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Abstract

For the multiple-input multiple-output (MIMO) downlink employing high-order

quadrature amplitude modulation signaling and with nonlinear high power am-

plifiers (HPAs) at base station transmitter, the existing precoding designs rely-

ing on the linear MIMO channel can no longer work. We propose an efficient

and accurate predistorter design to enable transmit precoding for nonlinear

MIMO downlink. Specifically, we obtain the closed-form least squares esti-

mates of the nonlinear HPA’s amplitude and phase response using two B-spline

neural networks during training. The estimated HPA’s phase response auto-

matically yields the estimate of the predistorter’s phase response. Based on the

B-spline neural network estimate of the HPA’s amplitude response, we construct

a B-spline neural network model for the predistorter amplitude response, and

we adopt a particle swarm optimization (PSO) algorithm to solve this highly

nonlinear optimization problem. Using our accurate predistorter estimate to

pre-compensate for the nonlinear distortions of the transmit HPAs, a standard

full-digital transmit precoding design can readily be adopted to combat the

MIMO channel interference. A simulation study is conducted to demonstrate

the effectiveness of our proposed PSO assisted predistorter design.
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1. Introduction

Two of the three cornerstones or usage scenarios in the fifth generation (5G)

mobile network are enhanced mobile broadband (eMBB) and massive machine

type communications (mMTC) [1]. Multiple-input multiple-output (MIMO)

technology has been recognized as a promising component for implementing5

5G by both academia and industry, owing to its capability of significantly in-

creasing the reliability and/or bandwidth efficiency of communication systems

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. In particular, the spatial-domain non-orthogonal

multiple access (NOMA) with the aid of MIMO technology plays a critical

role in supporting the massive increase in connected devices with the limited10

frequency-time resources.

In the literature, most existing MIMO system designs, including all the best

known linear MIMO transceiver designs [12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

22, 23] and nonlinear MIMO transceiver designs [24, 25, 26, 27, 28], adopt the

linear MIMO channel. However, it is well known that the linear MIMO channel15

is only valid when the transmitter high power amplifier (HPA) operates within

its linear dynamic range. But practical HPAs exhibit nonlinear saturation char-

acteristics [29, 30, 31, 32, 33], and whether the linear channel assumption holds

depends on the transmit signal’s peak-to-average power ratio (PAPR) as well

as the average transmit power. For the modulation constellations with unity20

PAPR, such as phase shift keying, HPA does not cause amplitude distortion

and the phase shift of the HPA’s output is constant for all the symbol points.

In such scenarios, a linear MIMO channel is valid. In order to meet the demand

of massive increase in throughput for supporting eMBB, high-order quadrature

amplitude modulation (QAM) signaling [34] has to be adopted, which exhibits25

high PAPR and imposes high average transmit power. Consequently, the non-
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linear distortion of the transmitter HPA becomes serious, and the assumption

of linear MIMO channel no longer holds. In such situations, the existing MIMO

system designs based on the linear MIMO channel do not work. Moreover, the

classical means of avoiding the nonlinearity of transmitter HPA, namely, output30

back-off (OBO), may not be applicable. This is because for high PAPR signal-

ing, the OBO must be very severe to be effective but such a large OBO cannot

meet the required link power budge, that is, it cannot meet the high average

transmit power requirement for high-order QAM signaling.

Recently, we have proposed an effective nonlinear multiuser detection design35

for NOMA multiuser nonlinear MIMO uplink employing high-order QAM sig-

naling and with nonlinear transmit HPAs at mobile users (MUs) [35]. However,

there exists no nonlinear MIMO downlink design in the open literature. Against

this background, in this work, we focus our attention on nonlinear MIMO down-

link employing high-order QAM signaling and with nonlinear transmit HPAs at40

base station (BS), and we propose a novel and efficient predistorter design to

pre-compensate the nonlinear transmit HPAs so that the standard transmit

precoding can still be used for nonlinear MIMO downlink.

In downlink, the BS transmitter has sufficient resource to implement a pre-

distorter for pre-compensating the nonlinear distortions of transmit HPAs. In45

the literature, there exist various predistorter designs [36, 37, 38, 39, 40, 41, 42,

43]. However, none of these predistorters are specifically designed for NOMA

multiuser MIMO downlink applications. In this paper, we propose a very ef-

ficient and accurate predistorter design based on B-spline neural network for

NOMA multiuser nonlinear MIMO downlink. More specifically, we estimate50

the HPA’s amplitude response and phase response using two B-spline neural

network models in training, and the two B-spline models’ parameter vectors

can readily be obtained in the closed-form least squares (LS) solutions. This

yields very accurate B-spline neural network based estimates of the HPA’s am-

plitude response and phase response. Since the predistorter’s phase response55

should cancel the HPA’s phase response, the estimated predistorter’s phase re-

sponse is the negative of the B-spline HPA phase response estimate. We then

3



design another B-spline neural network model for the predistorter’s amplitude

response relying on the B-spline HPA amplitude response estimate already ob-

tained. This is a highly nonlinear optimization problem. Although it can be60

solved with a gradient based algorithm, we propose to solve this nonlinear de-

sign with particle swarm optimization (PSO) [44, 45, 46, 47, 48, 49, 50, 51] in

order to obtain a much more accurate predistorter estimate. Unlike the most

recent B-spline predistorter design of [42] which requires to find the amplitude

of the predistorter output for every transmitted signal point using the iterative65

root finding procedure during data transmission and hence it is unsuitable for

MIMO downlink application, our proposed PSO assisted B-spline neural net-

work based predistorter design constructs an accurate B-spline model of the

predistorter prior to data transmission and it offers the first practical B-spline

parameterized predistorter for nonlinear MIMO transmitter. With this accurate70

predistorter estimate to compensate for the HPA’s nonlinear distortion, the BS

can employ a standard full-digital precoding design, such as zero-forcing (ZF)

precoding design, to pre-remove the MIMO downlink channel interference.

