
CoreGen: Contextualized Code Representation Learning for Commit
Message Generation
Lun Yiu Nieb, Cuiyun Gaoa,∗, Zhicong Zhongc, Wai Lamb, Yang Liud and Zenglin Xua

aHarbin Institute of Technology, Shenzhen, China
bThe Chinese University of Hong Kong, Hong Kong, China
cSun Yat-Sen University, Guangzhou, China
dNanyang Technological University, Singapore

ART ICLE INFO
Keywords:
Commit Message Generation
Code Representation Learning
Code-to-text Generation
Self-supervised Learning
Contextualized Code Representation

Abstract
Automatic generation of high-quality commit messages for code commits can substantially facilitate
software developers’ works and coordination. However, the semantic gap between source code
and natural language poses a major challenge for the task. Several studies have been proposed to
alleviate the challenge but none explicitly involves code contextual information during commit message
generation. Specifically, existing research adopts static embedding for code tokens, which maps a
token to the same vector regardless of its context. In this paper, we propose a novel Contextualized
code representation learning strategy for commit messageGeneration (CoreGen). CoreGen first learns
contextualized code representations which exploit the contextual information behind code commit
sequences. The learned representations of code commits built upon Transformer are then fine-tuned
for downstream commit message generation. Experiments on the benchmark dataset demonstrate the
superior effectiveness of our model over the baseline models with at least 28.18% improvement in terms
of BLEU-4 score. Furthermore, we also highlight the future opportunities in training contextualized
code representations on larger code corpus as a solution to low-resource tasks and adapting the
contextualized code representation framework to other code-to-text generation tasks.

1. Introduction
Massive amount of source code are being produced in

people’s daily lives and works, thus bridging the gap between
source code and natural language has become a practically
useful but challenging task. Mitigating such gap will enable
the semantics of source code being connected to natural lan-
guage, which is critical for solving many important tasks,
such as commit message generation. In the life cycle of soft-
ware development, the commit messages on version control
systems (e.g., GitHub, GitLab) are essential for developers
to document the abstract code changes in high-level natural
language summaries. One example of code commit message
is shown in Figure 1, where a line of code has been updated
for more generic exception handling. The line marked with
“+” in green background is the newly added code while the
line in red background marked with “-” indicates code been
deleted, and the corresponding commit message is shown
at the top. High-quality commit messages allow developers
to comprehend the high-level intuition behind the software
evolution without diving into the low-level implementation
details, which can significantly ease the collaboration and
maintenance of large-scale projects [8].

In practice, however, the quality of commit messages
is not guaranteed. Dyer et al. [12] report in their study
that around 14% of the Java projects on SourceForge leave
commit messages completely blank. Developers’ intentional

∗Corresponding author
lynie@link.cuhk.edu.hk (L.Y. Nie); gaocuiyun@hit.edu.cn (C.

Gao); zhongzhc3@mail2.sysu.edu.cn (Z. Zhong); wlam@se.cuhk.edu.hk (W.
Lam); yangliu@ntu.edu.sg (Y. Liu); xuzenglin@hit.edu.cn (Z. Xu)

ORCID(s):

……
return new AsynchronousFileByteChannel(

AsynchronousFileChannel.open(Paths.get(path),
StandardOpenOption.READ, StandardOpenOption.WRITE));

}
- catch (NoSuchFileException ex) {
+ catch (FileSystemException ex) {

if (System.nanoTime() - startTime >= TIMEOUT) {
throw ex;

}
……

Commit Message: Catch more generic FileSystemException in NamedPipeSocket

...springframework/boot/buildpack/platform/socket/NamedPipeSocket.java

Figure 1: An example of code commit and its corresponding
commit message.

or unintentional negligence due to their lack of time and
motivation both result in the sacrifice of commit messages’
quality, let alone writing meaningful yet concise commit
messages requires developers to grasp the essential ideas
behind the code changes and explicitly summarize them from
a holistic perspective, which is a skill that relies heavily on
individual developer’s expertise. Even for the experienced
experts, writing high-quality summaries for massive code
commits still poses considerably extra workload.

Therefore, automatic generation of high-quality commit
messages becomes necessitated and many approaches have
been proposed to address the needs. At the earlier stage, re-
searchers adopt pre-defined templates to generate commit
messages from extracted information [8, 10, 21, 39]. How-
ever, these rule-based methods require human developers to
manually define templates. For the code commits that do
not match any of the pre-defined rules, their approaches may
fail in generating meaningful commit messages. For exam-
ple, in Shen et al.’s work [39], their defined rules can only

Nie et al.: Preprint submitted to Elsevier Page 1 of 11

ar
X

iv
:2

00
7.

06
93

4v
3

 [
cs

.C
L

]
 2

1
Ju

n
20

21

CoreGen: Contextualized Code Representation Learning for Commit Message Generation

Commit Message
Generation

Masked Code
Fragment Prediction

Code Changes
Prediction

Code
Commits

Explicit
Code Changes

Implicit Binary
File Changes

Transformer Commit
Messages

Stage I: Contextualized Code Representation Learning Stage II: Downstream Commit Message Generation

Figure 2: Workflow of CoreGen’s two-stage framework.

handle four stereotypical types of code commits straightfor-
wardly as filling in the template “Add [added information] at
[method name]” for in-method sentence modifications. To
solve this issue, later works [15, 25] leverage information
retrieval techniques to reuse existing commit messages for
incoming code commits. In spite of the improved flexibil-
ity, the quality of retrieved messages is still constrained by
inconsistent variable/function names.

With the advancement of neural machine translation (NMT),
recent researchers treat commit message generation as a code-
to-text translation task and utilize deep neural networks to
model the relationship between code commits and commit
messages [16, 27, 44, 24], which are claimed to achieve the
state-of-the-art performance on the benchmark.

Despite the comparative successes of deep learning mod-
els in code commit message generation, all of these studies
suffer from three critical limitations. First, existing research
generally adopts static embedding methods for code repre-
sentation, mapping a code token to an identical vector rep-
resentation regardless of its context. However, code data
are essentially different from textual data considering the
semantic gap between source code and natural language. For
example, a single token alone, if in textual data, can represent
partial semantics, but usually cannot convey any meaningful
information in source code without a context. Second, prior
studies simply take the whole code commit snippet as input
without attending explicitly to the changed fragments. Third,
existing NMT models for commit message generation are
all recurrent-based, which has been evidenced to suffer from
long-term dependency issue [6].

