
1

Delay-Aware Model-Based Reinforcement Learning
for Continuous Control
Baiming Chen, Mengdi Xu, Liang Li, Ding Zhao*

Abstract—Action delays degrade the performance of reinforce-
ment learning in many real-world systems. This paper proposes
a formal definition of delay-aware Markov Decision Process and
proves it can be transformed into standard MDP with augmented
states using the Markov reward process. We develop a delay-
aware model-based reinforcement learning framework that can
incorporate the multi-step delay into the learned system models
without learning effort. Experiments with the Gym and MuJoCo
platforms show that the proposed delay-aware model-based
algorithm is more efficient in training and transferable between
systems with various durations of delay compared with off-policy
model-free reinforcement learning methods. Codes available at:
https://github.com/baimingc/dambrl.

Index Terms—model-based reinforcement learning, robotic
control, model-predictive control, delay

I. INTRODUCTION

Deep reinforcement learning has made rapid progress in
games [1], [2] and robotic control [3], [4], [5]. However, most
algorithms are evaluated in turn-based simulators like Gym
[6] and MuJoCo [7], where the action selection and actuation
of the agent are assumed to be instantaneous. Action delay,
although prevalent in many areas of the real world, including
robotic systems [8], [9], [10], communication networks [11]
and parallel computing [12], may not be directly handled in
this scheme.

Previous research has shown that delays would not only
degrade the performance of the agent but also induce instability
to the dynamic systems [13], [14], [15], which is a fatal
threat in safety-critical systems like connected and autonomous
vehicles (CAVs) [16]. For instance, it usually takes more than
0.4 seconds for the hydraulic automotive brake system to
generate the desired deceleration [10], which could make a
huge impact on the planning and control modules of CAVs
[17]. The control community has proposed several methods to
address this problem, such as using Smith predictor [18], [19],
Artstein reduction [20], [21], finite spectrum assignment [22],
[23], and H∞ controller [24]. Most of these methods depend
on accurate models [25], [13], which is usually not available
in the real-world applications.

Baiming Chen is with the State Key Laboratory of Automotive
Safety and Energy, Tsinghua University, Beijing 100084, China (e-
mail:cbm17@mails.tsinghua.edu.cn).

Mengdi Xu is with the Department of Mechanical Engineering,
Carnegie Mellon University, Pittsburgh, PA 15213, USA (e-
mail:mengdixu@andrew.cmu.edu).

Liang Li is with the State Key Laboratory of Automotive Safety and
Energy, Tsinghua University, Beijing, China, and is also with Collabora-
tive Innovation Center of Electric Vehicles in Beijing 100084, China (e-
mail:liangl@tsinghua.edu.cn).

Ding Zhao is with the Department of Mechanical Engineering, Carnegie
Mellon University, Pittsburgh, PA 15213, USA (e-mail:dingzhao@cmu.edu).

Recently, DRL has offered the potential to resolve this
issue. The problems that DRL solves are usually modeled
as Markov Decision Process (MDP). However, ignoring the
delay of agents violates the Markov property and results
in partially observable MDPs, or POMDPs, with historical
actions as hidden states. From [26], it is shown that solving
POMDPs without estimating hidden states can lead to arbitrarily
suboptimal policies. To retrieve the Markov property, the
delayed system was reformulated as an augmented MDP
problem such as the work in [27], [28]. While the problem
was elegantly formulated, the computational cost increases
exponentially as the delay increases. Travnik et al. [29] showed
that the traditional MDP framework is ill-defined, but did not
provide a theoretical analysis. Ramstedt & Pal [30] proposed
an off-policy model-free algorithm known as Real-Time Actor-
Critic to address the delayed problem by adapting Q-learning
to state-value-learning. The delay issue could also be relieved
with the model-based manner by learning a dynamics model to
predict the future state as in [28]. However, this paper mainly
focused on discrete tasks and could suffer from the curse of
dimensionality when discretizing state and action space for
continuous control tasks [31].

In this paper, we further explore reinforcement learning
methods on delayed systems in the following three aspects:
1) We formally define the multi-step delayed MDP and prove
it can be converted to standard MDP via the Markov reward
process. 2) We propose a general framework of delay-aware
model-based reinforcement learning for continuous control
tasks. 3) By synthesizing the state-of-the-art modeling and
planning algorithms, we develop the Delay-Aware Trajectory
Sampling (DATS) algorithm which can efficiently solve delayed
MDPs with minimal degradation of performance.

The rest of the paper is organized as follows. We first review
the preliminaries in Section II including the definition of Delay-
Aware Markov Decision Process (DA-MDP). In Section III, we
formally define the Delay-Aware Markov Reward Process (DA-
MRP) and prove its solidity. In Section IV, we introduce the
proposed framework of delay-aware model-based reinforcement
learning for DA-MDPs with a concrete algorithm: Delay-Aware
Trajectory Sampling (DATS). In Section V-A, we demonstrate
the performance of the proposed algorithm in challenging
continuous control tasks on Gym and MuJoCo platforms.

