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ABSTRACT
Effective exploration of useful contextual information in multi-modal images is an essential task in
salient object detection. Nevertheless, the existing methods based on the early-fusion or the late-fusion
schemes cannot address this problem as they are unable to effectively resolve the distribution gap
and information loss. In this paper, we propose an adaptive multi-level deformable fusion network
(AMDFNet) to exploit the cross-modality information. We use a cross-modality deformable convolution
module to dynamically adjust the boundaries of salient objects by exploring the extra input from another
modality. This enables incorporating the existing features and propagating more contexts so as to
strengthen the model’s ability to perceiving scenes. To accurately refine the predicted maps, a multi-
scaled feature refinement module is proposed to enhance the intermediate features with multi-level
prediction in the decoder part. Furthermore, we introduce a selective cross-modality attention module
in the fusion process to exploit the attention mechanism. This module captures dense long-range
cross-modality dependencies from a multi-modal hierarchical feature’s perspective. This strategy
enables the network to select more informative details and suppress the contamination caused by the
negative depth maps. Experimental results on eight benchmark datasets demonstrate the effectiveness
of the components in our proposed model, as well as the overall saliency model.

1. Introduction13

In salient objection detection (SOD), the main objec-14

tive is to extract the most predominant objects from a nat-15

ural scene. It has been an essential function in computer16

vision since SOD has many useful applications, including17

image/video compression [18, 27], object segmentation and18

recognition [68, 67, 44, 23], content-based image editing [52,19

55], informative common object discovery [63, 64], and im-20

age retrieval [47]. Many SOD methods are based on the as-21

sumption that the inputs are RGB images [40, 54, 57, 53, 66]22

or video sequences [56, 25].23

With the advancement of the depth cameras such as Mi-24

crosoft Kinect and time-of-flight sensors [20], the SOD based25

on the RGB-D (‘D’ means the depth images) offers new op-26

portunities, where the depth images provide complementary27

cues that are not available in the RGB images. Such cues are28

game-changers in challenging SOD scenarios, e.g., cluttered29

background or salient objects that have similar appearance30

with the background, as shown in Fig. (1). Compared with the31

SOD using RGB images, the depth information, if available,32

supplies geometric cues that are otherwise invisible in color33

space. This significantly enhances the final predicted maps34

and has motivated the extensive recent research activities on35

RGB-D based salient object detection.36

In the existing research, several studies [9, 10, 8] have37

investigated designing hand-crafted features with domain-38
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Figure 1: Several low-quality depth samples obtained from the
existing RGB-D SOD benchmarks. The first row shows the
RGB images and the second row their depth samples.)

specific knowledge, such as the tendency of humans to focus 39

on the center objects for saliency detection. However, using 40

hand-crafted features lacks generalization ability and hence 41

is not applicable to other scenes, mainly due to missing high- 42

level representations. 43

To address the generalization issue, relevant investiga- 44

tions have been proposed using convolution neural networks 45

(CNNs) to learn the representative features. Several studies 46

[2, 46] have also attempted to overcome the limitation caused 47

by missing high-level representations by incorporating the 48

depth information effectively. 49

Although in many SOD research works, the strategies for 50

cross-modality fusion have been investigated, the following 51

issues still exist. First of all, the main challenge for the exist- 52

ing SOD methods is the lack of sufficient high-quality depth 53

datasets for training the backbone networks and extracting 54

the critical features. Secondly, the need for large datasets is 55

due to the sophisticated architecture of the networks [2, 3] 56

with many parameters. These issues have undermined fea- 57
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ture extraction and led to sub-optimal solutions. Moreover,58