In this paper, we propose a novel two-stage framework
for code commit message generation, named CoreGen, to
address the above limitations. Inspired by the recent success
of pre-trained language models [33, 11, 35, 40], we propose
to model the code semantics with contextualized code repre-
sentations, endowing one identical code token with different
embeddings based on the respective contextual information.
By training the model to predict code changes, the model is
also guided to put more attention on the changed fragments
rather than the whole commit snippets. At the second stage,
the learned code representations are preserved, and further
fine-tuned for downstream commit message generation. Both
stages are implemented based on Transformer to overcome
the drawbacks of recurrent-based models. Experimental re-
sults on benchmark dataset indicate that CoreGen achieves

the new state-of-the-art on code commit message generation.
The main contributions of our work are summarized as

follows:
• We propose a two-stage framework named CoreGen

that first in the field highlights the divergence between
the two categories of code commits, and effectively
exploits contextualized code representations by predict-
ing either the code changes or masked code fragment
according to the nature of commits, which is built upon
the Transformer model, yet can be easily adapted to
other model architectures such as RNN.

• We empirically show that CoreGen significantly out-
performs previous state-of-the-art models with at least
28.18% improvement on BLEU-4 score. Our in-depth
studies and comparison experiments further demon-
strate CoreGen’s superior usefulness in speeding up
the model convergence and performing well under low-
resource settings.

• We highlight CoreGen’s potentials in generalizing to
other low-resource tasks by adopting similar contex-
tualized representation learning tasks, and a promis-
ing future research direction of improving CoreGen
by modeling more complicated code structural infor-
mation. We have released our implementation details
publicly1 to facilitate future research.

The rest of the paper is structured as follows. Section
2 introduces our proposed two-stage framework. Section 3
and Section 4 describe the experimental setups and results.
Section 5 provides some detailed discussion around CoreGen.
Finally, Section 6 reviews the related works and Section 7
concludes the paper.

2. Approach
In this section, we introduce our approach, Contextualized

CodeRepresentation Learning for CommitMessageGeneration
(CoreGen), a two-stage framework for commit message gen-
eration. An overview of CoreGen is shown in Figure 2. Core-
Gen first learns contextualized code representation for the
two separate categories of code commits via their respective
representation learning strategy at Stage I, as illustrated in
the right part of Figure 3, then fine-tunes the whole model

1https://github.com/Flitternie/CoreGen

Nie et al.: Preprint submitted to Elsevier Page 2 of 11

CoreGen: Contextualized Code Representation Learning for Commit Message Generation

Feed Forward

Self-Attention

Feed Forward

Encoder-Decoder Attention

Self-Attention

Transformer
Self-Attention

Feed
Forward

Input
Embedding

Output
Embedding

Masked
Self-Attention

Add & Norm

Cross
Attention

Feed
Forward

Add & Norm

Encoder

Add & Norm

Add & Norm

Decoder

Add & Norm

Positional Encoding

Linear

Softmax

Code Commits Commit Messages

Output Probabilities
a. Explicit Code Changes

b. Implicit Binary File Changes

Randomly Masked Commit Sequence

Predicted Commit Sequence

Predicted Code-After-Change Sequence

Code-Before-Change Sequence

Feed Forward

Self-Attention

Feed Forward

Encoder-Decoder Attention

Self-Attention

Transformer

public boolean isValidSdkHome(@ NotNull String path) {
return GoEnvironmentUtil.getExecutableForSdk(path).canExecute();

}

new file mode 100644
index 0000000 . . 20ae612
Binary files / GreenDroid <MASK> <MASK> <MASK> <MASK> <MASK> <MASK> differ

new file mode 100644
index 0000000 . . 20ae612
Binary files / GreenDroid / resources / gd_page_indicator_dot . psd differ

public boolean isValidSdkHome(@ NotNull String path) {
return GoEnvironmentUtil.getExecutableForSdk(path).canExecute()

&& getVersionString(path) != null;
}

Figure 3: Overall model architecture. Left part represents the standard architecture of Transformer [41]. Right part describes the
two contextualized code representation learning tasks proposed for the two respective categories of code commits.

for downstream commit message generation task at Stage II,
as shown in the left of the same figure.

Unlike previous works that neglect the divergence be-
tween the two categories of code commits, we recognize
such difference and deliberately propose separate represen-
tation learning strategies to achieve more effective exploita-
tion of the code contextual information. Also, please note
that CoreGen’s framework is orthogonal to the selection of
specific model architecture, and can be easily generalized to
include other code representation learning tasks, as explained
in details in Section 5.
2.1. Stage I: Contextualized Code Representation

Learning
Code commits can be naturally categorized into two types:

one with explicit code changes and another with implicit bi-
nary file changes, by their respective features as illustrated in
Figure 4. To enrich code representations with the contextual
information for more accurate commit message generation,
for each code commit, CoreGen performs automatic catego-
rization, then trains the Transformer via its corresponding
representation learning task to exploit contextualized code
representations. The details are elaborated as the following.
2.1.1. Code Changes Prediction

The first category of code commits includes explicit code
changes such as line addition, deletion, or modification. Gen-
erally, the lines are marked with special tokens at the be-
ginning, e.g., “+” for addition and “-” for deletion. These
changed code statements, comparing to the unchanged part
of source code, play a much more crucial role in code commit
message generation, since commit messages, by definition,

... src/com/goide/sdk/GoSdkType.java

……
public class GoSdkType extends SdkType {

@ Override
public boolean isValidSdkHome(@ NotNull String path) {

- return GoEnvironmentUtil.getExecutableForSdk(path).canExecute();
+ return GoEnvironmentUtil.getExecutableForSdk(path).canExecute()

&& getVersionString(path) != null;
}

……

Commit Message: Adjust homebrew GoSdk path

(a) A code commit with explicit code changes

Commit Message: Add PSD for GreenDroid

new file mode 100644
index 0000000 . . 20ae612
Binary files /GreenDroid/resources/gd_page_indicator_dot.psd differ

new file mode 100755
index 0000000 . . c3888b5
Binary files /GreenDroid/resources/segmented_bar.psd differ

(b) A code commit with implicit binary file changes

Figure 4: Examples of two code commit categories: (a) explicit
code changes, in which line-by-line code modification can be
easily detected; and (b) implicit binary file changes, where
content changes cannot be examined in details.

should be summarizing the changes instead of the whole code
snippets. For example, in Figure 4(a), the commit message
is primarily describing the changed code fragments (i.e., the
lines in colored background) rather than the whole snippet
that implements the class methods. Therefore, code changes
prediction is designated as the contextualized code represen-
tation learning task for this category of code commits.