The remaining of the paper is organized as follows. Section 2 presents our

application background, namely, nonlinear MIMO downlink, while Section 375

details our novel PSO assisted B-spline neural network based predistorter design.

An achievable performance of our novel predistorter assisted nonlinear MIMO

downlink is extensively evaluated in Section 4. Our conclusions are drawn in

Section 5.

2. Nonlinear MIMO Downlink80

This section present our application background, specifically, the NOMA

multiuser nonlinear MIMO downlink communication system.

2.1. MIMO Downlink Channel

We consider the MIMO downlink shown in Figure 1, where the BS is equipped

with L antennas to support M (≤ L) single-antenna MUs using the same
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Figure 1: MIMO downlink with nonlinear transmit HPAs where BS employs L antennas
to support M single-antenna mobile users based on spatial-domain non-orthogonal multiple
access.

frequency-time resource block. Denote the transmit signal vector from the BS’s

antenna array as w(t) =
[
w1(t) w2(t) · · ·wL(t)

]T
and its baseband equivalent

sampled version as w(k) =
[
w1(k) w2(k) · · ·wL(k)

]T
. Further collect the re-

ceived signals at the M MUs as the vector y(t) =
[
y1(t) y2(t) · · · yM (t)

]T
, and

denote its baseband equivalent sampled version as y(k) =
[
y1(k) y2(k) · · · yM (k)

]T
.

Then the MIMO downlink channel can be represented by the following well-

known baseband MIMO channel model

y(k) =
[
h1 h2 · · ·hM

]T
w(k) + n(k) = HTw(k) + n(k). (1)

Here n(k) ∈ C
M ∼ CN

(
0M , σ2

nIM
)
is the downlink additive white Gaussian

noise (AWGN) vector with the M -dimensional zero mean vector 0M and the

covariance matrix σ2
nIM in which IM is the M ×M identity matrix, and H =

[
h1 h2 · · ·hM

]
in which

hi =
[
h1,1 h1,2 · · ·h1,L

]T
, 1 ≤ i ≤ M, (2)

is the downlink channel vector linking the L BS antennas to the mth MU. The

channel coefficient hm,l ∈C for the channel linking the lth BS antenna to the85

mth MU, where 1 ≤ l ≤ L and 1 ≤ m ≤ M , is drawn from the complex-value

Gaussian distribution CN (0, 1).
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2.2. Transmit Precoding

The M MUs rely on the BS to perform the transmit precding (TPC) to

pre-compensate the MIMO channel interference so that the mth MU’s received

signal ym(k) is a sufficient statistic for estimating its data symbol sm(k). Under

the condition that the HPAs are operating within their linear dynamic ranges

and hence the predistorters are not required, the baseband MIMO channel model

(1) can be equivalently expressed as the following commonly known form

y(k) =HTx(k) + n(k), (3)

where x(k) ∈ C
L is the digital transmit precoder output vector. Specifically, the

BS can employ the standard full digital TPC technique based on the well-known

ZF design which is capable of completely removing the MIMO downlink channel

interference. Given the MIMO downlink channel matrix H, the full-digital ZF

TPC is defined as

x(k) =
√
λPZFs(k), (4)

where the full-digital ZF TPC matrix PZF ∈ C
L×M is given by

PZF =H∗(HTH∗)−1
, (5)

and the normalization factor λ is given by

λ =
1

Estr
{
PZFP

H
ZF

} , (6)

in which Es is the average power of each MU’s data and tr{·} is the matrix

trace operator. We will discuss why needs the normalization factor (6) later.90

Obviously, the knowledge of the downlink channel matrix HT is required at

the BS to compute the TPC matrix. In the networks based on frequency division

duplexing (FDD) protocol, the BS needs to transmit the training signal to the

M MUs for them to acquire their respective channel vectors hm, 1 ≤ m ≤ M .
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After obtaining the estimated ĥm, 1 ≤ m ≤ M , the MUs quantize the channel95

estimates and feed back the quantized channel estimates to the BS. The esti-

mated channel matrix ĤT that the BS has is therefore inherently erroneous due

to quantization and delay errors. In the so-called time division duplexing (TDD)

network, the uplink channel and downlink channel are reciprocal. Hence, the

BS can estimate the uplink channel matrix and exploit the reciprocal property100

to obtain downlink channel estimate ĤT. Owing to the mismatch in the uplink

and downlink radio frequency (RF) chains, the reciprocal property cannot be

exact and hence, the downlink channel estimate ĤT is also erroneous.

Therefore, the BS does not have the perfect downlink channel matrix. To

model the channel estimation error, we express the channel estimate

ĥm,l =hm,l + ε, 1 ≤ m ≤ M, 1 ≤ l ≤ L, (7)

where both the real and imaginary parts of ε, denoted as ℜ(ε) and ℑ(ε), are
the uniformly distributed random variables in

[
− σε, σε

]
. The case of σε =105

0 corresponds to the perfect channel knowledge. The BS uses the erroneous

channel estimate ĤT to calculate the TPC matrix.