the existing RGB-D benchmarks are collected by different59

laboratories who have used different metrics for choosing60

and labeling the images. This results into some low-quality61

depth images being included which contribute little or even62

negatively to the training. These low-quality samples may63

further affect the accuracy of the final saliency detection,64

especially if the adopted method indiscriminately integrates65

the RGB and depth information. The fusing strategy and66

capturing sufficient cross-modality complementary informa-67

tion also play critical roles in RGB-D SOD. The selective68

fusion scheme is adopted in the fusing process to prevent the69

contamination caused by unreliable depth information and70

effectively integrate the multi-modal information. Therefore,71

it is essential to address the negative impact of the low-quality72

depth images and select reliable and accurate information in73

the fusion process.74

The existing works have explored different contributions75

between the early- [41, 21, 33, 46] and late-fusion [51]. Specif-76

ically, the early-fusion schemes take both RGB and depth77

data as inputs and process them in a unified mode. How-78

ever, such a fusion strategy ignores the distribution gap and79

different feature characters in both modalities. It is also not80

easy for one model to fit both modalities. By comparison, the81

late-fusion strategy means that the data of both modalities are82

handled in two separate processing branches to produce the83

corresponding saliency maps. Both maps are then designed84

through a concentration operation. Nevertheless, the major85

issue with this scheme is the inner supervision between both86

modalities. The rich cross-modality cues are also compressed87

and lost in the two separate branches.88

Both of the fusion strategies mentioned above result in89

the learning process being trapped in a local optimum, where90

it becomes biased towards the RGB information. This is91

due to the channel concatenation degrading the learning out-92

comes, where the final prediction is dominated by the RGB93

features without incorporating the contribution of the cross-94

modality informative feature. To enhance the fusion pro-95

cess of the depth maps, several works [2, 3, 4, 19] proposed96

middle-fusion strategies to conduct intermediate independent97

features by two-stream CNNs. Such a network is then used98

to simultaneously extract independent hierarchical features99

from the RGB and depth images. Both features are then inte-100

grated to eliminate the distribution gap. This scheme further101

introduces rich cross-modality features with well-designed102

intermediate processing actions. Hence, the desired fusion103

method can consider different properties in both modalities104

and adaptively alter the contribution of both modalities in the105

final prediction results.106

To address the abovementioned issues, we revisit the107

fusion process of cross-modality complementary and pro-108

pose a novel adaptive multi-level deformable fusion network109

(AMDFNet) for the RGB-D SOD. Our approach comprises110

of the adaptive adjustment of the salient objects’ boundaries111

in both modalities. We further optimize the fusion process112

of RGB and depth information based on a selective cross-113

modality attention mechanism.114

In our approach, instead of indiscriminately integrating 115

multi-modal information from RGB and depth maps, we de- 116

vise a selective cross-modality attention module (SCAM). 117

The SCAM captures the long-range dependencies from a 118

multi-level cross-modality perspective. The obtained atten- 119

tion associations, along with the existing local andmulti-scale 120

features in the other modality, facilitate the fusion process 121

by highlighting the salient objects. Inspired by the Non- 122

local (NL) operation [59], the SCAM also supplies extra 123

complementary cues on more important contextual features 124

that should be emphasized in propagating the features. This 125

improves the accuracy of locating salient object boundaries. 126

To further enhance the independent hierarchical features 127

simultaneously from both views, we also introduce a novel 128

feature refinement scheme. Here, we first design a cross- 129

modality deformable convolution module (CDCM) based on 130

the standard deformable convolution operation [12]. This 131

module adjusts the boundaries of the salient objects in both 132

modes to prevent contamination caused by unreliable depth 133

maps. The CDCM also emphasizes the salient regions and 134

object boundaries. As shown in Fig. (1), several depth sam- 135

ples lost the details of salient objects because of the cluttered 136

background. This may result in low-quality features being 137

extracted by both feature extraction branches. The CDCM ex- 138

tracts accurate geometric boundaries of the salient objects us- 139

ing both modalities to regulate the negative samples’ training 140

by emphasizing the geometric boundaries. This significantly 141

reduces the negative impact of these samples. Specifically, 142

another modality feature provides offsets to adjust the filter 143

boundaries, hence resulting in the convolution block to em- 144

phasize the image content, with the nodes on the foreground 145

having support for covering the whole target object. In con- 146

trast, other nodes in the background are ignored to better 147

focus on the salient target. 148

Moreover, we employ a multi-level feature refinement 149

mechanism (MFRM) to improve the integration of different 150

levels of hierarchical features in the decoding stage. Different 151

modalities are not equally informative or beneficial to the 152

final segmented map. This is because some images or depth 153

information are affected by imperfect alignment or direct 154

concatenation. Besides, it is challenging to compensate the 155

details of modalities explicitly or implicitly within a single 156

resolution scale. To address this issue, we introduce the 157

MFRM to further improve the performance of the precision 158

maps from various feature levels in both modalities. In the 159

MFRMmodule, the depth features provide the learning offset 160

and the modulated scalar for the image features, whereas the 161

image features provide the corresponding coefficients for the 162

depth branch. By introducing the deformable convolution 163

operation, the network decoder block adaptively adjusts the 164

reference image and supporting information at the feature 165

level without warping and blurring, which are usually caused 166

by direct concatenation. 167

The main contributions of this work are summarized as 168

follows: 1) This paper proposes a selective cross-modality 169

attention module that adaptively integrates the information 170

from both modes, reducing the fusion ambiguity caused by 171
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unreliable inputs and maximally reserving realistic details. 2)172