II. PRELIMINARIES

A. Delay-Free MDP and Reinforcement Learning
The Delay-free MDP framework is suitable to model games

like chess and go, where the state keeps still until a new action
is executed. The definition of a delay-free MDP is:

ar
X

iv
:2

00
5.

05
44

0v
1

 [
cs

.L
G

]
 1

1
M

ay
 2

02
0

2

Definition 1. A Markov Decision Process (MDP) is charac-
terized by a tuple with
(1) state space S , (2) action space A,
(3) initial state distribution ρ : S → R,
(4) transition distribution p : S × S ×A → R,
(5) reward function r : S ×A → R.

In the framework of reinforcement learning, the problem
is often modeled as an MDP, and the agent is represented by
a policy π that directs the action selection, given the current
observation. The objective is to find the optimal policy π∗

that maximizes the expected cumulative discounted reward
ΣTt=0γ

tr (st, at). Throughout this paper, we assume that we
know the reward function r and do not know the transition
distribution p.

B. Delay-Aware MDP

The delay-free MDP is problematic with agent delays and
could lead to arbitrarily suboptimal policies [26]. To retrieve the
Markov property, Delay-Aware MDP (DA-MDP) is proposed:

Definition 2. A Delaye-Aware Markov Decision Process
DAMDP (E,n) = (XXX ,AAA, ρρρ,ppp,rrr) augments a Markov Decision
Process MDP (E) = (S,A, ρ, p, r), such that
(1) state space XXX = S ×An where n denotes the delay step,
(2) action space AAA = A,
(3) initial state distribution

ρρρ(xxx0) = ρρρ(s0, a0, . . . , an−1) = ρ(s0)

n−1∏
i=0

δ(ai − ci),1

where (ci)i=1:n−1 denotes the initial action sequence,
(4) transition distribution

ppp(xxxt+1|xxxt, aaat)
= ppp(st+1, a

(t+1)
t+1 , . . . , a

(t+1)
t+n |st, a

(t)
t , . . . , a

(t)
t+n−1, aaat)

= p(st+1|st, a(t)t)

n−1∏
i=1

δ(a
(t+1)
t+i − a

(t)
t+i)δ(a

(t+1)
t+n − aaat),

(5) reward function

rrr(xxxt, aaat) = rrr(st, at, . . . , at+n−1, aaat) = r(st, at).

The state vector of DA-MDP is augmented with an action
sequence being executed in the next n steps where n ∈ N is
the delay duration. The superscript of a(t2)t1 means that the
action is one element of xxxt2 and the subscript represents the
action executed time. aaat is the action taken at time t in a
DA-MDP but executed at time t+ n due to the n-step action
delay, i.e. aaat = at+n.

Policies interacting with the DA-MDPs, which also need to
be augmented since the dimension of state vectors has changed,
are denoted by bold πππ. Fig. 1, which compares MDP and DA-
MDP, shows that the state vector of DA-MDP is augmented
with an action sequence being executed in the next n steps.

It should be noted that both action delay and observation
delay could exist in real-world systems. However, it has been

1δ is the Dirac delta function. If y ∼ δ(· − x) then y = x with probability
one.

(a) MDP (E)

(b) DAMDP (E, 1)

(c) DAMDP (E,n)

Fig. 1: Comparison between MDP (E), DMDP (E, 1) and
DMDP (E,n). n ∈ N denotes the action delay step. st denotes
the observed state while at denotes the action executed, both at
time t. Arrows represent how the action selected in the current
time step will be included in the future state.

proved that from the point of view of the learning agent,
observation and action delays form the same mathematical
problem, since they both lead to the delay between the moment
of measurement and the actual action [27]. For simplicity, we
will focus on the action delay in this paper, and the algorithm
and conclusions should be able to generalize to systems with
observation delays. We divide the action delay into two main
parts into action selection and action actuation. For action
selection, the time length depends on the complexity of the
algorithm and the computing power of the processor. System
users can limit the action selection time by constraining the
searching depth, as in AlphaGo [2]. For action actuation, on
the other hand, the actuators (e.g., motors, hydraulic machines)
also need time to respond to the selected action. For instance,
it usually takes more than 0.4 seconds for the hydraulic
automotive brake system to generate the desired deceleration
[10]. The actuation delay is usually decided by the hardware.

To formulate a delayed system into a DA-MDP, we must
select a proper time step for discretely updating the environment.

3

As shown in Fig. 1c, the action selected at the current time step
aaat will be encapsulated in xxxt+1. Thus, aaat must be accessible
at time t + 1 since the agent needs it as the state, which
requires the action selection delay to be at most one time step.
We satisfy this requirement by making the time step of the
DA-MDP larger than the action selection duration.

