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ABSTRACT

When training automated systems, it has been shown to be beneficial to adapt
the representation of data by learning a problem-specific metric. This metric is
global. We extend this idea and, for the widely used family of k nearest neighbors
algorithms, develop a method that allows learning locally adaptive metrics. These
local metrics not only improve performance, but are naturally interpretable. To
demonstrate important aspects of how our approach works, we conduct a number
of experiments on synthetic data sets, and we show its usefulness on real-world
benchmark data sets.

1 INTRODUCTION

Machine learning models increasingly pervade our daily lives in the form of recommendation systems,
computer vision, driver assistance, etc., challenging us to realize seamless cooperation between human
and algorithmic agents. One desirable property of predictions made by machine learning models
is their transparency, expressed in such a way as a statement about which factors of a given setting
have the greatest influence on the decision at hand — in particular, this requirement aligns with the
EU General Data Protection Regulations, which include a “right to explanation” [1]. The native
transparency of machine learning models varies considerably based on the form and complexity
of the models, ranging from intuitive prototype-based classifiers, which allow a substantiation of a
decision in the form of a typical class representative [2], to mostly opaque black-box models found in
deep learning, for which additional posterior explanation technologies are required [3]. Interestingly,
several popular interpretation technologies for black-box models rely on local feature weighting
schemes [4]. Moreover, machine learning models that are intrinsically based on a feature relevance
weighting [5], enjoy a wide popularity in particular in medical domains to uncover relevant insight,
such as the discovery of potential biomarkers [6].

Intuitive indications of which features are most or least relevant for a given model’s decision can
be provided by metric-learning approaches, such as GRLVQ [5], which adapts a diagonal matrix,
scaling the relevance of the input features. Generalizations that use a full matrix, such as GMLVQ [7],
exist, but a single global quadratic matrix remains the most common choice [8]. Large margin
nearest neighbor learning (LMNN) implements this idea for a k-nearest neighbor (kNN) classification
scheme [9]. A few approaches extend this setting to non-global matrices, such as LGRLVQ [10] and
LGMLVQ [7], which can be accompanied by learning-theoretical guarantees, but they allow only
one matrix per prototype, which corresponds to one metric per Voronoi cell in the input space. An
extension of LMNN [11] requires an explicit partitioning of the training data and learns one metric
per subset. The partitioning, commonly based on the respective class labels, is set before training
and remains unchanged, which makes the extension straight-forward but inflexible. Parametric
Local Metric Learning (PLML) [12] learns a smooth metric matrix function over the data manifold,
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but again, its specific metric matrices are based on so-called anchor points, such as the means of
clusters according to some supervised algorithm. Noh et al. [13] take a different approach with
Generative Local Metric Learning (GLML), where they learn an optimal local metric for a learned
generative model. Fitting class-wise Gaussians, they inherit the inflexibilties that come with this
assumption-heavy approach and fail to learn well-performing metrics [12]. GLML does show promise
for the special case where the number of training samples is further constrained. Its original analysis
is therefore focused on that particular setting.

In this work, we formulate and explore an extension of kNN to local relevance matrices, which are
specific to a given point and indicate the local relevance of the features in its region, i. e. the factors
most relevant for a specific decision rather than the global model. Further, unlike LMNN, PLML,
and GLML, we implement an online adaptation technique, which can be integrated into incremental
models or models for streaming data, such as the one proposed by Losing et al. [ 14]. In the following,
we will propose a cost function based on a differentiable approximation of the output label distribution
of a kNN classifier, and we will demonstrate how to derive an intuitive local relevance learning scheme
based thereon. To investigate the resulting learned, local feature relevances, and to demonstrate how
they aid in interpreting data, we compute according low-dimensional embeddings.

This extension of the Locally Adaptive Nearest Neighbors [15] contains an expanded evaluation with
further datasets and an embedding-based demonstration of the usefulness of the learned metrics.