The proposed cross-modality deformable convolution mod-173

ule can extract additional cues from another branch to adap-174

tively alter the sampling locations and cover the irregular175

boundaries of the salient objects. 3) The multi-level feature176

refinement mechanism aims to fuse cross-modality features177

in the multi-scale terms, incredibly aggregating some unique178

cues from small size features.179

2. Related Work180

In this section, we review the salient object detection181

models for RGB and RGB-D images with a focus on deep182

learning based methods.183

2.1. Saliency Detection on RGB-D Images184

The conventional methods for RGB-D SOD predict high-185

quality saliency maps via hand-crafted features based on im-186

age characteristics such as contrast and shape. Niu et al. [35]187

introduced the disparity contrast and domain knowledge into188

stereoscopic photography for measuring the stereo saliency.189

Several other SOD studies relying on hand-crafted features190

were also extended for RGB-D SOD, e.g., based on contrast191

[8, 11, 36], boundary prior [9, 29, 50], or compactness [10].192

Since the above methods heavily rely on hand-crafted heuris-193

tic features, they often have limited generalizability to more194

complex scenarios.195

Furthermore, in the existing methods, domain knowledge196

priors induced by both 2D images and RGB-D cues have not197

been exploited. This is often addressed by the CNN-based198

methods. Such methods outperform the traditional methods199

because of their enhanced representativeness. Most of the200

recent advances in SOD [38, 31, 15] are based on CNNs.201

The depth maps also supply extra details that are invisible202

in RGB images. Emerging deep learning-based approaches203

have also been adopted and become a mainstream approach204

in RGB-D SOD. Qu et al. adopted an early fusion strategy205

to handle hand-crafted RGB and depth features together as206

inputs to the CNN. Besides, early fusion schemes in [15, 21,207

33] formulated four-channel inputs, treating the depth map208

as the 4tℎ channel of the corresponding RGB images as the209

CNN inputs. Unlike the early fusion for an extra channel,210

the middle fusion strategy is adopted in [2, 3, 4, 19] to fuse211

intermediate depth and RGB features. Specifically, Chen212

et al. [2] proposed a complementarity-aware fusion module213

to obtain cross-modality and cross-level features. Besides,214

Wang et al. [51] used a switchmap to adaptively fuse the RGB215

images with depth saliency maps. Chen et al. [6] introduced216

the depth map enhancement module to improve the salient217

object performance.218

2.2. Self-Attention to Cross-Modality Attention219

Vaswani et al. [48] proposed a self-attention network220

for language learning. In their proposed network, they first221

calculated the attention weight between the query and each222

key in a set of key-value pairs. Then, they aggregated the223

values through a weighted sum with the attention weights224

as the final output. Motivated by various approaches, Wang225

et al. [59] then proposed the NL model for learning self- 226

attention in computer vision. Nam et al. [34] also proposed a 227

dual attention model to learn multi-modal attention. Wan et 228

al. [49] extracted three-modality attention for a code retrieval 229

task. 230

In RGB-D SOD, standard self-attention cannot meet the 231

requirement, and cross-modality attention influence should 232

be considered. In this paper, we propose a fusion scheme to 233

accurately extract multi-scale cross-modality attention from 234

both modality views in this work. 235

2.3. Deformable Convolutional Network 236

A deformable convolution network [12, 69] adaptively 237

determines the object scales or receptive field sizes with- 238

out being affected by the fixed structures of the convolution 239

kernels. Dai et al. [12] proposed deformable convolutional 240

networks (DCNs), where additional offsets were learned to 241

allow the network to obtain information from its regular local 242

neighborhood. This improved the capability of the regu- 243

lar convolutions. Based on the DCNs, Zhu et al. [69] then 244

proposed the modulation deformable convolution network, 245

which introduced an additional modulated scale to enable the 246

adaptive scale to control the learned offsets. 247

Deformable convolutions are widely used in various im- 248

age processing applications, such as semantic segmentation 249

[12], video super-resolution [58], object detection [7], SOD 250

[17, 30] and video SOD [5]. 251

3. Methodology 252

Here, we propose a novel cross-modality fusion model 253

for the RGB-D images to improve the SOD performance. We 254

first briefly review the deformable convolution networks and 255

then design a cross-modality deformable convolution module 256

(CDCM). We then devise a multi-level feature refinement 257

