part in the reconstruction, our proposed approach
mitigates the issue of over-pruning. By assessing the effectiveness of the
learned patch representations on a range of node-wise learning tasks across
three well-established benchmark datasets, we verified the performance of
our approach.
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[12] A. Bojchevski, S. Günnemann, Deep gaussian embedding of
graphs: Unsupervised inductive learning via ranking, arXiv preprint
arXiv:1707.03815 (2017).

[13] S. Yeung, A. Kannan, Y. Dauphin, L. Fei-Fei, Tackling over-pruning in
variational autoencoders, arXiv preprint arXiv:1706.03643 (2017).

[14] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, S. Ben-
gio, Generating sentences from a continuous space, arXiv preprint
arXiv:1511.06349 (2015).

[15] D. Wang, P. Cui, W. Zhu, Structural deep network embedding, in: Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowl-
edge discovery and data mining, ACM, 2016, pp. 1225–1234.

[16] D. Charte, F. Charte, M. J. del Jesus, F. Herrera, An analysis on the
use of autoencoders for representation learning: Fundamentals, learning
task case studies, explainability and challenges, Neurocomputing (2020).

[17] D. P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv
preprint arXiv:1312.6114 (2013).

[18] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, C. Zhang, Adversarially
regularized graph autoencoder for graph embedding, arXiv preprint
arXiv:1802.04407 (2018).

18



[19] P.-Y. Huang, R. Frederking, et al., Rwr-gae: Random walk regulariza-
tion for graph auto encoders, arXiv preprint arXiv:1908.04003 (2019).

[20] P. Goyal, E. Ferrara, Graph embedding techniques, applications, and
performance: A survey, Knowledge-Based Systems 151 (2018) 78–94.

[21] A. Tsitsulin, D. Mottin, P. Karras, E. Müller, Verse: Versatile graph
embeddings from similarity measures, in: Proceedings of the 2018 World
Wide Web Conference, 2018, pp. 539–548.

[22] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word
representations in vector space, arXiv preprint arXiv:1301.3781 (2013).

[23] A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks,
in: Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM, 2016, pp. 855–864.

[24] S. Cao, W. Lu, Q. Xu, Grarep: Learning graph representations with
global structural information, in: Proceedings of the 24th ACM interna-
tional on conference on information and knowledge management, 2015,
pp. 891–900.

[25] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, J. Tang, Network embedding
as matrix factorization: Unifying deepwalk, line, pte, and node2vec,
in: Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining, 2018, pp. 459–467.
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