2 LOCAL METRIC LEARNING FOR KNN CLASSIFIERS

Assume data X = {:E’l, ..., @™} C R™ are given, with label y; for data point Z%, where labels
are element of a finite number of L different labels. Assume a number k£ > 0 is fixed. A KNN
classifier crucially depends on a distance measure d : R™ x R™ — R. Given a data point & € R", the
neighborhood N (%) of Z in X is defined as the set of k points #* in X where d(#, ¥) is smallest. A
weighted kNN classifier computes the support S for label y given input &
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and outputs the label y with maximum support. This definition relies on a global distance measure d
such as the squared Euclidean distance measure d(7%, ) = (7' — ¥)T(#* — 7). Metric learning such
as LMNN [9] substitutes the Euclidean distance by a parameterized quadratic form
da(Z,7) = (& — 2)TA (' - T)

with positive semi-definite (p.s.d.) matrix A, which is determined based on given data. LMNN
relies on the objective to change the distance such that intruders, i.e. points # in N () which do not
have the same label as &, are moved outside N (Z) with a margin. This problem can be phrased as a
semi-convex constraint optimization problem for the metric parameters A [9]. LMNN uses a global
distance measure, which does not necessarily resemble the relevance of input features for the local
decision f(Z).

In the following, we want to ask and answer, whether it is possible to (i) learn local metrics without a
fixed prior decomposition of the space, and (ii) develop an online learning scheme, which carries the
potential of an integration into streaming and incremental scenarios such as the self-adjusting-memory
kNN [14]. We assume a local distance measure
dp, (T, %) = (& — )T\ (7 - ©)

where d,, is attached to the data point Z* and it is used whenever the distance measure from # to
another data point is computed. Here, A; is an adaptive p. s. d. matrix, which can be parameterized as
A; = (9 (Q)T with possibly low-rank matrix Q¢ € R™*™ for some n’ < n or even diagonal form
Given an input Z with desired output y, we can derive a stochastic gradient scheme to adapt these
metric parameters online as follows: We approximate the output of a weighted kNN using the softmax

function with parameter 8 > 0, which yields a probability distribution over all possible output labels
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where local metrics dy, are used to evaluate the support S(y | Z), which indicates the vector of
probabilities of the L output labels. Assume a desired output y = [ is given, this induces a probability
distribution over the labels by its one-hot encoding in {0, 1}%, which we denote by P(y | 1).

Then, a suitable loss function is offered by the Kullback-Leibler divergence, resulting in the overall
error
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since P(y = 1 | y;) = 01,4, (the Kronecker delta), where we use the identity 0 - log0 = 0. For
stochastic gradient descent, we consider the derivative of a term w. r. t. metric parameters €27, for a
matrix A; = (27)(€7)T. This yields
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0 otherwise
yields the derivative 0 for all A; where 77 ¢ N (). For neighbors 7 € N(#') we obtain
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It is necessary to add a regularization step to prevent divergence of the parameters, e.g. a soft
or hard constraint for det A; or a restriction of the norm of the diagonal of the matrices. If we
chose the metrics in the form of diagonal matrices A = diag(\?,...,\2), the derivative yields
Od(Z,7") /0N = 2\, - (z; — x})?. In this case, a stochastic gradient descent directly corresponds
to a Hebblan scheme: for y; = y;, diagonal terms for those dimensions [ are enhanced (after

normalization) which correspond to small values (z] — z%)?; for y; # y;, we find the opposite. This
behavior resembles popular metric learning schemes as proposed in the context of prototype-based
classifiers [10, 7]. Yet, while these technologies restrict metric forms to receptive fields of prototypes,
we are able to learn an individual weighting scheme for every data point of the kNN classifier. Apart
from the different objective, this fact — a local weighting scheme — is the most distinguishing feature
of the proposed method when compared to alternatives such as LMNN.

3 EXPLAINING PREDICTIONS USING LOCAL METRICS

The metrics learned by our proposed method have two important characteristics:
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Diagonality Each learned weight directly corresponds to a feature in the input space. If the input
space itself is interpretable, so are our learned metrics.

Locality For each point in our training set we find a local metric. If the learned metrics are
interpretable, they tell us about how individual samples contribute to a prediction.