mechanism (MFRM) which integrates cross-modality fea- 258

tures from coarse features to fine features. We then propose 259

a selective cross-modality attention module (SCAM) for fus- 260

ing informative and complementary details using multi-scale 261

features extracted in the pyramid non-local block. Finally, we 262

describe the implementation details of the proposed RGB-D 263

SOD system and the corresponding hybrid loss function. 264

3.1. Modulation Deformable Convolutional 265

Network 266

It is generally challenging to extract the desired cross- 267

modality features in SOD using the RGB-D data. The CNNs 268

of the cascaded standard convolution layers are also limited 269

by the fixed geometric structure of the standard convolution 270

filters. Therefore, they are often unable to adaptively fuse 271

useful features in both modalities. Since salient objects gen- 272

erally have arbitrary sizes and compositions, especially in 273

their depth maps, the regular-gridded sampling filters im- 274

pose feature extraction from the rectangular regions. This 275

results in lower-quality features and hence degrades the SOD 276

performance. 277

The primary motivation for adopting the modulation de- 278

formable convolutional networks (DCNV2) is to lead the 279
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Figure 2: The network architecture of the proposed RGB-D saliency detection network. (a) Overview of our propose network
architecture. The whole network is a two-steam CNN architecture, which consists of a RGB and a depth branch. DREi and DDEi
(i = 1, 2, 3) denote the features generated by the beginning three layers with cross-modality deformable convolution module at
encoding stage of both branches respectively, and REi and DEi (i = 4, 5) are the features generated from normal convolutional
blocks. The RDi and DDi (i = 5, 4,⋯ , 1) represent the features of both decoder stages. (b) The architecture of the cross-modality
deformable convolution module (CDCM). (c) Details of the feature fusion operation.

SOD network for locating adaptive neighborhoods for each280

pixel position in the intermediate feature maps. The pixels281

in the current position and the corresponding details from282

another branch enhance these cross-modality features in the283

RGB or depth modality.284

The DCNV2 [69] adjusts offsets in perceiving the input285

features and further modulates the amplitudes of the input286

feature from different spatial samples. Therefore, the DCNV2287

can vary the spatial distribution and the relative influence of288

its samples. Specifically, the offset dynamically extends the289

size of the receptive field to obtain the desired convolutional290

region. The learning modulation mechanism also provides291

the network module with an extra degree of freedom to adjust292

its spatial support regions.293

Comparedwith the standard convolution layer, theDCNV2294

emphasizes the irregularity and variety of the object struc-295

tures. This is because DCNV2 changes the sampling location296

of the convolution kernels by adding the offsets and modu-297

lated scalars. Moreover, both coefficients are adaptive and298

can highlight the significant boundaries, and hence suppress299

the unnecessary regions extracted by the standard convolu-300

tion rectangular filter. The DCNV2 then adaptively expands301

the receptive field for the object according to its size. The302

dynamic receptive fields further ensure that the feature map303

of the object responds to the target and removes those unnec-304

essary regions without informative details. 305

In the DCNV2, images for post Δpk and Δmk are the
learning offset and the modulation scalar for the k-th location,
respectively, i.e., K is the number of locations within the
convolution grid. A 3 × 3 kernel is defined with K = 9
and pk ∈ {(−1,−1), (−1, 0),⋯ , (1, 1)} which denotes a 3 ×
3 convolutional kernel with a dilation of 1. Besides, the
modulation scalar Δmk is in [0, 1]. Both coefficients are
obtained via a 1 × 1 convolution layer applied over the same
input feature map x as shown in Fig. (2)-(b). Hence, the
modulated deformable convolution can be written as:

y(p) =
K
∑

k=1
wk ⋅ x(p + pk + Δpk) ⋅ Δmk. (1)

The output has 3K channels, where the first 2K channels 306

correspond to the learned offsets Δpk, and the remaining K 307

channels are fed into a sigmoid layer to obtain the modulation 308

scalars Δmk. The learning offsets Δpk are usually fractional, 309

and hence bilinear interpolation [12] is adopted to ensure an 310

integer value. The initial values of Δpk and Δmk are 0 and 311

0.5, respectively. 312
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Figure 3: The details of our proposed multi-level feature refinement mechanism (MFRM). The black and red lines denote the
image and the corresponding depth processing branch, respectively.