The above definition of DA-MDP assumes that the delay
time of the agent is an integer multiple of the time step of the
system, which is usually not true for many real-world tasks like
robotic control. For that, Schuitema et al. [32] has proposed an
approximation approach by assuming a virtual effective action
at each discrete system time step, which could achieve first-
order equivalence in linearizable systems with arbitrary delay
time. With this approximation, the above DA-MDP structure
can be adapted to systems with arbitrary-value delays.

III. DELAY-AWARE MARKOV REWARD PROCESS

Our first step is to show that an MDP with multi-step
action delays can be converted to a regular MDP problem
by state augmentation. We prove the equivalence of these two
by comparing their corresponding Markov Reward Processes
(MRPs). The delay-free MRP is:

Definition 3. A Markov Reward Process (S, ρ, κ, r̄) =
MRP (MDP (E), π) can be recovered from a Markov Decision
Process MDP (E) = (S,A, ρ, p, r) with a policy π, such that

κ(st+1|st) =

∫
A
p(st+1|st, a)π(a|st) da,

r̄(st) =

∫
A
r(st, a)π(a|st) da,

where κ is the sate transition distribution and r̄ is the state
reward function of the MRP. E is the original environment
without delays.

In the delay-free framework, at each time step, the agent
selects an action based on the current observation. The action
will immediately be executed in the environment to generate
the next observation. However, if an action delay exists, the
interaction manner between the environment and the agent
changes, and a different MRP is generated. An illustration of
the delayed interaction between agents and the environment is
shown in Fig. 2. The agent interacts with the environment not
directly but through an action buffer.

Based on the delayed interaction manner between the agent
and the environment, the Delay-Aware MRP (DA-MRP) is
defined as below.

Definition 4. A Delay-Aware Markov Reward Process
(XXX , ρρρ,κκκ, r̄̄r̄r) = DAMRP (MDP (E),πππ, n) can be recovered from
a Markov Decision Process MDP (E) = (S,A, ρ, p, r) with a
policy πππ and n-step action delay, such that
(1) state space

XXX = S ×An,

(2) initial state distribution

ρρρ(xxx0) = ρρρ(s0, a0, . . . , an−1) = ρ(s0)

n−1∏
i=0

δ(ai − ci)

Fig. 2: Interaction manner between a delayed agents and the
environment. The agent interacts with the environment not
directly but through an action buffer. At time t, the agent get
the observation ot from the environment as well as a future
action sequences (at, . . . , at+n−1) from the action buffer. The
agents then decide their future action at+n and store them in
the action buffer. The action buffer then pops actions at to be
executed to the environment.

where (ci)i=1:n−1 denotes the initial action sequence,
(3) state transition distribution

κκκ (xxxt+1|xxxt)
= κκκ(st+1, a

(t+1)
t+1 , . . . , a

(t+1)
t+n |st, a

(t)
t , . . . , a

(t)
t+n−1)

= p(st+1|st, at)
n−1∏
i=1

δ(a
(t+1)
t+i − a

(t)
t+i)πππ(a

(t+1)
t+n |xxxt),

(4) state-reward function

r̄̄r̄r(xxxt) = r̄̄r̄r(st, at, . . . , at+n−1) = r(st, at),

With Def. 1- 4, we are ready to prove that DA-MDP
is a correct augmentation of MDP with delay, as stated in
Theorem. 1.

Theorem 1. A policy πππ : A × XXX → R interacting with
DAMDP (E,n) in the delay-free manner produces the same
Markov Reward Process as πππ interacting with MDP (E) with
n-step action delays, i.e.

DAMRP (MDP (E),πππ, n) = MRP (DAMDP (E,n),πππ). (1)

Proof. For any MDP (E) = (S,A, ρ, p, r), we need to
prove that the above two MRPs are the same. Referring to
Def. 2 and 3, for MRP (DMDP (E,n),πππ), we have
(1) state space S ×An,
(2) initial distribution

ρρρ(xxx0) = ρρρ(s0, a0, . . . , an−1)

= ρ(s0)

n−1∏
i=0

δ(ai − ci),

4

(3) transition kernel

κ(xxxt+1|xxxt) =

∫
A
ppp(xxxt+1|xxxt, aaat)πππ(aaa|xxxt) daaa

=

∫
A
p(st+1|st, at)

n−1∏
i=1

δ(a
(t+1)
t+i − a

(t)
t+i)

δ(a
(t+1)
t+n − aaa) πππ(aaa|xt) daaa

=p(st+1|st, at)
n−1∏
i=1

δ(a
(t+1)
t+i − a

(t)
t+i)πππ(a

(t+1)
t+n |xxxt),

(4) state-reward function

r̄(xxxt) =

∫
A
r(xxxt, aaa)πππ(aaa|xxxt) daaa

=

∫
A
r(st, at) πππ(aaa|xxxt) daaa

= r(st, at)

∫
A

π(aaa|xxxt) daaa

= r(st, at).