2.3. Nonlinear High Power Amplifier

However, for the high PAPR signaling, such as the high-order QAM con-

sidered in this paper, the commonly used HPA at transmitter exhibits serious

nonlinear saturation distortion. Consequently, the linear MIMO channel model

(3) is no longer valid. More specifically, the transmitted signal vector w(k) is no

longer linearly proportional to the precoder output vector x(k). Rather, owing

to the HPAs’ nonlinearity, w(k) is a nonlinear transformation of x(k). As a

result, the TPC matrix distorted by the nonlinearity of HPA becomes incapable

of compensating for the MIMO channel interference. To model nonlinear HPA,

note that a complex-valued number x∈C can be represented either in rectan-

gular form of x = ℜ(x) + jℑ(x), or in polar form of x = rx exp(jφx), in which

rx is the magnitude of x and φx the phase of x. Without loss of generality,
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omit the antenna index l in the discussion. HPA employed in wireless systems

is typically the solid state NEC GaAs power amplifier [32, 33], which exhibits

nonlinear saturation characteristics. In the equivalent baseband discrete-time

domain, a HPA output signal w(k) from a BS antenna can be expressed as

w(k) =Ξ (v(k)) = A(rv(k)) exp
(
j
(
Υ(rv(k)) + φv(k)

))
, (8)

where Ξ(·) denotes the HPA’s nonlinear mapping and v(k) is the input to the

HPA. Hence the complex-valued HPA’s mapping Ξ(·) is defined by its amplitude

response A(r) and phase response Υ(r), given respectively by [32, 33]

A(r) =
gar

(
1 +

(
gar
Asat

)2βa

) 1

2βa

, (9)

Υ(r) =
αφr

q1

1 +
(

r
βφ

)q2 [degree], (10)

where r denotes the amplitude of the input to the HPA, ga is the small signal’s

gain, βa is the smoothness factor and Asat is the saturation level, while the

parameters of the phase response, αφ, βφ, q1 and q2, are adjusted to match the

specific amplifier’s characteristics [32, 33]. The operating status of the HPA is

specified by the OBO, which is defined as the ratio of the maximum output

power Pmax of the HPA to the average output power Paop of the HPA output

signal, given by

OBO = 10 · log10
Pmax

Paop
[dB]. (11)

The smaller OBO is, the deeper the HPA is into the nonlinear saturation region.

With the HPA’s parameters as specified in the standards [32, 33], which are

ga=19, βa=0.81, Asat=1.4; αφ=−48000, βφ=0.123, q1=3.8, q2=3.7. (12)

Figure 2 depicts its amplitude response and phase response. Clearly, the output110

saturation amplitude is Asat = 1.4, which occurs theoretically at the saturation
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Figure 2: Nonlinear HPA with the parameters given by (12): (a) amplitude response, and
(b) phase response.

input amplitude rsat = 1.4, that is, A(r) = 1.4 for r ≥ rsat. Consider the case

that the HPA is designed to operate in a large OBO value of 5 dB for trans-

mitting 64QAM data. Then the average 64QAM symbol amplitude is approx-

imately 0.06, while the peak 64QAM symbol amplitude is approximately 0.09.115

The corresponding average amplitude of the HPA’s output is approximately 0.8

and the peak amplitude of the HPA’s output is approximately 1.0. Even under

such a large OBO, the nonlinear distortions of the HPA is noticeable.

For the MIMO downlink, the TPC must be applied to overcome the MIMO

channel interference. Consequently, the nonlinear distortion of HPAs is even120

more serious. This is because the precoded signal xl(k) is a linear combination

of the M high-order QAM data sm(k) for 1 ≤ m ≤ M , and thus the PAPR

of xl(k) is much higher than each MU’s data sm(k). This further amplifies the

nonlinear distortion of HPA.

3. Proposed Predistorter Design125

3.1. Ideal Predistorter Response

Nonlinearity of the HPA renders the precoding ineffective. It is therefore

vital to design the predistorter that can pre-compensate the nonlinear distor-

tions of the HPA. Let the ideal complex-valued predistorter’s nonlinear mapping

be Ω(·). Further denote this ideal predistorter’s amplitude response and phase

response as B(·) and Ψ(·), respectively. Then given the input x, the output of
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the predistorter v is given by [41, 42]

v =Ω(x) = B(rx) exp
(
j
(
Ψ(B(rx)) + φx

))
. (13)

The ideal or perfect predistorter should satisfy the following conditions [41, 42]:

A(B(rx)) =





rx, rx ≤ rsat,

rsat, rx > rsat,
(14)

Ψ(B(rx)) + Υ(B(rx)) = 0. (15)

Note that the input to the HPA is the output of the predistorter, and the

predistorter can only achieve the linearization for 0 ≤ rx ≤ rsat.

With this predistorter to compensate for the HPA’s nonlinear distortion,

the BS can employ a standard full-digital precoding design, such as the ZF

precoding of (4)-(6), to pre-remove the MIMO downlink channel interference.

Specifically, denote the output vector of the L idealized predistorters as

v(k) =Ω(x(k)) =
[
Ω(x1(k)) Ω(x2(k)) · · ·Ω(xL(k))

]T
, (16)

and the output vector of the L HPAs as

w(k) =Ξ(v(k)) =
[
Ξ(v1(k)) Ξ(v2(k)) · · ·Ξ(vL(k))

]T
. (17)

Then MIMO channel model (1) can be re-expressed as

y(k) =
1√
λ
HTΞ

(
Ω
(√

λPZFs(k)
))

+
1√
λ
n(k)

=
1√
λ
HTΞ

(
Ω
(√

λPZFs(k)
))

+ ñ(k), (18)

where the AWGN ñ(k) ∼ CN
(
0M ,

σ2

n

λ
IM

)
. Observing from the ideal amplitude

response (14) of the combined HPA and predistorter, it can be concluded that130
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if the precoded data points xl(k) have the magnitudes rx(k) ≤ rsat, the predis-

torter completely linearizes the HPA, and the nonlinear MIMO model (18) is

equivalent to the liner MIMO model (3).