Given a code commit sequenceX, we preprocess and split

Nie et al.: Preprint submitted to Elsevier Page 3 of 11

CoreGen: Contextualized Code Representation Learning for Commit Message Generation

the source code sequence into code-before-change and code-
after-change subsequences, denoted as Xbefore and Xafter re-
spectively, by locating the special tokens marked in the code
commits. If explicit code changes are identified, we train the
Transformer network to predict the changes by modeling the
relationship between Xbefore and Xafter. Transformer [41] is
a self-attention-based encoder-decoder architecture that has
achieved the state-of-the-art performance in many machine
translation benchmarks. In general, the encoder module reads
the input sequence as a sequence of hidden representations
and the decoder module converts the hidden representations
into an output sequence by generating one token at a time.
Specifically, we feed the code-before-changes sequences into
the Transformer as input to predict the corresponding code-
after-change sequences, as illustrated in the top right part of
Figure 3. Log likelihood is used as the objective function:

a = −
∑

X∈C1

∑

i
log(xafter

i |Xbefore; �) , (1)

where xafter
i represents the i-th code token in the code-after-

changes sequence X to be predicted, C1 refers to the code
commit subcorpora with explicit code changes, i.e., Xafter ≠
Xbefore, and � represents the Transformer model parameters
to be learned.

By predicting the code changes from their respective
contexts, we explicitly guide the Transformer to put more
attention to the changed code fragments and build up con-
nections between the contextual code tokens and changed
code tokens, thereby enriching the representations of code
changes with their contextual information.
2.1.2. Masked Code Fragment Prediction

Another category of commits include implicit binary file
changes where detailed modifications inside the binary files
are not visible. For example, in Figure 4(b), two binary files
are added in the commit while no content changes can be
examined in detail. To model the context of file changes, we
randomly mask a fragment of the code commit sequence and
learn the contextualized code representations by predicting
the masked tokens from the remaining ones.

Instead of randomly masking only one token as in BERT
[11], we mask a fragment of tokens for the Transformer
to model the context, considering that one single token in
code snippet is generally of limited semantics. Given a
code commit sequence X, we split it into n different lines
{X1, X2, ..., Xn} using the special token “<nl>” and ran-
domly mask a certain fragment of the longest line denoted
as Xk. Then we train the Transformer to predict the masked
code fragment Xk

u∶v from its context {X1, ..., Xk
⧵u∶v, ..., X

n},
as illustrated in the bottom right part of Figure 3. Log likeli-
hood is again used as the objective function:

b = −
∑

X∈C2

v
∑

i=u
log(xki |X

1, ..., Xk
⧵u∶v, ..., X

n; �) , (2)

where xki represents the i-th token in the masked line Xk

to be predicted, C2 refers to the code commit subcorpora

with implicit file changes, i.e.,Xafter = Xbefore, and the mask
length is determined together by a mask rate � and the length
of the longest line |Xk

|:
|Xk

u∶v| = � ⋅ |Xk
| . (3)

By predicting the masked code fragments based on their
contexts, contextual information is incorporated into Trans-
former’s embedding layer and encoder-decodermodules, which
altogether produce contextualized code representations.

Finally, the overall objective of the first stage’s training
can be expressed as:

I(�;C) =
1
|C|

(a + b) , (4)

where C refers to the entire training corpus that consists of
two categories of subcorpora C1 and C2. As this stage ends,the learned contextualized representations of code commits
are then transferred to Stage II for further fine-tuning.
2.2. Stage II: Downstream Commit Message

Generation
At Stage II, we transfer the contextualized code represen-

tations along with the Transformer model parameters (i.e., �)
learned from Stage I for downstream commit message gener-
ation training. The whole Transformer network is optimized
throughout the fine-tuning process with back-propagation
applied to all layers. Specifically, given a code commit se-
quenceX, the model is fine-tuned to predict its corresponding
commit message sequence Y with the following objective
function:

II(�;C) = − 1
|C|

∑

X∈C

∑

i
log(yi|X; �) , (5)

where yi represents the i-th commit message token to be
generated, C refers to the same training corpus as in Equation
(4) and � represents the model parameters that have been
trained in Stage I. To ensure a complete parameter migration
with all the contextual information maintained, the model
architecture in Stage II is kept consistent to Stage I.

3. Experimental Setup
In this section, we describe the benchmark dataset, met-

rics, baseline models, and parameter settings used in our
evaluation.
3.1. Dataset

We conduct evaluation experiments based on the bench-
mark dataset released by Liu et al. [25], which is a cleansed
subset of Jiang et al.’s published dataset [16]. The original
dataset contains ∼2M pairs of code commits and correspond-
ing commit messages collected from popular Java projects in
GitHub. Liu et al. further cleanse the dataset by tokenizing
the code commit sequences with white space and punctuation,
removing non-informative tokens (e.g., issue IDs and commit

Nie et al.: Preprint submitted to Elsevier Page 4 of 11

CoreGen: Contextualized Code Representation Learning for Commit Message Generation

Table 1
Comparison of CoreGen with the baseline models using different evaluation metrics.

Model BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

Baselines
NMT 14.17 21.29 12.19 20.85 12.99
NNGen 16.43 25.86 15.52 24.46 14.03
PtrGNCMsg 9.78 23.66 9.61 23.67 11.41

Ours CoreGen II 18.74 30.65 18.06 28.86 15.18
CoreGen 21.06 32.87 20.17 30.85 16.53

IDs), and filtering out the poorly-written commit messages
[25]. This leaves us ∼27k pairs of code commit and commit
message, which have been split into training set, validation
set and test set at an approximate ratio of 8:1:1.
3.2. Evaluation Metrics

We verify the effectiveness of CoreGen with automatic
evaluation metrics that are widely used in natural language
generation tasks, including BLEU-4, ROUGE and METEOR.
BLEU-4 measures the 4-gram precision of a candidate to
the reference while penalizes overly short sentences [31].
BLEU-4 is usually calculated at the corpus-level, which is
demonstrated to be more correlated with human judgments
than other evaluation metrics [23]. Thus, we use corpus-level
BLEU-4 as one of our evaluation metrics.

To mitigate BLUE-4’s preference on long-length commit
messages, we also employ ROUGE, a recall-oriented metric
particularly proposed for summarization tasks, to evaluate the
quality of generated commit messages [20]. In this paper, we
compute the ROUGE scores on unigram (ROUGE-1), bigram
(ROUGE-2) and longest common subsequence (ROUGE-L)
respectively. Taking advantages of the weighted F-score
computation and penalty function on misordered tokens, ME-
TEOR is another natural language generation metric used in
our experiments [19].
3.3. Baseline Models

We compare the proposed CoreGen with the following
baseline models in the experiments. For the sake of fairness,
we apply the same cleansed benchmark dataset for evaluating
the baseline models and CoreGen.

• NMT. NMT model uses an attentional RNN Encoder-
Decoder architecture to translate code commits into
commit messages [27, 16]. Specifically, Jiang et al.
[16] implement the NMT model using a TensorFlow
built-in toolkit named Nematus [38].