Since the expanded terms of MRP (DMG(E,n),πππ) match the
corresponding terms of DAMRP (MG(E),πππ, n) (Def. 4), Eq. 1
holds.

IV. DELAY-AWARE MODEL-BASED REINFORCEMENT
LEARNING

Theorem. 1 shows that instead of solving MDPs with action
delays, we can alternatively solve the corresponding DA-MDPs.
From the transition function of a DAMDP (E,n) with multi-
step delays

ppp(xxxt+1|xxxt, aaat) =

p(st+1|st, at)
n−1∏
i=1

δ(a
(t+1)
t+i − a

(t)
t+i)δ(a

(t+1)
t+n − aaat),

(2)

we see that the dynamics is divided into the unknown
original dynamics p(st+1|st, at) and the known dynamics∏n
i=1 δ(a

(t+1)
t+i −a

(t)
t+i)δ(at+n−aaat) caused by the action delays.

Thus, solving DA-MDPs with standard reinforcement learning
algorithms will suffer from the curse of dimensionality if
assuming a completely unknown environment. In this section,
we propose a delay-aware model-based reinforcement learning
framework to achieve high computational efficiency.

As mentioned, RTAC [30] has been proposed to deal the
delay problem. However, we will show that this method is only
efficient for 1-step delay. When n = 1 for DMDP (E,n), any
transition (st, at, st+1) in the replay buffer is always a valid
transition in the Bellman equation with the state-value function
as

vπππDA-MDP(E, n) (xxxt) = r (st, at)

+ Est+1

[
Eaaat

[
vπππDA-MDP(E, n) (st+1, at+1, . . . , at+n−1, aaat)

]]
,

where aaat ∼ πππ(·|xxxt), and st+1 ∼ p(·|st, at). However, when
considering the multi-step delay, i.e., n ≥ 2, it is challenging
to use off-policy model-free reinforcement learning because
augmented transitions need to be stored and we only learn
the effect of an action on the state-value function after n-step

Algorithm 1 Delay-Aware Model-Based Reinforcement Learn-
ing

Input: action delay step n, initial actions (ai)i=0,...,n−1,
and task horizon T
Output: learned transition probability p̃
Initialize replay buffer D with a random controller for one
trial.
for Episode k = 1 to K do

Train a dynamics model p̃ given D.
Optimize action sequence an+1:T with initial actions
(ai)i=0,...,n−1 and estimated system dynamics p̃
Record experience: D← D ∪ (st, at, st+1)t=0:T .

end for

updates of the Bellman equation. Also, the dimension of the
state vector xxx increases with the delay step n, resulting in the
exponential growth of the state-space.

Another limitation of model-free methods for DA-MDPs
is that it can be difficult to transfer the learned knowledge
(e.g., value functions, policies) when the action delay step n
changes because the input dimensions of the value functions
and policies depend on the delay step n. The agent must learn
again from scratch whenever the system delay changes, which
is usual in real-world systems.

The problems of model-free methods have motivated us to
develop model-based reinforcement learning (MBRL) methods
to combat the action delay. MBRL tries to solve MDPs by
learning the dynamics model of the environment. Intuitively,
we can inject our knowledge into the learned model without
leaning effort. Based on this intuition, in this paper, we propose
a delay-aware MBRL framework to solve multi-step DA-MDPs
which can efficiently alleviate the aforementioned two problems
of model-free methods. From Eq. 2, the unknown part is exactly
the dynamics that we learn in MBRL algorithms for delay-
free MDPs. In our proposed framework, only p(st+1|st, at) is
learned and the dynamics caused by the delay is combined
with the learned model by adding action delays to the
interaction scheme. As mentioned, the learned dynamics model
is transferable between systems with different delay steps,
since we can adjust the interaction scheme based on the
delay step (See Section V-C for an explanation of the transfer
performance).

The proposed framework of delay-aware MBRL is shown in
Algorithm 1. In the for loop, we are solving a planning problem,
given a dynamics model with an initial action sequence. For
that, the learned model is used not only for the optimal
control but also for the state prediction to compensate for
the delay effect. By iteratively training, we gradually improve
the model accuracy and obtain better planning performance
and , especially in high-reward regions.

A. Delay-Aware Trajectory Sampling

Recently, several MBRL algorithms have been proposed to
match the asymptotic performance of model-free algorithms on
challenging benchmark tasks, including probabilistic ensemble
with trajectory sampling (PETS) [33], model-based policy

5

Algorithm 2 Delay-Aware Trajectory Sampling

Input: action delay step n, initial actions (ai)i=0,...,n−1,
task horizon T , planning horizon m
Output: learned transition probability p̃
Initialize transition buffer D with a random controller for
one trial.
for Trial k = 1 to K do

Train a probabilistic dynamics model p̃ given D.
Initialize action buffer A = (ai)i=0,...,n−1
for Time t = 0 to T − n do

Observe st
for Sampled at+n:t+n+m∼CEM(·) do

Concatenate at+n:t+n+m with at:t+n−1
Propagate state particles sτ using p̃.
Evaluate actions as

∑t+n+m
τ=t r(sτ , aτ)

Update CEM(·) distribution.
end for
Pick the first action at+n from optimal action sequence
and store in A

end for
Record experience: D← D ∪ (st, at, st+1)t=0:T .

end for

optimization (MBPO) [34], model-based planning with policy
networks (POPLIN) [35], etc. In this section, we will combine
the state-of-the-art PETS algorithm with the proposed delay-
aware MBRL framework to generate a new method for solving
DA-MDPs. We name the method as the Delay-Aware Trajectory
Sampling (DATS).