Remark 1. It is necessary to apply the scaling or normalization factor in the

precoding operation (4). Otherwise the magnitudes rx(k) of many precoded data135

points xl(k) will become larger than rsat, which leads to high bit error rate (BER)

floor even with the idealized predistorters. A consequence of this scaling is that

the BS transmitter needs to send
√
λ to the M MU receivers, and each MU needs

to ‘un-scale’ its received signal by 1√
λ
as can be seen in (18).

3.2. B-spline Neural Network Based Predistorter140

The schematic diagram of the proposed predistorter design is depicted in

Figure 3, where B̂(·) is an estimate of the predistorter’s true amplitude response

B(·), solved from Â(B̂(r)) = r, in which Â(·) denotes an estimate of the HPA’s

true amplitude response A(·), while Υ̂(·) denotes an estimate of the HPA’s true

phase response Υ(·). Since B-spline neural network is an effective means of145

nonlinear modeling [42, 43, 52, 53, 54, 55, 56], we adopt the B-spline modeling

approach for estimating the HPA’s true amplitude response A(·) and true phase

response Υ(·) as well as the predistorter’s true amplitude response B(·).

3.2.1. B-spline Neural Network

To model a generic real-value nonlinearity f(r) in the univariate of r, we use

a B-spline neural network model with piecewise polynomial degree of Pd and

N basis functions. This B-spline model is parametrized by the knot sequence
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Figure 3: Schematic of proposed predistorter structure.
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specified by (N + Pd + 1) knot values, {R0, R1, · · · , RN+Pd
}, with

R0 < R1 < · · · < RPd−2 < RPd−1 = Rmin < RPd
< · · ·

< RN < RN+1 = Rmax < RN+2 < · · · < RN+Pd
. (19)

At each end, there are Pd − 1 external knots that are outside the input region
[
Rmin, Rmax

]
and one boundary knot. Hence the number of internal knots is

given by N + 1− Pd. Given the set of predetermined knots (19), the set of the

N B-spline basis functions

Bi(r) =B(Pd)
i (r), 1 ≤ i ≤ N, (20)

are formed using the De Boor recursion [57], which recursively computes

B(0)
l (r) =





1, if Rl−1 ≤ r < Rl,

0, otherwise,
(21)

for 1 ≤ l ≤ N + Pd, as well as

B(p)
l (r) =

r −Rl−1

Rp+l−1 −Rl−1
B(p−1)
l (r) +

Rp+l − r

Rp+l −Rl

B(p−1)
l+1 (r), (22)

for l = 1, · · · , N + Pd − p and p = 1, · · · , Pd. The estimate of f(r) is readily

expressed as the linear combiner of the N B-spline basis functions

f̂(r) =
∑N

i=1
Bi(r)αi, (23)

where αi for 1 ≤ i ≤ N are the B-spline neural network’s weight parameters. An150

illustration of the De Boor recursion or the B-spline neural network structure is

depicted in Figure 4.

Remark 2. The polynomial degree Pd = 4 and the number of B-spline bases

N = 10 are sufficient for accurately modeling an arbitrary nonlinear function

f(r). The computational complexity of the B-spline neural network is on the155
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Figure 4: Visualisation of the B-spline neural network architecture for Pd = 4 and N = 5,
where Rmin = R3 and Rmax = R6.

order of P 2
d , which is the same as the polynomial model with the polynomial de-

gree Pd [43]. The B-spline estimator (23) has the well-known optimal robustness

property [52, 53, 54]. Optimality of the B-spline model in terms of numerical sta-

bility is due to the convexity of its model bases, i.e., they are all positive and sum

up to one. This optimal robustness property ensures that given the same level of160

structural (computational) complexity, the B-spline estimator will outperform

any other non-robust linear-combining-nonlinear-bases estimator, such as the

polynomial estimator, in modeling an unknown nonlinear function, in terms of

estimation accuracy, particularly when the training input data are noisy.

We now demonstrate this optimality of the B-spline model. Assume that the

real-valued true system is represented by the polynomial model of degree Pd as

y =
∑Pd

i=0
aix

i,

which can also be represented by the following B-spline model exactly

y =
∑N

i=1
biBi(x),

where y, x ∈ R. Because the identification data are noisy, the estimated model

coefficients are perturbed from their true values ai to âi = ai+εi for the polyno-
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mial model, and from their true values bi to b̂i = bi + εi for the B-spline model.

Assume that all the estimation noises εi are bounded, namely, |εi| < εmax. The

upper bound of |y − ŷ| for the B-spline model can be worked out to be

|y − ŷ| =
∣∣∣
∑N

i=1
biBi(x)−

∑N

i=1
b̂iBi(x)

∣∣∣ < εmax

∣∣∣
∑N

i=1
Bi(x)

∣∣∣ = εmax.

Observe that the upper bound of the B-spline model output perturbation only

depends on the upper bound of the perturbation noise, and it does not depend on

the input value x, the number of basis functions N or the polynomial degree Pd.