Consider a point x with a local metric that has a very small weight for some feature a and a very
large weight for another feature b. A second point y can be extremely different from = with respect to
feature a and still be close to x in terms of the local metric, if the two points are similar with respect
to feature b.

When we use LANN to predict a label for an input, the local metrics at the k nearest neighbors
responsible for the prediction give us a distribution over the feature relevances involved in the
prediction. These distributions can be used directly for any given prediction or aggregated to gain
insight on different levels of detail; the specifics depend on the down-stream task.

To demonstrate the usefulness and applicability of our learned local metrics in this sense, we analyze
the quality of embeddings induced by them.

4 INTERPRETING LEARNED METRICS VIA LOW-DIMENSIONAL
EMBEDDINGS

Reducing the dimensionality of data, as preprocessing or for visualization, has a long history. Pearson
[16] introduced the linear Principal Component Analysis in 1901, to determine — and project onto — the
most important directions in the original feature space; in 1969, Sammon [17] proposed the non-linear
Sammon Mapping to find low-dimensional representations with locally faithful differences. More
recently, Uniform Manifold Approximation and Projection (UMAP) [18] has emerged as a versatile
technique to preserve topology during dimensionality reduction, arguably replacing ¢-Distributed
Stochastic Neighbor Embedding (t-SNE) [19] as state of the art in dimensionality reduction.

The above-mentioned GMLVQ and LMNN, each learning a global metric, also function to reduce
dimensionality, when the learned metric is used to project the data. Both algorithms learn metrics to
aid classification, and so their embeddings are naturally discriminative, meaning that even with their
reduced dimensionality they allow to discriminate between classes.

In addition to embedding data in (low-dimensional) space, when a dimensionality reduction algorithm
(such as UMAP) uses differences between points, we can use learned metrics during embedding to
not only observe the data, but also the respective metrics. Therefore, we can directly use our local
metrics learned as described in Section 2 to obtain an embedding that, if the metrics behave properly,
should be discriminative, similarly to LDA and GMLVQ.

Because LGMLVQ learns one metric per prototype, it is not immediately clear which metric to use
when determining the distance between any two given points. We overcome this by first mapping
each point & onto its distance to every one of the n prototypes p1, . . . , Pn:

i (di(Z,P3) 0 € R, (1)

where d; is the learned metric of prototype p;. We subsequently find a low-dimensional embedding
of this n-dimensional space using UMAP.

5 EXPERIMENTS

5.1 Classification

We have implemented our proposed algorithm (henceforth referred to as LANN) in Python 3.7
within the scikit-learn' [20] framework, restricting the metrics to diagonal matrices as discussed
above. We compare its performance against a standard kNN classifier (as provided by scikit-learn),
against LMNN with a global adaptive metric (via the implementation PyLMNN? by John Chiotellis)

"https://scikit-learn.org/
*https://github.com/johny-c/pylmnn
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Table 1: Accuracies (cross validation averages) for all algorithms and datasets considered in our
experiments. All but the first constitute real-world data.

Dataset kNN LMNN LGMLVQ LANN
Art. Classification 0.95 £0.0029 0.97 £0.0042 0.99 £0.0017 0.99 + 0.0018
Adrenal 0.82 £0.0293 0.81 £0.0550 0.77 £0.0391 0.88 + 0.0171
Breast Cancer 0.95 £0.0079 0.95+0.0113 0.92 £0.0155 0.94 £ 0.0077
Digits 0.94 £0.0075 0.96 +0.0050 0.87 £0.0168 0.96 & 0.0054
Gamma Telescope 0.82 £0.0024 0.82 £0.0029 0.84 +0.0036 0.83 £ 0.0027
Image Segmentation 0.93 £ 0.0039  0.95 + 0.0064 0.94 £ 0.0051 0.95 £ 0.0041
Ionosphere 0.77 £0.0468 0.79 £0.0353 0.76 £ 0.0375 0.90 & 0.0306
Iris 0.93 £0.0340 0.95+0.0152 0.93 £0.0298 0.96 4+ 0.0120
Letter Recognition 0.88 £0.0019 0.91 £0.0027 0.87 £0.0072 0.91 £ 0.0025
Outdoor Objects 0.80 £ 0.0070  0.83 £0.0084 0.83 £0.0117 0.87 & 0.0085
Pen Digits 0.98 £0.0012 0.99 £ 0.0008 0.99 +0.0016 0.99 &+ 0.0011
Robot Navigation 0.79 £0.0094 0.80 £ 0.0081 0.79 £ 0.0067 0.83 = 0.0088
USPS 0.94 £0.0025 0.95 +£0.0023 0.95 £ 0.0027 0.95 + 0.0024
Wine 0.95 £0.0160 0.96 +£0.0164 0.63 £0.0880 0.96 &+ 0.0153