In DATS, the dynamic model is represented by an ensemble
of probabilistic neural networks that output Gaussian distribu-
tions which helps model the aleatoric uncertainty. The use of the
ensemble can help incorporate the epistemic uncertainty of the
dynamic model and approximate the Bayesian posterior [36],
[37]. The planning of action sequences applies the concept of
model predictive control (MPC) with the cross-entropy method
(CEM) for elite selection of the sampled action sequences. In
the most inner for loop of Algorithm 2, with the current state st,
we first propagate state particles with the same action sequence
at:t+n−1 to make various estimates of the future state st+n ,
and then use sampled action sequences at+n:t+n+m to predict
st+n+1:t+n+1+m for each particle. In this way, the uncertainty
of the learned model is considered in both state-prediction
and planning phases, which improves the robustness of the
algorithm. The complete algorithm is shown in Algorithm 2.

Model-based methods have a natural advantage when dealing
with multi-step DA-MDPs when compared with model-free
methods. With model-free methods, the effect of an action on
the state-value function can only be learned after n-time updates
of the Bellman equation. The agent implicitly wastes both time
and effort to learn the known part of system dynamics caused
by action delay since it does not understand the meaning of the
elements in the state vectors. As mentioned, the advantage of
model-based methods is that they incorporate delay effect into
the system dynamics without extra learning (see Section V-B
for a performance comparison between model-free and model-
based methods).

(a) Pendulum (b) CartPole

(c) Walker2d (d) Ant

Fig. 3: Benchmark environments.

V. EXPERIMENTS

A. Reinforcement Learning in Delayed Systems

Experiments are conducted across four OpenAI Gym/Mujoco
[6], [7] environments for continuous control: Pendulum,
Cartpole, Walker2d and Ant as shown in Fig. 3. The details
of the environments are described below.
Pendulum. A single-linked pendulum is fixed on the one

end, with an actuator located on the joint. In this version of the
problem, the pendulum starts in a random position, and the goal
is to swing it up to keep it upright. Observations include the
joint angle and the joint angular velocity. The reward penalizes
position and speed deviations from the upright equilibrium and
the magnitude of the control input.
Cartpole. A pole is connected to the cart through an un-

actuated joint, and the cart moves along a frictionless track.
Control the system by applying a real-number force to the cart.
The pole starts upright, and the goal is to prevent it from falling
over. Let θt be the angle of the pole away from the upright
vertical position, and xt be the position where the cart leaves
the center of the rail at time t. The 4-dimensional observation
at time t is (xt, θt, ẋt, θ̇t). A reward of +1 is provided for
every timestep that the pole remains upright.
Walker2d. Walker2d is a 2-dimensional bipedal robot,

consisting of 7 rigid links, including a torso and 2 legs. There
are 6 actuators, 3 for each leg. The observations include the
(angular) position and speed of all joints. The reward is the
x direction speed plus the penalty for the distance to a target
height and the magnitude of control input. The goal is to walk
forward as fast as possible while keeping the standing height
with minimal control input.
Ant. Ant is a 3-dimensional 4-legged robot with 13 rigid

links (including a torso and 4 legs). There are 8 actuators at the
joints, 2 for each leg. The observations include the (angular)
position and speed of all joints. The reward is the x direction
speed plus penalty for the distance to a target height and the
magnitude of control input. The goal is to walk forward as fast

6

(a) Pendulum-v0 (b) CartPole-v1

(c) Walker2d-v1 (d) Ant-v1

Fig. 4: Performances (means and standard deviations of rewards) of different MBRL algorithms in Gym environments. The
environment is non-delayed for SAC and PETS (n = 0) and is one-step-delayed for other algorithms. DATS is the proposed
algorithm. The results indicate that the performance degradation resulting from the environment action delay is minimal when
using DATS is minimal.

as possible, and approximately maintain the normal standing
height with minimal control input.

Among the 4 continuous control tasks, the tasks of Walker2d
and Ant are considered more challenging than Pendulum and
Cartpole indicated by the dimension of dynamics.

In experiments, we add delays manually by revising the
interaction framework between the agents and the environments
if needed.