This confirms that the B-spline model has the maximum numerical robustness,

and this optimality of the B-spline model is due to the convexity of its model

bases, that is, they are all positive and sum up to one. By contrast, the upper

bound of |y − ŷ| for the polynomial model can be worked out to be

|y − ŷ| =
∣∣∣
∑Pd

i=0
aix

i −
∑Pd

i=0
âix

i
∣∣∣ < εmax

∣∣∣
∑Pd

i=0
xi
∣∣∣.

Observe that the upper bound of the polynomial model output perturbation de-165

pends not only on the upper bound of the perturbation noise but also on the input

value x and the polynomial degree Pd. The higher the polynomial degree Pd, the

more serious the polynomial model may be perturbed, a well-known drawback of

using polynomial modeling.

We further illustrate this optimality of the B-spline model using a simple170

example. Figure 5 (a) plots a quadratic polynomial function y = 0.001x2 −
0.02x+0.1 defined over x ∈ [0, 20] in solid line. Based on the knot sequence

of {−5,−4, 0, 20, 24, 25}, this function is modeled as a quadratic B-spline model

of y = 0.14B1(x)−0.10B2(x)+0.14B3(x), which is depicted in Figure 5 (b) in

solid line. We now draw three noises εi, 1 ≤ i ≤ 3, from a uniformly distributed175

random number (UDRN) in [−0.0001, 0.0001], and add them to the three pa-

rameters in the two models, respectively, to simulate the effects of the noise in

identification. Figure 5 (a) and Figure 5 (b) depict the ten sets of the perturbed

functions in dashed line generated by perturbing the two models, respectively. It
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(a) (b)

(c) (d)

Figure 5: (a) The polynomial model with three perturbation noises drawn from a uniformly
distributed random number (UDRN) in [−0.0001, 0.0001], (b) the B-spline model with three
perturbation noises drawn from a UDRN in [−0.0001, 0.0001], (c) the B-spline model with
three perturbation noises drawn from a UDRN in [−0.001, 0.001], and (d) the B-spline model
with three perturbation noises drawn from a UDRN in [−0.01, 0.01].
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can be clearly seen from Figure 5 (a) that the polynomial model is seriously per-180

turbed, but there is no noticeable change at all in Figure 5 (b) for the quadratic

B-spline model. To further demonstrate the maximum robustness of the B-spline

model, we next draw three perturbation noises from a UDRN in [−0.001, 0.001],

and add them to the three parameters of the B-spline model. Again, the B-spline

model is hardly affected, as can be seen from Figure 5 (c). We then draw three185

perturbation noises from a UDRN in [−0.01, 0.01] to add to the three B-spline

parameters, and the results obtained are shown in Figure 5 (d). By comparing

Figure 5 (a) and Figure 5 (d), it can be seen that despite of the fact that the

strength of the perturbation noise added to the B-spline model coefficients is 100

times larger than that added to the polynomial model coefficients, the B-spline190

model is much less seriously perturbed than the polynomial model.

3.2.2. Estimation of Nonlinear HPA

In order to design a predistorter, we first need to estimate the HPA’s nonlin-

earity, i.e., its amplitude response A(·) and phase response Υ(·). We adopt two

B-spline neural networks for this task, one for estimating A(·) and the other for

Υ(·). More specifically, we model the HPA’s true amplitude response A(r) and

true phase response Υ(r) by the following two B-spline neural networks

Â(r) =
∑N

i=1
Bi(r)αi, (24)

Υ̂(r) =
∑N

i=1
Bi(r)βi. (25)

Hence, the estimation task is turned into the problem of estimating the two

B-spline neural networks’ parameter vectors α =
[
α1 α2 · · ·αN

]T ∈ R
N and

β=
[
β1 β2 · · ·βN

]T∈R
N .195

Given the K training data samples {x(k), w(k)}Kk=1, where K > N , x(k)

and w(k) are the input and output of the HPA, respectively, we can obtain the

closed-form LS estimates of α and β. Specifically, first converting the complex-

valued training dataset {x(k), w(k)}Kk=1 into the two real-valued ones, namely,

{rx(k), rw(k)}Kk=1 and {rx(k), φw(k) − φx(k)}Kk=1. We introduce the respective

16



desired output vectors for the models (24) and (25) as

dA =
[
rw(1) rw(2) · · · rw(K)

]T
, (26)

dΥ =
[
(φw(1)− φx(1)) (φw(2)− φx(2)) · · · (φw(K)− φx(K))

]T
, (27)

as well as the regression matrix

B =




B1(rx(1)) B2(rx(1)) · · · BN (rx(1))

B1(rx(2)) B2(rx(2)) · · · BN (rx(2))
...

...
...

...

B1(rx(K)) B2(rx(K)) · · · BN (rx(K))



. (28)

Then the LS estimates of α and β are readily given respectively by

α̂ =
(
B

T
B
)−1

B
TdA, (29)

β̂ =
(
B

T
B
)−1

B
TdΥ. (30)

3.2.3. Designing Predistorter Using Gauss-Newton Algorithm

Given the estimated HPA’s phase response Υ̂(r) of (25), the estimated pre-

distorter’s phase response is readily determined according to (15) as Ψ̂(rv) =

−Υ̂(rv), which is also illustrated in Fig. 3. On the other hand, the problem

of estimating the predistorter’s amplitude response can also be turned into one

of estimating the parameter vector θ =
[
θ1 θ2 · · · θN

]T ∈ R
N for the following

B-spline neural network

B̂(r) =
N∑

i=1

Bi(r)θi. (31)