• NNGen. NNGen is a retrieval-based model that lever-
ages nearest neighbor algorithm to reuse existing com-
mit messages [25]. It represents each code commit
sequence as a “bags of words” vector and then calcu-
lates the cosine similarity distance to retrieve top k
code commits from the database. The commit with
the highest BLEU-4 score to the incoming commit is
thereafter regarded as the nearest neighbor and the cor-
responding commit message is then output as the final
result.

• PtrGNCMsg. PtrGNCMsg [24] is another RNN-based
Encoder-Decodermodel that adopts a pointer-generator
network to deal with out-of-vocabulary (OOV) issue.
At each prediction time step, the RNN decoder learns
to either copy an existing token from the source se-
quence or generate a word from the fixed vocabulary,
enabling the prediction of context-specific OOV tokens
in commit message generation.

3.4. Parameter Setting
We conducted experiments on different combinations of

hyperparameters to optimize CoreGen’s end-to-end perfor-
mance of on the validation set of the benchmark. Specifi-
cally, we feed the code commits and commit messages into
CoreGen with a shared vocabulary of 55,732 unique tokens.
The input dimension of the tokens is set as 512. The input
embeddings of the code tokens are randomly initialized at
the beginning of Stage I, then get trained throughout the
contextualized code representation learning procedure. The
learned embeddings are next transferred for Stage II’s down-
stream commit message generation, during which the code
embeddings are further fine-tuned to be task-aware. For the
Transformer, both the encoder and decoder modules are com-
posed of 2 identical layers while each layer includes 6 parallel
multi-attention heads.

For training, we use Adam optimizer [18] with batch size
equals to 64 and the learning rate is adjusted dynamically
in line with the original implementation with the warm-up
step set to 4000 [41]. The mask rate � for Stage I’s Masked
Code Fragment Prediction is set to 0.5. All these hyperpa-
rameter settings are tuned on the validation set. A detailed
analysis about the impact of hyperparameters on CoreGen’s
performance can be found in Section 4.3.

4. Experimental Results
4.1. Result Analysis

Table 1 shows the experimental results of our model
and the baselines. CoreGen outperforms baseline models
across all evaluation metrics with at least 28.18%, 26.12%
and 17.82% improvement on BLEU-4, ROUGE-L and ME-
TEOR scores, respectively. We attribute this to its effective-
ness for attending to the critical segments of code snippets,
i.e., the changed code fragments. Besides, comparing to
PtrGNCMsg that employs an extra pointer-generator network
to copy the context-specific OOV tokens, CoreGen’s superior
performance further supports our claim that exploiting the

Nie et al.: Preprint submitted to Elsevier Page 5 of 11

CoreGen: Contextualized Code Representation Learning for Commit Message Generation

0

5

10

15

20

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

B
LE

U
 S

co
re

Epoch

CoreGen

Vanilla Tranformer

Figure 5: Convergence between Transformer and CoreGen.

code contextual information can achieve amore accurate mod-
eling of the context-specific tokens (e.g., variable/function
names), leading to an elegant solution to the OOV issue.

Besides, CoreGen’s contextualized code representation
learning procedure can also speed upmodel’s convergence. In
our experiment comparing vanilla Transformer and CoreGen
on model’s convergence along the Stage II training proce-
dure, as Figure 5 illustrates, CoreGen can converge faster to
achieve equivalent generation quality as the vanilla Trans-
former model at 25 training epochs ahead.

In practice, collecting high-quality commit messages is
difficult since substantial efforts are required for differentiat-
ing messages’ quality [25]. Therefore, to simulate real-life
usage, we further validate CoreGen’s generalization ability
under low-resource settings. After using the whole training
corpus for contextualized code representation learning, we
adjust the amount of labels (i.e., commit messages) available
for Stage II’s supervised fine-tuning. As shown in Figure 6,
CoreGen outperforms the baseline models (annotated as the
dotted lines) by making use of only 50% of the labels. This
inspiring result not only indicates the strong generalization
ability of our proposed contextualized code representation
learning strategies, but also suggests promising future re-
search directions, such as training the contextualized code
representation on larger corpus as a general solution to code-
related tasks, especially when under the low-resource settings.

4.2. Ablation Study
To further validate the usefulness of contextualized code

representation learning, we also compare CoreGen with an
ablated method CoreGen II that performs Stage II’s down-
stream fine-tuning from scratch on Transformer and skips
Stage I’s representation learning procedure.

As we can observe from the comparison in Table 1, about
half of the performance gain compared to the previous state-
of-the-art comes from the contextualized code representation
learning while the rest can be attributed to the advanced
self-attentional model architecture of Transformer. Here,
CoreGen II’s substantial improvement compared with the
baselines also demonstrates Transformer’s strengths over the
traditional recurrent-based model architecture in the task
domain of code commit message generation. However, a

5

10

15

20

25

30

10% 30% 50% 70% 90%

S
co

re

Percentage of Labeled Data Used

BLEU-4
ROUGE-L
METEOR

Figure 6: CoreGen’s performance under low-resource settings.
Dotted horizontal lines indicate the best performance achieved
by baselines.

remarkable performance gap still exists between CoreGen IIand CoreGen, which, again, affirms the necessities of contex-
tualized code representation learning in CoreGen.
4.3. Parameter Sensitivity

We further analyze the impact of three key parameters on
CoreGen’s performance, including mask rate �, layer number
and head size. Figure 7 depicts the analysis results.

Figure 7(a) shows that the generation quality improves
as the mask rate increases from 0.1 to 0.5, but deteriorates as
the mask rate keeps increasing. This affirms our hypothesis
that masking a continuous fragment can model more code
semantics than masking only a single token, while the adverse
impacts of overlarge mask rate can be contrarily explained by
the lack of contextual information. In CoreGen, we set the
mask rate to 0.5 in this work, meaning that 50% tokens of the
longest line are randomly masked for Stage I’s representation
learning. Figure 7(b) and 7(c) implies that, while small layer
number or head size reduces performance, excessive number
of layers or heads also do harms to model’s downstream
generation quality. Therefore in CoreGen, Transformer’s
layer number and head size are set to 2 and 6 respectively to
save computation costs.

5. Discussion
5.1. Analysis on the Effects of Data Deduplication

After a further analysis, we notice that the cleansed dataset
released by Liu et al. [25] still contains overlapped code
commits across training, validation and test sets. The analy-
sis results are presented in Table 2, where “Identical Code
Changes” means the commit records containing code changes
that are covered in the training set, and “Completely Identical
Entries” refers to the records having already appeared in the
training set with totally same code changes and corresponding
commit messages.