To show the advantage of DATS, we use 5 algorithms:

• SAC (n = 0): Soft actor-critic [38] is a state-of-the-
art model-free reinforcement learning algorithm serving
as a model-free baseline. Only the performances at the
maximum time step are visualized.

• PETS (n = 0): The PETS algorithm [33] is implemented
in the non-delayed environment without action delays,
providing the performance upper bound for algorithms in
delayed environments.

• PETS (n = 1): The PETS algorithm is blindly im-
plemented in the 1-step delayed environment without
modeling action delays.

• W-PETS (n = 1): The PETS algorithm is augmented to
solve DA-MDPs with n = 1. However, it inefficiently tries
to learn the whole dynamics p(xxxt+1|xxxt, aaat) as shown in
Eq. 2 including the known part caused by actions delays.

• DATS (n = 1): DATS is our proposed method as in

Algorithm 2. It incorporates the action delay into the
framework and only learns the unknown original dynamics
p(st+1|st, at) as shown in Eq. 2.

Each algorithm is run with 10 random seeds in each
environment. Fig. 4 shows the algorithmic performances. As the
model-free baseline, SAC is not as efficient as PETS in the four
environments when there are no delays. While PETS (n = 1)
has the worst performance because the agent does not consider
the action delay and learns the wrong dynamics, it can still make
some improvements in simple environments like Pendulum

(Fig. 4a), and Cartpole (Fig. 4b) due to the correlation of
transitions. PETS (n = 1) performs poorly for tasks that need
accurate transition dynamics for planning in Walker2d (Fig. 4c)
and Ant (Fig. 4d). W-PETS achieves similar performance with
PETS in Pendulum and Cartpole. But its performance also
degrades a lot when the task gets more difficult since it has to
learn the dynamics of the extra n dimensions of states caused
by the n-step action delays (Fig. 4c and 4d). DATS performs
the same as PETS for the four tasks, i.e., action delays do not
affect DATS.

The reason why DATS in delayed environment matches
the asymptotic performance of PETS in the non-delayed
environment is that the quality and quantity of transitions
(st, at, st+1) used for model training in DATS are almost the
same with PETS, despite the action delay. The slight difference

7

(a) DATS in Pendulum-v0 (b) RTAC in Pendulum-v0

(c) DATS in Walker2d-v1 (d) RTAC in Walker2d-v1

Fig. 5: Performances (means and standard deviations of rewards) of DATS and RTAC in Gym environments with different
action delay steps. The model-based algorithm DATS outperforms the model-free algorithm RTAC in terms of efficiency and
stability. RTAC degrades significantly as the delay step increases.

is due to the distribution shift caused by the predefined
initial actions, which has minimal influence on the overall
performance if the task horizon is long enough compared to
the action delay step.

B. Model-Based vs Model-Free

To show the advantage of the proposed delay-aware MBRL
framework when dealing with multi-step delays, we compare
the model-free algorithm RTAC [30] and the proposed model-
based DATS. RTAC is suitable for solving DA-MDPs and is
modified based on SAC, but as explained in Section IV, RTAC
can avoid extra learning only when the action delay is exactly
one-step.

We test them in the simple environment Pendulum and the
complex environment Walker2d with various delay step n. The
learning curves in Fig. 5. show that DATS outperforms RTAC
in efficiency and stability. DATS keeps consistent performance
while RTAC degrades significantly as the delay step increases,
even for the simple task Pendulum, as shown in Fig. 5b. The
reason is that with the original dynamics of Pendulum and
Walker2d fixed, the extra dynamics caused by the action delay
rapidly dominates the dimension of the state space of the
learning problem as the delay step increases, and exponentially
more transitions are needed to sample and learn.

C. Transferable Knowledge

In this section, we show the transferability of the knowledge
learned by DATS. We first learn several dynamics models {p̃i}
in Pendulum and Walker2d with DATS, where i = 1, 2, 4, 8
denotes the action delay step during training. The learned
models are then tested in environments with n-step action
delays (n = 1, 2, 4, 8, 16). We train the dynamics model
in each environment with the same amount of transitions
(st, at, st+1): 2,000 for Pendulum and 200,000 for Walker2d.
The planning method and hyper-parameters stay the same as
those in Algorithm 2. RTAC provides the model-free baseline
for each environment. Recall that since RTAC is a model-free
algorithm, when changing the delay steps, it must learn from
scratch.

The reward matrix in Table I shows that DATS performs well
even when the delay step is twice larger than the maximum step
during model-training (n = 16) for Pendulum and Walker2d.
We infer that the learned knowledge (dynamics in this case) is
transferable, i.e., when the action delay of the system changes,
the estimated dynamics are still useful by simply adjusting the
known part of the dynamics caused by the action delay. On the
other hand, RTAC performs poorly as the delay step increases
since the dimension of the state space grows and the agent
has to spend more effort to learn the delay dynamics. Notably,
the learned knowledge of model-free methods cannot transfer
when the delay step changes.