However, this is a nonlinear estimation problem, and an iterative gradient de-

scent optimization procedure has to be applied. More specifically, given the

set of the N input magnitude samples
{
rx(k)

}K

k=1
and the estimated HPA’s

17



amplitude response of (24), define the errors e(k)

e(k) =rx(k)− Â
(
B̂(rx(k))

)
= rx(k)−

∑N

i=1
Bi

(
B̂(rx(k))

)
α̂i

=rx(k)−
∑N

i=1
Bi

(∑N

l=1
Bl(rx(k))θl

)
α̂i, (32)

for 1 ≤ k ≤ K. We minimize the following cost function to determine θ

J(θ) =
1

2

∑K

k=1
e2(k). (33)

Denote rv(k)= B̂(rx(k))=
∑N

l=1 Bl(rx(k))θl. Clearly, we must have rv(k)=

B̂(rx(k))≥0, and hence we actually compute rv(k) as rv(k)=max

{
N∑
l=1

Bl(rx(k))θl, 0

}
.

The gradient of the cost function (33) ▽J(θ) =
[

∂J
∂θ1

∂J
∂θ2

· · · ∂J
∂θN

]T
is given by

∂J(θ)

∂θi
=

K∑

k=1

e(k)
∂e(k)

∂θi
= −

K∑

k=1

e(k)
dÂ(rv(k))

drv

∂rv(k)

∂θi
,

=−
K∑

k=1

e(k)

( N∑

l=1

dBl(rv(k))

drv
α̂l

)
Bi(rx(k)), 1 ≤ i ≤ N, (34)

in which the derivatives of the B-spline basis functions can also be computed

recursively according to the following De Boor recursion [57]

dBl(r)

dr
=

dB(Pd)
l (r)

dr
=

Pd

RPd+l−1 −Rl−1
B(Pd−1)
l (r)

− Pd

RPd+l −Rl

B(Pd−1)
l+1 (r), 1 ≤ l ≤ N. (35)

By denoting the iteration step index with the superscript (τ) and given the

initial estimate θ(0), the Gauss-Newton algorithm to estimate θ is given by the

iteration formula

θ(τ) =θ(τ−1) − µ
(
▽J

(
θ(τ−1)

)(
▽J

(
θ(τ−1)

))T)−1

▽J
(
θ(τ−1)

)
, (36)

where µ > 0 is the step size.
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3.2.4. Designing Predistorter Using PSO Algorithm

Since the cost function (33) is highly nonlinear, gradient-based estimators,

such as the Gauss-Newton algorithm, require good initial parameter estimate

to avoid local minima. Therefore, it is preferred to apply an efficient global

optimization algorithm to solve this problem. Here we use the PSO [45, 46] to

design the predistorter amplitude response. Recall that given the cost function

J(θ) of (33) based on a block of training data
{
rx(k)

}K

k=1
, the predistorter

design problem is to solve the following optimization problem

θopt =argmin
θ∈Θ

J(θ), (37)

where the search space is specified by

Θ =
N∏

i=1

[
θimin

, θimax

]
. (38)

When applying the PSO algorithm [45, 46] to solve this optimization, a swarm

of particles
{
θ
(l)
m

}S

m=1
are ‘flying’ in the search space to find a solution, where

S is the size of the swarm and l ∈ {1, 2, · · · , Lmax} denotes the lth movement

of the swarm with Lmax being the maximum number of searches. Each particle

position θm =
[
θm,1 · · · θm,N

]T
has a velocity vm =

[
vm,1 · · · vm,N

]T
to direct

its search, and vm ∈ V with the velocity space defined by

V =
N∏

i=1

[
− vimax

, vimax

]
, (39)

where vimax
= 1

2

(
θimax

− θimin

)
.

The PSO search is started by initializing the particles
{
θ
(0)
m

}S

m=1
randomly

within Θ and setting the velocity for each candidate particle to zero, namely,
{
v
(0)
m = 0N

}S

m=1
. The so-called cognitive information pb

(l)
m and the social in-

formation gb(l) record the best position visited by the particle m and the best

position visited by the entire swarm, respectively, during the l movements. The

cost function values associated with pb
(l)
m and gb(l) are J

(
pb

(l)
m

)
and J

(
gb(l)

)
,
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respectively. The velocities and positions of the swam are updated according to

v(l)
m =Iw · v(l−1)

m + rand(0, 1) · c1 ·
(
pb(l−1)

m − θ(l−1)
m

)

+ rand(0, 1) · c2 ·
(
gb(l−1) − θ(l−1)

m

)
, (40)

θ(l)
m =θ(l−1)

m + v(l)
m , (41)

for 1 ≤ m ≤ S, where Iw is the inertia weight, rand(a, b) denotes the random

number uniformly distributed in [a, b], c1 and c2 are the two acceleration coef-

ficients. Experimental results given in [46] show that a better performance can

be achieved by using Iw = rand(0, 1) rather than a constant inertia weight. The

time varying acceleration coefficients [45] are adopted, in which





c1 = 2.5− (2.5− 0.5) l
Lmax

,

c2 = 0.5 + (2.5− 0.5) l
Lmax

.
(42)

The velocity v
(l)
m and position θ

(l)
m , derived in (40) and (41), respectively, are200

projected inside the velocity space V and the search space Θ. Furthermore,

if v
(l)
m = 0N , it is re-initialized to a non-zero value inside V . Algorithm 1

summarizes this PSO algorithm.