3.1.1. Cross-modality Deformable Convolution313

Module314

As demonstrated in Fig. (1), there are several low-quality315

depth images in these widely used RGB-D SOD datasets. If316

we only regard the two processing branches without neces-317

sary treatments, these negative samples will affect the final318

prediction map. Moreover, it is challenging for conventional319

feature extractors (e.g., VGG or ResNet) to extract the de-320

sired features in the separate stream for RGB and depth maps.321

The considerable distribution gap between the data in both322

modalities data worsens the issue.323

To address this issue, we adopt the deformable progres-324

sive extraction strategy to adaptively extract the cross-modality325

details. Based on the DCNV2, we propose the cross-modality326

deformable convolutionmodule (CDCM) as shown in Fig. (2)-327

(b), which receives the features of another branch to produce328

the modulated scalars and offsets. The offsets and scalars329

learned by the depth maps provide the accurate position of330

the salient objects for the image branch. This is because the331

depth images effectively locate the boundary of the signifi-332

cant objects. The geometric transformation ability enables333

the feature extractor to obtain more accurate boundary infor-334

mation. Nevertheless, the image details also provide offsets335

and modulated scalars for depth information, ensuring that336

the complementary details contain the saliency regions so as337

to reduce the negative effect caused by the background and338

non-salient objects.339

Here, we employ CDCM to guide the cross-modality340

feature extraction, which can dynamically adjust the receptive341

field to focus on the object body in the saliency boundaries342

together. In our design, we replace the traditional convolution343

layer with the module at the first three encoder blocks (i.e.,344

DREi and DDEi i ∈ {1, 2, 3}).345

We consider the additional features consisting of the RGB 346

and depth information F r and F d , where (⋅)r and (⋅)d indicate 347

whether the parameter serves in the RGB image or depth 348

branch. We further assume that both features can predict the 349

desired values of Δpk and Δmk adopted in DCNV2 [69] for 350

other branches. This enables the supply of more accurate 351

information through learnable offsets and modulated scalars. 352

The detailed processing can be expressed as:

F r(p) =
K
∑

k=1
wrk ⋅ F

r(p + pk + Δpdk) ⋅ Δm
d
k (2)

and

F d(p) =
K
∑

wdk ⋅ F
d(p + pk + Δprk) ⋅ Δm

r
k,

(3)

where
Δpd = Conv(F d)

Δmd = Conv(F d)
Δpr = Conv(F r)
Δmr = Conv(F r).

Here, the module receives F r and F d as its inputs and then
extracts the enhanced cross-modality features F̂ r and F̂ d as:

F̂ r = CDCM(F r, F d) + F r (4)
and

F̂ d = CDCM(F d , F r) + F r. (5)
Using this module, the cluttered background and unclear 353

salient object get highlighted using the information from the 354
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Figure 4: The architecture of the prior non-local block (a) and the proposed Selective Cross-Modality Attention Module (SCAM)
(b). In SCAM, input features F and additional features F ∗ are the output from the RGB and depth encoder streams respectively.
�s and gs are computed by multi-scale feature in F ∗, while � transformed by F is shared in all scales. Besides, the SCAM is
symmetrical and we denote the depth and RGB features as F and F ∗, respectively.