The results suggest that the transferability of DATS makes

8

TABLE I: Reward matrix of DATS and RTAC

(a) Pendulum-v0

n
DATS RTAC

p̃1 p̃2 p̃4 p̃8

1 154.10±14.86 156.37±13.29 163.29±16.03 149.78±13.778 121.36±12.63
2 163.92±15.23 162.93±14.26 155.90±16.11 160.07±18.30 109.44±12.58
4 160.39±12.63 162.87±16.21 171.53±10.85 166.29±14.22 80.15±27.94
8 163.29±15.53 151.20±13.44 166.37±13.32 166.59±10.59 -110.28±58.89
16 153.41±17.35 159.09±19.88 153.89±14.22 149.90±16.86 -122.98±64.82

(b) Walker2d-v1

n
DATS RTAC

p̃1 p̃2 p̃4 p̃8

1 471.34±426.26 524.76±387.67 496.13±442.89 395.78±409.98 -471.13±896.28
2 549.73±410.76 487.32±334.49 527.98±477.19 492.56±490.01 -754.42±722.79
4 485.29±438.98 439.23±529.39 248.60±611.82 552.91±410.76 -1252.47±710.10
8 356.93±431.58 438.82±563.13 482.09±316.34 247.97±595.63 -1766.85±404.28
16 292.38±521.86 311.44±409.80 473.97±309.81 401.34 ±634.12 -2173.87±625.76

it suitable for Sim-to-Real tasks when there are action delays
in real systems, and that the delay step during model training
does not have to be equal to the delay step in a real system.
Therefore, if the delay steps of the real-world tasks are known
and fixed, we can incorporate the delay effect with the original
dynamics learned in the delay-free simulator, and obtain highly
efficient Sim-to-Real transformations.

VI. CONCLUSION

This paper proposed a general delay-aware MBRL frame-
work which solves multi-step DA-MDPs with high efficiency
and transferability. Our key insight is that the dynamics of DA-
MDPs can be divided into two parts: the known part caused
by delays, and the unknown part inherited from the original
delay-free MDP. The proposed delay-aware MBRL framework
learns the original unknown dynamics and incorporates the
known part of the dynamics explicitly. We also provided an
efficient implementation of delay-aware MBRL as DATS by
combining a state-of-the-art modeling and planning method,
PETS. The experiment results showed that the performance
of PETS in instantaneous environments is similarly to the
performance of DATS in delayed environments with respect
to delay duration. Moreover, the learned dynamics by DATS
is transferable when the time of action delay changes, thus
making DATS the preferred algorithm for tasks in real-world
systems.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learning,”
arXiv preprint arXiv:1312.5602, 2013.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[3] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning, 2015, pp. 1889–1897.

[4] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Bench-
marking deep reinforcement learning for continuous control,” in Interna-
tional Conference on Machine Learning, 2016, pp. 1329–1338.

[5] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor
with reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 2, no. 4, pp. 2096–2103, 2017.

[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[7] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2012, pp. 5026–5033.

[8] T. Imaida, Y. Yokokohji, T. Doi, M. Oda, and T. Yoshikawa, “Ground-
space bilateral teleoperation of ets-vii robot arm by direct bilateral
coupling under 7-s time delay condition,” IEEE Transactions on Robotics
and Automation, vol. 20, no. 3, pp. 499–511, 2004.

[9] M. Jin, S. H. Kang, and P. H. Chang, “Robust compliant motion control
of robot with nonlinear friction using time-delay estimation,” IEEE
Transactions on Industrial Electronics, vol. 55, no. 1, pp. 258–269, 2008.

[10] F. P. Bayan, A. D. Cornetto, A. Dunn, and E. Sauer, “Brake timing
measurements for a tractor-semitrailer under emergency braking,” SAE
International Journal of Commercial Vehicles, vol. 2, no. 2009-01-2918,
pp. 245–255, 2009.

[11] S. B. Moon, P. Skelly, and D. Towsley, “Estimation and removal of
clock skew from network delay measurements,” in IEEE INFOCOM’99.
Conference on Computer Communications. Proceedings. Eighteenth
Annual Joint Conference of the IEEE Computer and Communications
Societies. The Future is Now (Cat. No. 99CH36320), vol. 1. IEEE,
1999, pp. 227–234.

[12] R. Hannah and W. Yin, “On unbounded delays in asynchronous parallel
fixed-point algorithms,” Journal of Scientific Computing, vol. 76, no. 1,
pp. 299–326, 2018.

[13] K. Gu and S.-I. Niculescu, “Survey on recent results in the stability and
control of time-delay systems,” Journal of dynamic systems, measurement,
and control, vol. 125, no. 2, pp. 158–165, 2003.

[14] L. Dugard and E. I. Verriest, Stability and control of time-delay systems.
Springer, 1998, vol. 228.