4. Performance Evaluation

A simulation study is carried out to investigate the achievable performance205

of the proposed PSO assisted B-spline neural network based predistorter. In the

simulated nonlinear MIMO downlink, the BS employs L = 5 transmit antennas

to support M = 3 single-antenna MUs using the same single frequency-time

resource block. The 64QAM signaling is adopted, and the transmit HPA’s pa-

rameters are specified by (12). Both the Gauss-Newton algorithm and the PSO210

algorithm are compared in designing the B-spline predistorter to demonstrate

the superior performance of the latter. The system’s signal-to-noise ratio (SNR)

is defined as SNR =
σ2

s

σ2
n
, where σ2

s is the average symbol energy of the 64QAM

symbols. The ZF TPC matrix is calculated according to the channel estimate

20



Algorithm 1 Particle swarm optimization algorithm

1: Swarm Initialization

2: Give swarm size S and number of search iterations Lmax.

3: Randomly initialize
{
θ
(0)
m

}S

m=1
in Θ, and set

{
v
(0)
m = 0N

}S

m=1
.

4: Compute
{
J
(
θ
(0)
m

)}S

m=1
, set

{
pb

(0)
m = θ

(0)
m

}S

m=1
, and determine

gb(0) = arg min
1≤m≤S

J
(
θ(0)
m

)
.

5: Swarm Evolution

6: For l = 1, 2, · · · , Lmax

7: For m = 1, 2, · · · , S
8: Compute v

(l)
m according to (40).

9: For i = 1, 2, · · · , N
10: If v

(l)
m,i = 0: v

(l)
m,i = ±0.5vimax

rand(0, 1).

11: If v
(l)
m,i > vimax

: v
(l)
m,i = vimax

.

12: If v
(l)
m,i < −vimax

: v
(l)
m,i = −vimax

.
13: End for

14: Compute θ
(l)
m according to (41).

15: For i = 1, 2, · · · , N
16: If θ

(l)
m,i > θimax

: θ
(l)
m,i = θimax

.

17: If θ
(l)
m,i < θimin

: θ
(l)
m,i = θimin

18: End For

19: Compute J
(
θ
(l)
m

)
, and set pb

(l)
m = pb

(l−1)
m .

20: If J
(
pb

(l)
m

)
> J

(
θ
(l)
m

)
: pb

(l)
m = θ

(l)
m .

21: If J
(
gb(l−1)

)
> J

(
pb

(l)
m

)
: gb(l−1) = pb

(l)
m .

22: End for

23: gb(l) = gb(l−1).
24: End for

25: Termination

26: Solution is θopt = gb(Lmax).
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(7), which takes into account the channel estimation error. The BER perfor-215

mance is averaged over 100 MIMO channel realizations.

4.1. Predistorter Performance

4.1.1. Estimating HPA

Consider the HPA specified by (12), whose amplitude response and phase

response are depicted in Figure 2. To identify this HPA, 400 training input and

output data samples are generated. The amplitudes of the inputs to the HPA

are randomly drawn from [0.01, 1.35]. The B-spline model with polynomial

degree Pd = 4 and N = 10 basis functions is adopted. The knot sequence is

specified by

−2× 10−5,−10−5,−10−6,10−5, 0.05, 0.1, 0.3, 0.5, 0.7, 1.1, 1.3,1.4, 1.5, 1.6, 103.

Clearly, the input magnitude r > 0 and the HPA saturated at the input magni-

tude rsat = 1.4. Therefore, we set the two boundary knots to Rmin = 10−5 and220

Rmax = 1.4.

The B-spline estimated amplitude response and phase response model pa-

rameter vectors, α̂ and β̂, are readily obtained by the closed-form LS solutions

(29) and (30). The B-spline estimated HPA amplitude response and phase re-

sponse are depicted in Figure 6, in comparison with the true HPA amplitude225
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Figure 6: Comparison of the true HPA and its B-spline estimate as well as comparison of the
ideal combined predistorter and true HPA and the combined estimated predistorter and true
HPA: (a) amplitude response, and (b) phase response. The B-spline predistorter estimate is
obtained using the Gauss-Newton algorithm.
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response and phase response. It can be seen from Figure 6 (a) and Figure 6 (b)

that the response of the B-spline neural network estimate closely match the

response of the true HPA, except for near zero input amplitude where there is

a very small but noticeable phase response error.

4.1.2. Estimating Predistorter by Gauss-Newton Algorithm230

Based on the obtained B-spline estimate Â(r) of the HPA amplitude re-

sponse, we can design the B-spline predistorter amplitude response model using

the Gauss-Newton algorithm. The initial parameter vector θ is set to 0N in

this case. The estimated predistorter amplitude response is illustrated in Fig-

ure 6 (a). In Figure 6, we also display the amplitude response and phase response235

of the combined predistorter estimate and the true HPA, in comparison with the

ideal response of the combined predistorter and the true HPA, which are speci-

fied by (14) and (15). Observe from Figure 6 (a) that for small input amplitude

and very large input amplitude, the combined predistorter estimate and the

true HPA deviates noticeably from the ideal one. Also there exists a large com-240

bined phase response error at very small input amplitude, as can be clearly seen

from Figure 6 (b). Clearly, this estimated predistorter’s amplitude response by

the Gauss-Newton algorithm is insufficiently accurate. Better initial parameter

vector are required for the Gauss-Newton algorithm to converge to an accurate

solution.245

4.1.3. Estimating Predistorter by PSO Algorithm

Next, we apply the PSO algorithm to design the B-spline predistorter ampli-

tude response model based on the obtained B-spline estimate Â(r) of the HPA

amplitude response. The population size is set to S = 50, and the maximum

number of swam movements is Lmax = 100, while all the position lower bounds250

and upper bounds are set to θimin
= −1.0 and θimax

= 1.0, respectively. The

amplitude response and phase response of the combined predistorter estimate

and the true HPA are shown in Fig. 7 (a) and (b), respectively. Observe that the

estimated combined amplitude and phase response closely match to the ideal
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Figure 7: Comparison of the true HPA and its B-spline estimate as well as comparison of the
ideal combined predistorter and true HPA and the combined estimated predistorter and true
HPA: (a) amplitude response, and (b) phase response. The B-spline predistorter estimate is
obtained using the particle swarm optimization algorithm.