Since data duplication could adversely affect model per-
formance [2], we then conduct evaluation on the deduplicated
dataset, with results shown in Table 4. We choose the best
retrieval model NNGen [25] and the best generative model
NMT [16] as the baselines. As can be seen, our proposed
method CoreGen still outperforms the baseline models by a

Nie et al.: Preprint submitted to Elsevier Page 6 of 11

CoreGen: Contextualized Code Representation Learning for Commit Message Generation

0.1 0.3 0.5 0.7 0.9

BLEU-4 19.08 20.64 21.06 20.91 20.89
ROUGE-L 29.86 30.18 30.85 30.43 30.45

METEOR 15.59 16.18 16.53 16.41 16.42

14

18

22

26

30

S
co

re

Mask Rate

BLEU-4

ROUGE-L
METEOR

(a) Impact of mask rate

1 2 3 4

BLEU-4 19.97 21.06 18.40 17.83
ROUGE-L 29.24 30.85 30.19 28.44

METEOR 15.66 16.53 15.22 14.74

14

18

22

26

30

S
co

re

Layer Number

BLEU-4

ROUGE-L
METEOR

(b) Impact of layer number

2 4 6 8

BLEU-4 17.90 19.09 21.06 18.93
ROUGE-L 27.78 29.07 30.85 30.18
METEOR 14.48 15.37 16.53 15.71

13

17

21

25

29

S
co

re

Head Size

BLEU-4
ROUGE-L

METEOR

(c) Impact of head size

Figure 7: CoreGen’s performance under different hyper-parameter settings. Best results can be achieved by setting the mask rate,
layer number and head size to 0.5, 2 and 6, respectively.

Table 2
Overlapped entries in the benchmark dataset.

Validation Set Test Set
Total Entries 2,511 2,521
Identical Code Changes 267 (10.63%) 282 (11.19%)
Completely Identical Entries 119 (4.74%) 119 (4.72%)

Table 3
Evaluation results on the deduplicated dataset.

Model BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

NMT 10.54 20.37 10.44 19.20 9.57
NNGen 12.44 24.22 12.04 23.76 11.66

CoreGen 15.86 27.31 15.09 25.46 13.38

significant margin on the deduplicated dataset, which again
indicates the efficacy of our proposed contextualized code
representation learning framework.
5.2. BERT-Based Approach Comparison

When trying to comprehend CoreGen’s mechanism, read-
ers may consider the contextualized code representation learn-
ing stage (Stage I) as a “pre-training” process and the down-
stream commit message generation stage (Stage II) as a fine-
tuning process. However, we adopt the term “contextualized”
instead of “pre-trained” here to distinguish the proposed ap-
proach from popular pre-training language models such as
GPT [34, 35], BERT [11], etc. The wording is mainly based
on two reasons: 1) popular pre-training language models gen-
erally require huge amount of data as training corpus, while
only limited size of high-quality data (∼27k pairs of code
commits and commit messages) are available in our scenario.
2) popular pre-training language models commonly facilitate
multiple downstream tasks [11, 13], while CoreGen is specif-
ically designed for the commit message generation task. To
prevent readers from misunderstanding that we are proposing
a general-purpose pre-training approach, we avoid using the
terms “pre-training”/“pre-trained” in the paper.

To highlight the difference between the proposed Core-
Gen and BERT-like pre-trained models, we also compare

Table 4
Comparison of CoreGen with BERT-based approach.

Model BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

BERT-fused 15.16 25.81 14.98 24.42 13.43

CoreGen 21.06 32.87 20.17 30.85 16.53

CoreGenwith the pretrained-BERT-basedmodel [46], named
BERT-fused model. The BERT-fused model also uses Trans-
former as its base model and fuses the word representations
extracted from a pre-trained BERT model with Transformer’s
encoder and decoder layers. We choose this work as the base-
line for two reasons: 1) this work is a representative work
that leverages pre-trained BERT model for neural machine
translation and achieves state-of-the-art results on several
machine translation benchmark datasets; and 2) this work
also uses standard Transformer as the basic architecture simi-
lar to CoreGen, therefore eliminating the influence of basic
architecture variations.

We use the default hyperparameter settings to implement
the BERT-fused model. The experimental results are illus-
trated in Table 4. We can observe that CoreGen significantly
outperforms the BERT-based approach with an increase of
38.92% in terms of BLEU-4 score. This indicates the effec-
tiveness of CoreGen’s specialized contextualized code repre-
sentation learning strategies over BERT-based approaches in
the task domain of commit message generation.
5.3. Analysis of CoreGen with Combined Loss

Function
In CoreGen, the loss functions of Stage I and Stage II are

separated since their respective objectives are essentially dif-
ferent and the model is designed to be optimized in order, i.e.,
learning the code representations first and then generating
commit messages based on the learnt representations. Com-
bining the two losses may bring in undesirable noises along
with the task-specific knowledge in training, leading to poor
generation results. We conduct a comparison experiment
where CoreGen is associated with a hybrid loss function,

Nie et al.: Preprint submitted to Elsevier Page 7 of 11

CoreGen: Contextualized Code Representation Learning for Commit Message Generation

Table 5
Comparison of our proposed training method separating the
two-stage losses with CoreGen training with combined loss
(denoted as CoreGen Hybrid).

Model BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

CoreGen Hybrid 15.41 22.15 11.04 20.71 13.79

CoreGen 21.06 32.87 20.17 30.85 16.53

Table 6
Analysis of Jiang et al.’s baseline model (NMT) adopting Core-
Gen’s two-stage framework (denoted as NMTCoreGen).

Model BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

Baselines NMT 14.17 23.12 14.36 22.09 12.54
NMTCoreGen 17.96 24.99 14.07 23.70 14.28

Ours CoreGen 21.06 32.87 20.17 30.85 16.53

named as CoreGen Hybrid. Specifically, during training, with
all the other experimental setups kept optimal, Transformer
is optimized with a combined loss function:

(�;C) = I + II, (6)
where I represents the loss function for Stage I and IIrepresents the loss function for Stage II, to simultaneously fit
in both tasks, i.e. contextualized code representation learning
and commit message generation. The experimental results
are depicted in Table 5. As can be seen, the performance
of CoreGen declines dramatically when the two losses are
integrated, which indicates the importance of optimizing the
model with two separate loss functions sequentially for the
task.
5.4. Analysis of NMT with CoreGen Framework

The core idea of contextualized code representation learn-
ing in CoreGen can be flexibly incorporated into other sequence-
to-sequence neural architectures. To validate the transfer-
ability of our proposed framework, we conduct one supple-
mentary experiment where CoreGen’s Transformer model
is replaced with the basic NMT model in Jiang et al.’s work
[16] while keeping the rest experimental setups unchanged.
Specifically, the NMT model is first optimized by the objec-
tive function as described in Equation 4 in the paper, then
get further fine-tuned for downstream commit message gen-
eration with Jiang et al.’s default settings. We name this new
baseline as NMTCoreGen.The comparison results are detailed in Table 6. As can
be observed, by incorporating the contextualized code rep-
resentation learning framework, NMTCoreGen achieves a sig-nificantly better performance over the basic NMT model,
presenting an increase of 26.75% in terms of BLEU-4 score.
The result can further exhibit the necessities of contextualized
code representation learning in commit message generation,
while the performance gap between NMTCoreGen and Core-Gen again demonstrates Transformer’s superiority over the
traditional NMT model in this task domain.