—we keep k = 5 fixed for all three algorithms to facilitate comparability — and against Localized
Generalized Matrix Learning Vector Quantization (LGMLVQ — using the open implementation® for
scikit-learn). Each algorithm is fitted and evaluated on a number of datasets:

Artificial Classification An artificial dataset provided by scikit-learn that contains strongly relevant
features, weakly relevant features, as well as redundant features. We sample 2000 data
points according to the default parameters, which results in 2 classes, 20 features, of which
2 are strongly relevant, and 2 are weakly relevant.

Adrenal [21] Results from an analysis of adrenal gland metabolomics. The dataset contains 147 data
points in 2 classes (adrenocortical carcinoma and adenoma), described by 32 features that
relate to the underlying metabolic processes.

Wisconsin Breast Cancer Classic dataset of 569 data points in 2 classes (benign and malignant)
described by 30 features that relate to the properties of cells visible under a microscope.

Digits [22] 1797 images of 8 by 8 pixels that contain handwritten digits (10 classes).

Gamma Telescope [23] Registration of high-energy gamma particles in a telescope. The dataset
contains 19 020 samples with 11 features in two classes (signal and background).

Image Segmentation [24] In this dataset, 2306 data points fall into 7 classes and are described by
16 features that encode several attributes of image regions. We leave out three near-constant
features, as suggested by Schneider et al. [7].

Ionosphere [25] Electrons in the ionosphere recorded by a high-frequency radio antenna array. The
binary dataset contains 351 samples with 34 features.

Iris [26] Classic dataset of 150 samples in 3 classes that are three different types of the plant Iris.
The 4 features are sepal and petal length and width, respectively.

Letter Recognition [27] Based on black-and-white images of capital letters (corresponding to
26 classes), this dataset consists of 20 000 samples of 16 hand-crafted features.

Outdoor Objects [28] Here, 4000 data points correspond to images that belong to one of 40 classes,
depending on objects visible in the images. Its 21 features constitute normalized color
histograms.

Pen Digits [29] Recognition of handwritten digits, based on readings from a stylus and a pressure-
sensitive tablet. The dataset consists of 10992 samples of 16 features in 10 classes.

Robot Navigation [30] Ultrasound sensor readings obtained by a robot during navigation. The
5456 samples are represented by 24 features and the 4 classes correspond to directional
movement instructions.

USPS [31] Another dataset for handwritten digit recognition that contains 16 by 16 pixel images.
The data was originally obtained in cooperation with the US Postal Service.

Wine Classic dataset with 3 classes (types of wine), 13 features, and 178 samples.

*https://github.com/MrNuggelz/sklearn-1vq
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Figure 1: Aggregated per-class relevances for the Wisconsin Breast Cancer dataset, as determined by
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For each algorithm and dataset we perform a 10-fold, stratified, randomly shuffled cross validation
and include a z-score transformation as the only preprocessing step. We report the averaged accuracies
together with their standard deviations in Table 1. LANN obtains an improvement as compared to
LMNN in four out of five cases, yielding a smaller variation in all cases. Interestingly, local metric
learning seams particularly profitable for the outdoor objects data, a setting with a large number of
classes and comparably high degree of noise.

LANN yields an indication of relevance for each feature with respect to each individual data point. We
can use these to develop a local understanding of feature relevance. For the Wisconsin Breast Cancer
dataset, we aggregate these relevances class-wise. Our findings, presented in Figure 1, align with
those previously discovered and discussed in the literature [32]. In particular, it becomes apparent
that different averages result for the two classes.