[15] L. Chung, C. Lin, and K. Lu, “Time-delay control of structures,”
Earthquake Engineering & Structural Dynamics, vol. 24, no. 5, pp.
687–701, 1995.

[16] S. Gong, J. Shen, and L. Du, “Constrained optimization and distributed
computation based car following control of a connected and autonomous
vehicle platoon,” Transportation Research Part B: Methodological,
vol. 94, pp. 314–334, 2016.

[17] J. Ploeg, N. Van De Wouw, and H. Nijmeijer, “Lp string stability of
cascaded systems: Application to vehicle platooning,” IEEE Transactions
on Control Systems Technology, vol. 22, no. 2, pp. 786–793, 2013.

[18] K. J. Astrom, C. C. Hang, and B. Lim, “A new smith predictor for
controlling a process with an integrator and long dead-time,” IEEE
transactions on Automatic Control, vol. 39, no. 2, pp. 343–345, 1994.

[19] M. R. Matausek and A. Micic, “On the modified smith predictor for
controlling a process with an integrator and long dead-time,” IEEE
Transactions on Automatic Control, vol. 44, no. 8, pp. 1603–1606, 1999.

9

[20] Z. Artstein, “Linear systems with delayed controls: A reduction,” IEEE
Transactions on Automatic control, vol. 27, no. 4, pp. 869–879, 1982.

[21] E. Moulay, M. Dambrine, N. Yeganefar, and W. Perruquetti, “Finite-time
stability and stabilization of time-delay systems,” Systems & Control
Letters, vol. 57, no. 7, pp. 561–566, 2008.

[22] A. Manitius and A. Olbrot, “Finite spectrum assignment problem for
systems with delays,” IEEE transactions on Automatic Control, vol. 24,
no. 4, pp. 541–552, 1979.

[23] S. Mondié and W. Michiels, “Finite spectrum assignment of unstable
time-delay systems with a safe implementation,” IEEE Transactions on
Automatic Control, vol. 48, no. 12, pp. 2207–2212, 2003.

[24] L. Mirkin, “On the extraction of dead-time controllers from delay-free
parametrizations,” IFAC Proceedings Volumes, vol. 33, no. 23, pp. 169–
174, 2000.

[25] S.-I. Niculescu, Delay effects on stability: a robust control approach.
Springer Science & Business Media, 2001, vol. 269.

[26] S. P. Singh, T. Jaakkola, and M. I. Jordan, “Learning without state-
estimation in partially observable markovian decision processes,” in
Machine Learning Proceedings 1994. Elsevier, 1994, pp. 284–292.

[27] K. V. Katsikopoulos and S. E. Engelbrecht, “Markov decision processes
with delays and asynchronous cost collection,” IEEE transactions on
automatic control, vol. 48, no. 4, pp. 568–574, 2003.

[28] T. J. Walsh, A. Nouri, L. Li, and M. L. Littman, “Learning and planning
in environments with delayed feedback,” Autonomous Agents and Multi-
Agent Systems, vol. 18, no. 1, p. 83, 2009.

[29] J. B. Travnik, K. W. Mathewson, R. S. Sutton, and P. M. Pilarski, “Re-
active reinforcement learning in asynchronous environments,” Frontiers
in Robotics and AI, vol. 5, p. 79, 2018.

[30] S. Ramstedt and C. Pal, “Real-time reinforcement learning,” in Advances
in Neural Information Processing Systems, 2019, pp. 3067–3076.

[31] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
arXiv preprint arXiv:1509.02971, 2015.

[32] E. Schuitema, L. Buşoniu, R. Babuška, and P. Jonker, “Control delay
in reinforcement learning for real-time dynamic systems: a memoryless
approach,” in 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2010, pp. 3226–3231.

[33] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep reinforcement
learning in a handful of trials using probabilistic dynamics models,” in
Advances in Neural Information Processing Systems, 2018, pp. 4754–
4765.

[34] M. Janner, J. Fu, M. Zhang, and S. Levine, “When to trust your model:
Model-based policy optimization,” arXiv preprint arXiv:1906.08253,
2019.

[35] T. Wang and J. Ba, “Exploring model-based planning with policy
networks,” arXiv preprint arXiv:1906.08649, 2019.

[36] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration
via bootstrapped dqn,” in Advances in neural information processing
systems, 2016, pp. 4026–4034.

[37] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in Advances in
Neural Information Processing Systems, 2017, pp. 6402–6413.

[38] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” arXiv preprint arXiv:1801.01290, 2018.

	I Introduction
	II Preliminaries
	II-A Delay-Free MDP and Reinforcement Learning
	II-B Delay-Aware MDP

	III Delay-Aware Markov Reward Process
	IV Delay-Aware Model-Based Reinforcement Learning
	IV-A Delay-Aware Trajectory Sampling

	V Experiments
	V-A Reinforcement Learning in Delayed Systems
	V-B Model-Based vs Model-Free
	V-C Transferable Knowledge

	VI Conclusion
	References