Table 7
CoreGen’s performance with In-statement Code Structure Mod-
eling (ICSM) task integrated.

Model BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

CoreGen 21.06 32.87 20.17 30.85 16.53

CoreGen ICSM 21.37 32.88 20.33 32.87 16.72

5.5. Future Research Direction
According to the task nature, various representation learn-

ing methods can be also integrated together to maximize the
exploitation and utilization of code’s contextual and struc-
tural information. In CoreGen, we propose Code Changes
Prediction and Masked Code Fragment Prediction tasks to
model the code contextual information corresponding to the
two separate categories of code commits. In future, these
tasks can be further extended to include more complicated
and well-designed representation learning methodologies.

For example, comparing to natural language, the syntactic
structure of code are more rigid. Tokens in the same code
statement are generally of stronger semantic relations than
the tokens from other statements. Therefore, we design an
additional code representation learning task to model this
in-statement code structural information.

Specifically, inspired by the idea of pairwise code en-
coding [1], in Stage I, we additionally train the model to
predict a randomly masked code token from the other to-
kens in the same code statement. Formally, given a source
code sequence X that can be split into a set of n code state-
ments {X1, X2, ..., Xn}, for each statementXi, we randomly
mask a token xiu ∈ Xi, then predict this masked token
based on the remaining tokens from the same statement
{xi1, ..., x

i
u−1, x

i
u+1, ..., x

i
m} using the log likelihood objective

function:

3 = −
∑

X∈C1

∑

Xi∈X
log(xiu|x

i
1, ..., x

i
u−1, x

i
u+1, ..., x

i
m; �),

(7)
where C1 refers to the same commit subcorpora with explicit
code changes as in Equation (1). Thereby, the attention inside
Transformer can be subtly guided to flow among the code
tokens of the same statement, allowing the model to capture
the code structural information more effectively and achieve
more accurate contextualized code representation learning.

The experimental results with the above method inte-
grated are shown in Table 7. As can be seen, the in-statement
code structure modeling task further boosts CoreGen’s per-
formance on downstream commit message generation. This
promising result suggests the great potentials of CoreGen in
more effectively exploiting code contextual and structural in-
formation with other representation learning tasks integrated.
In future, we will consider embedding code structural graphs,
such as control flow graph and program dependency graph,
for a more accurate modeling of the code contextual informa-
tion.

Nie et al.: Preprint submitted to Elsevier Page 8 of 11

CoreGen: Contextualized Code Representation Learning for Commit Message Generation

6. Related Works
This section reviews the most related works and groups

them into three lines: commit message generation, contextu-
alized word representation, and code representation learning.
6.1. Commit Message Generation

Existing literature for commit message generation can be
roughly divided by their methodologies into three categories:
rule-based, retrieval-based and deep-learning-based.

Earliest works in the field attempt to automate the commit
message generation by extracting information from the code
commits and filling in pre-defined templates [8, 10, 21, 39].
Among them, Shen et al. [39] use pre-defined formats to iden-
tify the commit type and generate commit messages based on
corresponding templates. ChangeScribe [21] further takes
the impact set of a commit into account when extracting core
information from the code commits. In spite of the involve-
ment of prior knowledge, these rule-based methods can only
handle the code commits that match certain formats and the
produced commit messages can only cover trivial commits.

Therefore, later works leverage informational retrieval
techniques to allow more flexible commit message genera-
tion [15, 25]. For example, Huang et al. [15] evaluate the
similarity among code commits based on both syntactic and
semantic analysis and reuse the message of the most similar
commit as model output. NNGen [25] generalizes the similar-
ity measurement by calculating the cosine distance between
bag-of-words vectors of the code commits, which extends
to also support the code commits with implicit binary file
changes. However, retrieval-based approaches are still lim-
ited in two aspects: the variable/function names are usually
not consistent in the retrieved message, and the generation
performance relies heavily on the coverage of the database.

By adopting deep neural networks to translate code com-
mits into messages, deep-learning-based methods have grad-
ually become the mainstream approach in this research field.
Both Loyola et al. [27] and Jiang et al. [16] propose to bridge
the gap between code commits and commit messages with
an attentional encoder-decoder framework. Loyola et al.’s
later work [26] further takes intra-code documentation as a
guiding element to improve the generation quality. Since
deep learning models suffer heavily from context-specific to-
kens, CODISUM [44] and PtrGNCMsg [24] both attempt to
mitigate OOV issue by incorporating the copying mechanism,
while the former one fails in supporting the code commits
with implicit binary file changes. In all these methods, code
contextual information is either neglected or built up using
an additional network.
6.2. Contextualized Word Representation

Our work also relates closely to the contextualized word
representationmethods. Pioneeringword representationmeth-
ods keep the mapping function invariant across different
sentences [29, 32, 7]. For example, Word2vec learns the
word embedding by a skip-gram or continuous-bag-of-word
(CBOW) model, which are both based on distributed center-
context word pair information [29]. Comparatively, Glove

producesword embeddings by factorizing theword co-occurrence
matrix to leverage global statistical information contained in
a document [32]. Although these methods can capture both
syntactic and semantic meanings behind the words, the limi-
tation of these static word embedding approaches lies mainly
in two aspects: 1) these approaches do not leverage the infor-
mation of entire sentence and the relationships learned from
the center-context pairs are restricted in fixed window-size,
and 2) these approaches fail to capture polysemy since the
embedding tables are kept invariant across different contexts.

In recent years, contextualized word representation meth-
ods have gained overwhelming dominance. Pre-trained from
large unlabeled corpus, contextualized word representations
can capture word sense, syntax, semantic roles and other
information dynamically from the context, achieving state-of-
the-art results on many downstream tasks including question
answering, sentiment analysis, reading comprehension, etc
[33, 34, 35, 11]. Specifically, Peter et al. [33] derive the word
representations from a bi-directional LSTM trained with cou-
pled language model objective on a large corpus. The GPT
model proposed by OpenAI instead uses multi-layer Trans-
former decoders for the language model pre-training [34, 35].
However, the left-to-right architecture of GPT models can be
harmful for many token-level tasks where the contextual infor-
mation from both directions are equally essential. Therefore,
to alleviate the unidirectional nature of language models, De-
vlin et al. [11] further pre-train a denoising auto-encoder us-
ing a brand new self-supervised learning task named “masked
language model”. By predicting the randomly masked word
tokens from their contexts, contextualized word represen-
tations are embedded into the initialized model parameters
for downstream tasks’ usage. Unlike static word representa-
tion methods that require an extra network for downstream
task processing, these networks can be adapted to various
downstream tasks with simple architecture modifications.
6.3. Code Representation Learning

Among the previous works of code representation learn-
ing, traditional machine learning algorithms used to be the
standard practices. In particular, by treating the code as a se-
quence of tokens, n-gram languagemodel was widely adopted
in modeling the source code for authorship classification [14],
repository mining [5], convention detection [3], etc. SVM is
another common approach for representing the programs that
has been applied for malicious code detection [9] and code
domain categorization [22]. By further taking the syntax
tree structure of code into consideration, Maddison & Tarlow
[28] describe new generative models based on probabilistic
context-free grammars, while Raychev et al. [36] build up
code probabilistic model by learning decision trees out of a
domain-specific language called TGen.