ones. Clearly, the PSO algorithm is much better than the Gauss-Newton al-255

gorithm for solving this nonlinear optimization problem. More specifically, the

estimated B-spline neural network based predistorter by the PSO algorithm is

capable of accurately pre-compensating for the HPA’s nonlinear distortion.

Remark 3. The PSO algorithm is ideal for estimating the B-spline predistorter

which has only N = 10 parameters. Two algorithmic parameters, the population260

size S and the maximum number of swam movements Lmax, need to be set. Ex-

tensive empirical results suggest that Lmax = 100 is sufficient and setting S to a

few times of N is adequate. The PSO algorithm converges very fast. Although

we set Lmax = 100, the algorithm actually converges in far less than 100 itera-

tions. The predistorter design is an offline problem, since it does not depend on265

the channel. Specifically, it is designed before communication and fixed. The BS

has sufficient computation capacity to implement the PSO algorithm to design

the predistorter before performing the downlink TPC transmission.

4.2. Bit Error Rate Performance

To further demonstrate the effectiveness of the proposed PSO assisted B-270

spline neural network based predistorter design, we apply the estimated B-spline

predistorter obtained in Subsection 4.1.3 in the nonlinear MIMO downlink to
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Figure 8: Comparison of the average bit error rate performance over 100 MIMO channel
realizations obtained by the nonlinear transmit scheme utilizing the estimated predistorter
and the classical linear ZF transmit precoding scheme, respectively, given the two OBO values
of 3 dB and 5 dB and with perfect CSI: (a) MU m = 1, (b) MU m = 2, and (c) MU m = 3.

investigate the achievable BER performance. First, we consider the idealis-

tic case of perfect CSI, namely, the channel estimation error bound σε = 0.

Figure 8 compares the achievable BER performance of our nonlinear transmit275

design with that of the classical linear transmit precoding scheme. To the best

knowledge of the authors, there exists no other nonlinear transmit design in

the literature for the NOMA multiuser nonlinear MIMO downlink considered

in this research. Therefore, we only compare our proposed nonlinear transmit

scheme with the linear transmit scheme. As expect, the linear ZF transmit280
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Figure 9: Impact of the channel estimation error bound σε on the achievable average bit error
rate performance of the nonlinear transmit scheme utilizing the estimated predistorter over
100 MIMO channel realizations, given OBO = 3dB: (a) MU m = 1, (b) MU m = 2, and
(c) MU m = 3.

precoding scheme cannot compensate for the HPAs’ nonlinear distortions and,

consequently, a very high BER floor occurs. By effectively compensating for

the HPAs’ nonlinear distortions with our PSO assisted B-spline neural network

based predistorter, our nonlinear transmit design dramatically improving the

achievable BER performance.285

Next we investigate the impact of the channel estimation error on the achiev-

able BER performance of our proposed nonlinear transmit scheme. Given

OBO = 3dB, Figure 9 depicts the BER performance under different levels
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(c)

Figure 10: Impact of the channel estimation error bound σε on the achievable average bit
error rate performance of the nonlinear transmit scheme utilizing the estimated predistorter
over 100 MIMO channel realizations, given OBO = 5dB: (a) MU m = 1, (b) MU m = 2, and
(c) MU m = 3.

of estimation error, ranging from low channel estimation error of σε = 0.02 to

high channel estimation error of σε = 0.05. With very low channel estimation290

error of σε = 0.01, the BER curve is almost indistinguishable form the idealis-

tic case of perfect CSI. On the other hand, with very high channel estimation

error of σε = 0.06, the BER floor increases to around 10−3. For graphic clar-

ification, we do not plot these two BER curves. Similarly, given OBO = 5dB,

Figure 10 shows the impact of channel estimation error on the achievable BER295

performance. It can be seen that our proposed nonlinear transmit design rely-

27



ing on the estimated B-spline predistorter is reasonably robust to the channel

estimation error.

5. Conclusions

In this paper, we have proposed an efficient and highly accurate predistorter300

design to enable a novel nonlinear transmit scheme for the NOMA multiuser

nonlinear MIMO downlink with high-order QAM signaling and nonlinear trans-

mit HPAs at the BS. Our main contribution has been to design a novel PSO

assisted B-spline neural network based predistorter. This nonlinear predistorter

can be pre-constructed in training before communication session, which pro-305

vides an effective and accurate means of pre-compensating for the nonlinear

distortions of transmit HPAs during communication session. With the nonlin-

ear distortions of transmit HPAs been taking care of by this novel predistorter,

the standard linear transmit precoding, such as the ZF precoding, can read-

ily been employed to combat the multiuser MIMO channel interference. Our310

proposed nonlinear transmit design has been the first effective scheme for the

NOMA multiuser nonlinear MIMO downlink. A simulation investigation has

been conducted to demonstrate its effectiveness. The results obtained have also

shown that our proposed nonlinear transmit design is reasonably robust to the

channel estimation error.315
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