5.2 Embeddings

To asses and visualize the nature of and relation between the local metrics LANN finds, we compute
embeddings for two data sets: one artificial data set where we know that locality is crucial, and Image
Segmentation (see Section 5.1) as a real-world data set. We present the results in Figures 2 and 3. The
artificial data set, which we dub Licorice, consists of several distinct cylinders of varying orientation
that in turn contain points labeled according to whether they are located inside the cylinder or on its
outside.

For each data set, we first compute an embedding via UMAP using the Euclidean metric. We then
train a set of algorithms on the entire data set; the global low-rank metrics learned by GMLVQ and
LMNN directly lead to embeddings; LANN yields a local metric for each point, such that we can
use pairwise distances as input for UMAP; and for LGMLVQ we compute a proxy embedding as
described in Section 4, which is in turn embedded by UMAP.

To quantify the quality of the produced embeddings with respect to their discriminative power, we
reclassify each point by its nearest neighbors in said embedding, and indicate the proportion of
correctly classified points below the respective plots. Note that these numbers are not to be taken
as deciding scores with regards to the efficacy of the respective algorithms; they merely aid in
interpreting the validity of the embeddings. Because UMAP preserves local neighborhoods, its
embeddings naturally lend itself well to nearest neighbor classification.

All algorithms result in viable low-dimensional embeddings of the original data. As expected, and in
line with our findings in Section 5.1, local metrics do improve the discriminative power when used for
embedding. Especially in our artificial data set, where cylinders are present in different orientations,
the ability to adapt to local properties is crucial. Furthermore, the results on Image Segmentation
underline the usefulness of LANN, enabling a better distinction even between classes “foliage” and
“window”, which appears to be particularly challenging.

6 CONCLUSIONS

We have proposed a metric learning scheme which assigns a separate relevance weighting vector to
every data point of a kNN classifier, leading to different local relevances of the decision function.
Even restricted to local diagonal matrices, the technology is as good as or surpasses popular metric
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Figure 2: Embeddings of an artificial data set (Licorice), which consists of five distinct cylinders that
in turn contain points labeled according to whether they are inside the cylinder or on its outside. Below

each plot, we indicate the metric or the algorithm (that produces it) used to obtain the embedding,

as well as the accuracy when classifying based on the embedding. Class labels are indicated by
color and shape. Notably, the local metrics of LANN ensure that “inside” points are placed close
to one another with “outside” points spread around them, irrespective of the underlying cylinder’s
orientation — at the same time, the global metrics of GMLVQ and LMNN struggle to cope with these

different orientations.
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Figure 3: Embeddings of the real-world data set Image Segmentation. Below each plot, we indicate
the metric or the algorithm (that produces it) used to obtain the embedding, as well as the accuracy
when classifying based on the embedding. Class labels are indicated by color and shape.
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learning schemes such as LNMM. More importantly, the method provides a local explanation of a
specific decision of the model given an input Z rather than a global metric, and it enables online update
rules in the form of a stochastic gradient. We have demonstrated the quality and applicability of the
learned local metrics via low-dimensional embeddings obtained through state of the art dimensionality
reduction.

6.1 Limitations & Future Work

It is subject to future work to integrate this scheme into kNN methods for streaming data and to
investigate the suitability to build a reject option based on this representation, as investigated in [14,
33] for the standard Euclidean metric.

Due to the local metrics, common optimizations for nearest neighbor computations are not readily
applicable to LANN, so we cannot currently recommend it for big data computations. However,
because during our proposed iterative updates are local, we see a number of promising directions to
optimize computations.

How well explanations perform is difficult to quantify, because what constitutes a good explanation
depends on concrete applications, and because ground truth is not usually available. In our setting,
this issue is compounded by a lack of ground truth for local relevances. Our proposed method can
aid in exploratory data analysis accompanied by interactive explanations for predictions, and we are
looking forward to releasing a framework for this purpose based on LANN.
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