Recent advancement of deep learningmodels also changes
the way researchers representing code semantics. Token-
based techniques process code as textual data and adopt RNN
models to learn the code features together with downstream
tasks [37]. Tree-based techniques transform syntax tree into
vectors that are later formatted as model input. For example,

Nie et al.: Preprint submitted to Elsevier Page 9 of 11

CoreGen: Contextualized Code Representation Learning for Commit Message Generation

for code defect prediction, Wang et al. [42] leverage a deep
belief network to learn the semantic code representations
from abstract syntax tree (AST) nodes, while for code clone
detection, White et al. [43] use a recursive auto-encoder to ex-
ploit code syntactical information from ASTs. TBCNN [30]
includes a tree-based convolution on ASTs to learn program
vector representations. ASTNN [45] decomposes large ASTs
into sequences of small statement trees and finally learns the
code representation from encoded statement vectors. Last
category of graph-based techniques constructs the entire syn-
tax graph as model input. Allamanis et al. [4] leverage a
Gated Graph Neural Network to represent both the syntactic
and semantic structure of source code. Compared with these
methods, our proposed approach focuses on learning contex-
tualized code representation without using external ASTs or
constructed graphs, which can achieve a greater balance be-
tween the performance and usability of downstream commit
message generation.

Inspired by the success of the aforementioned pre-trained
language models, SCELMo [17] and CodeBERT [13] pro-
pose to pre-train code representation on large unlabeled cor-
pus. However, these works directly borrow the pre-training
tasks from original implementations without explicitly tak-
ing into account the semantic gaps between source code and
natural language.

7. Conclusion
Code commit message generation is a necessitated yet

challenging task. In this paper, we proposed CoreGen, a
two-stage framework that takes advantage of contextualized
code representation learning to boost the downstream per-
formance of commit message generation. Specifically, with
regard to the two categories of code commits, we introduce
two representation learning strategies, namely Code Changes
Prediction and Masked Code Fragment Prediction, for the
exploitation of code contextual information. Experimental
results showed that CoreGen significantly outperforms com-
petitive baselines and achieves the state-of-the-art on the
benchmark dataset.

CoreGen is also validated under low-resource settings,
where high quality commit messages were generated with
only 50% of the labels utilized during the fine-tuning. This
points out promising future directions of extending this con-
textualized code representation learning framework to larger
code corpus and other similar code-related tasks, such as
code summarization. Moreover, CoreGen’s improvements
after exploiting the in-statement code structure also demon-
strate its great potentials in integrating more complicated
code contextual and structural information in future.

8. Acknowledgement
This work was supported by the National Natural Science

Foundation of China under project No. 62002084, and par-
tially supported by a key program of fundamental research
from Shenzhen Science and Technology Innovation Commis-
sion (No. ZX20210035), Singapore Ministry of Education

Academic Research Fund Tier 1 (Award No. 2018-T1-002-
069), the National Research Foundation, Prime Ministers
Office, Singapore under its National Cybersecurity R&D
Program (Award No. NRF2018NCR-NCR005-0001), the
Singapore National Research Foundation under NCR Award
Number NRF2018NCR-NSOE003-0001, NRF Investigator-
ship NRFI06-2020-0022.

References
[1] Ahmad, W.U., Chakraborty, S., Ray, B., Chang, K.W., 2020. A

transformer-based approach for source code summarization. arXiv
preprint arXiv:2005.00653 .

[2] Allamanis, M., 2019. The adverse effects of code duplication in
machine learning models of code, in: Proceedings of the 2019 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, pp. 143–153.

[3] Allamanis, M., Barr, E.T., Bird, C., Sutton, C., 2014. Learning natural
coding conventions, in: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
pp. 281–293.

[4] Allamanis, M., Brockschmidt, M., Khademi, M., 2017. Learning to
represent programs with graphs. arXiv preprint arXiv:1711.00740 .

[5] Allamanis, M., Sutton, C., 2013. Mining source code repositories
at massive scale using language modeling, in: 2013 10th Working
Conference on Mining Software Repositories (MSR), IEEE. pp. 207–
216.

[6] Bahdanau, D., Cho, K., Bengio, Y., 2015. Neural machine translation
by jointly learning to align and translate, in: Bengio, Y., LeCun, Y.
(Eds.), 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings.

[7] Bojanowski, P., Grave, E., Joulin, A., Mikolov, T., 2017. Enriching
word vectors with subword information. Transactions of the Associa-
tion for Computational Linguistics 5, 135–146.

[8] Buse, R.P., Weimer, W.R., 2010. Automatically documenting program
changes, in: Proceedings of the IEEE/ACM international conference
on Automated software engineering, pp. 33–42.

[9] Choi, J., Kim, H., Choi, C., Kim, P., 2011. Efficient malicious code
detection using n-gram analysis and svm, in: 2011 14th International
Conference on Network-Based Information Systems, IEEE. pp. 618–
621.

[10] Cortés-Coy, L.F., Linares-Vásquez, M., Aponte, J., Poshyvanyk, D.,
2014. On automatically generating commit messages via summariza-
tion of source code changes, in: 2014 IEEE 14th International Working
Conference on Source Code Analysis and Manipulation, IEEE. pp.
275–284.

[11] Devlin, J., Chang, M.W., Lee, K., Toutanova, K., 2018. Bert: Pre-
training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 .

[12] Dyer, R., Nguyen, H.A., Rajan, H., Nguyen, T.N., 2013. Boa: A
language and infrastructure for analyzing ultra-large-scale software
repositories, in: 2013 35th International Conference on Software En-
gineering (ICSE), IEEE. pp. 422–431.

[13] Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou,
L., Qin, B., Liu, T., Jiang, D., et al., 2020. Codebert: A pre-
trained model for programming and natural languages. arXiv preprint
arXiv:2002.08155 .

[14] Frantzeskou, G., MacDonell, S., Stamatatos, E., Gritzalis, S., 2008.
Examining the significance of high-level programming features in
source code author classification. Journal of Systems and Software 81,
447–460.

[15] Huang, Y., Zheng, Q., Chen, X., Xiong, Y., Liu, Z., Luo, X., 2017.
Mining version control system for automatically generating commit
comment, in: 2017 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), IEEE. pp. 414–423.

[16] Jiang, S., Armaly, A., McMillan, C., 2017. Automatically generating

Nie et al.: Preprint submitted to Elsevier Page 10 of 11

CoreGen: Contextualized Code Representation Learning for Commit Message Generation

commit messages from diffs using neural machine translation, in: 2017
32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), IEEE. pp. 135–146.

[17] Karampatsis, R.M., Sutton, C., 2020. Scelmo: Source code embed-
dings from language models. arXiv preprint arXiv:2004.13214 .

[18] Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 .

[19] Lavie, A., Agarwal, A., 2007. Meteor: An automatic metric for mt
evaluation with high levels of correlation with human judgments, in:
Proceedings of the second workshop on statistical machine translation,
pp. 228–231.

[20] Lin, C.Y., Hovy, E., 2002. Manual and automatic evaluation of
summaries, in: Proceedings of the ACL-02 Workshop on Automatic
Summarization-Volume 4, Association for Computational Linguistics.
pp. 45–51.

[21] Linares-Vásquez, M., Cortés-Coy, L.F., Aponte, J., Poshyvanyk, D.,
2015. Changescribe: A tool for automatically generating commit
messages, in: 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, IEEE. pp. 709–712.

[22] Linares-Vásquez, M., McMillan, C., Poshyvanyk, D., Grechanik, M.,
2014. On using machine learning to automatically classify software
applications into domain categories. Empirical Software Engineering
19, 582–618.

[23] Liu, C., Lowe, R., Serban, I., Noseworthy, M., Charlin, L., Pineau,
J., 2016. How NOT to evaluate your dialogue system: An empirical
study of unsupervised evaluation metrics for dialogue response gen-
eration, in: Su, J., Carreras, X., Duh, K. (Eds.), Proceedings of the
2016 Conference on Empirical Methods in Natural Language Process-
ing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, The
Association for Computational Linguistics. pp. 2122–2132.

[24] Liu, Q., Liu, Z., Zhu, H., Fan, H., Du, B., Qian, Y., 2019. Generat-
ing commit messages from diffs using pointer-generator network, in:
Proceedings of the 16th International Conference on Mining Software
Repositories, IEEE Press. pp. 299–309.

[25] Liu, Z., Xia, X., Hassan, A.E., Lo, D., Xing, Z., Wang, X., 2018.
Neural-machine-translation-based commit message generation: how
far are we?, in: Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, pp. 373–384.

[26] Loyola, P., Marrese-Taylor, E., Balazs, J., Matsuo, Y., Satoh, F., 2018.
Content aware source code change description generation, in: Pro-
ceedings of the 11th International Conference on Natural Language
Generation, pp. 119–128.

[27] Loyola, P., Marrese-Taylor, E., Matsuo, Y., 2017. A neural architecture
for generating natural language descriptions from source code changes.
arXiv preprint arXiv:1704.04856 .

[28] Maddison, C., Tarlow, D., 2014. Structured generative models of
natural source code, in: International Conference onMachine Learning,
pp. 649–657.

[29] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J., 2013.
Distributed representations of words and phrases and their composi-
tionality, in: Advances in neural information processing systems, pp.
3111–3119.

[30] Mou, L., Li, G., Zhang, L., Wang, T., Jin, Z., 2016. Convolutional neu-
ral networks over tree structures for programming language processing,
in: Proceedings of the AAAI Conference on Artificial Intelligence.

[31] Papineni, K., Roukos, S., Ward, T., Zhu, W.J., 2002. Bleu: a method
for automatic evaluation of machine translation, in: Proceedings of
the 40th annual meeting on association for computational linguistics,
Association for Computational Linguistics. pp. 311–318.

[32] Pennington, J., Socher, R., Manning, C.D., 2014. Glove: Global
vectors for word representation, in: Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP), pp.
1532–1543.

[33] Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee,
K., Zettlemoyer, L., 2018. Deep contextualized word representations.
arXiv preprint arXiv:1802.05365 .

[34] Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
2018. Improving language understanding by generative pre-

training. URL https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language understanding
paper. pdf .

[35] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.,
2019. Language models are unsupervised multitask learners. OpenAI
Blog 1.

[36] Raychev, V., Bielik, P., Vechev, M., 2016. Probabilistic model for code
with decision trees. ACM SIGPLAN Notices 51, 731–747.

[37] Raychev, V., Vechev, M., Yahav, E., 2014. Code completion with sta-
tistical language models, in: Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pp. 419–428.

[38] Sennrich, R., Firat, O., Cho, K., Birch, A., Haddow, B., Hitschler, J.,
Junczys-Dowmunt, M., Läubli, S., Barone, A.V.M., Mokry, J., et al.,
2017. Nematus: a toolkit for neural machine translation. arXiv preprint
arXiv:1703.04357 .

[39] Shen, J., Sun, X., Li, B., Yang, H., Hu, J., 2016. On automatic summa-
rization of what and why information in source code changes, in: 2016
IEEE 40th Annual Computer Software and Applications Conference
(COMPSAC), IEEE. pp. 103–112.

[40] Song, K., Tan, X., Qin, T., Lu, J., Liu, T.Y., 2019. Mass: Masked
sequence to sequence pre-training for language generation. arXiv
preprint arXiv:1905.02450 .

[41] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, Ł., Polosukhin, I., 2017. Attention is all you need, in:
Advances in neural information processing systems, pp. 5998–6008.

[42] Wang, S., Liu, T., Tan, L., 2016. Automatically learning semantic
features for defect prediction, in: 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), IEEE. pp. 297–308.

[43] White, M., Tufano, M., Vendome, C., Poshyvanyk, D., 2016. Deep
learning code fragments for code clone detection, in: 2016 31st
IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), IEEE. pp. 87–98.

[44] Xu, S., Yao, Y., Xu, F., Gu, T., Tong, H., Lu, J., 2019. Commit
message generation for source code changes, in: Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelli-
gence, IJCAI-19. International Joint Conferences on Artificial Intelli-
gence Organization, pp. 3975–3981.

[45] Zhang, J., Wang, X., Zhang, H., Sun, H., Wang, K., Liu, X., 2019.
A novel neural source code representation based on abstract syntax
tree, in: 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), IEEE. pp. 783–794.

[46] Zhu, J., Xia, Y., Wu, L., He, D., Qin, T., Zhou, W., Li, H., Liu, T.,
2020. Incorporating BERT into neural machine translation, in: 8th
International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020, OpenReview.net.

Nie et al.: Preprint submitted to Elsevier Page 11 of 11