other branch. The irregular object structures can then be355

accurately sampled. These adaptively-learned parameters356

then adjust the boundary of the receptive field to recover357

more critical details and remove the regions with irrelevant358

background.359

3.1.2. Semantic Feature Refinement360

In multi-modality feature fusion, it is essential to prevent361

the contamination introduced by unreliable depth maps. To362

achieve this goal, we design a multi-level feature refinement363

mechanism (MFRM), as demonstrated in Fig. (3), to com-364

bine the inner cues existing in features with different sizes.365

This leads to a more primitive visual context covering differ-366

ent scales and shapes of the non-rigid salient objects. The367

proposed MFRM is a symmetrical structure consisting of368

two paths, i.e., RGB and depth streams. The MFRM aggre-369

gates the features with different scales in both modalities.370

This reduces the interference of different modalities of the371

single-sized features.372

Here, we obtain features [F 1rgb, F 2rgb, F 3rgb] and [F 1deptℎ373

, F 2deptℎ , F
3
deptℎ] from the image decoder module (RD3-RD1)374

and the depth decoder module (DD3-DD1), respectively. We375

then employ a 3×3Conv layer to obtain the sampling position376

offsetsΔp and controlling scalarΔm from F lrgb or F ldeptℎ. Be-377

sides, the DCN receives the learning parameters and original378

feature F lrgb or F ldeptℎ. This means the intermediate scaled379

features F̂ lrgb and F̂ ldeptℎ can extract different cross-modality380

cues and cover more details.381

To ensure the training flexibility, we sum the l-th learning
parameters with the upper value in (l+ 1)-th level, processed
by one ×2 upsampling operation. Hence, the Δp and Δm
for RGB and depth in different spatial level are defined as

follows:
Δplrgb = Conv(F

l
deptℎ) + (Δp

l+1
rgb )

up×2 (6)
Δpldeptℎ = Conv(F

l
rgb) + (Δp

l+1
deptℎ)

up×2 (7)
Δmlrgb = Conv(F

l
deptℎ) + (Δm

l+1
rgb )

up×2 (8)
Δmldeptℎ = Conv(F

l
rgb) + (Δm

l+1
deptℎ)

up×2 (9)
where Conv represents a 1 × 1 convolution layers and l indi- 382

cates the spatial level. 383

Based on Eq. (6) to Eq. (9), the enhanced features F̂ lrgb
and F̂ ldeptℎare handled with the input parameters Δml and
Δpl. It is then concentrated with the upper one F̂ l+1 as:

F̂ lrgb = T (DCN(F
l
rgb,Δp

l
rgb,Δm

l
rgb), (F̂

l+1
rgb )

up×2), (10)
and
F̂ ldeptℎ = T (DCN(F

l
deptℎ,Δp

l
deptℎ,Δm

l
deptℎ), (F̂

l+1
deptℎ)

up×2),
(11)

where (⋅)up×2 denotes the up-sampling operation by a factor 384

of 2, T represents a transfer module and consists of a concen- 385

tration operation and a 1 × 1 convolution layer to reduce the 386

channel dimension. The outputs F̂ 1rgb and F̂ 1deptℎ denote the 387

enhanced features for RGB and depth stream, respectively. 388

Here l is set to 3. 389

3.2. Selective Cross-modality Attention Module 390

The existing approaches [3, 4, 19] that adopted themiddle- 391

fusion strategy have treated the intermediate features of both 392

modalities equally. However, considering that there is com- 393

plementarity due to the inconsistency of the cross-modality 394

RGB-D data (e.g., contamination from unreliable depthmaps), 395
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direct integration of the cross-modality information may in-396

troduce negative results. Hence, it is essential yet challenging397

to capture the pertinent details of the feature fusion process,398

especially the depth image.399

To address the uncertainty issue of the fusing features,400

we propose an information selection module SCAM. The401

SCAM strengthens the important features containing helpful402

complementary information using an attention strategy. The403

proposed SCAM aims to capture the long-range dependencies404

existing between the multi-level RGB and depth features.405

A non-local (NL) [59] structure is proposed to exploit
the channel and spatial relationship between all pixels. As
demonstrated in Fig. (4)-(a), X ∈ ℝH×W ×C denotes the
input feature activation map, where H , W , C refer to the
height, weight and channel, respectively. The enhanced fea-
ture representation Z is defined as:

Z = 
(

1
(F)

(F)(F)
)

+ F, (12)

where(F) ∈ ℝHW ×HW is the self-similarity matrix, and406

(F) ∈ ℝHW ×C1 denotes the channel transformation oper-407

ation responsible for deducing the channel dimension from408

C to C1. In general, C1 is set as C∕2 to reduce the compu-409

tational cost. Besides, (F) produces a diagonal matrix for410

normalization purposes. Here, we adopt the Softmax oper-411

ation to normalize the intermediate features. Furthermore,412

 (⋅) reproduces the enhanced feature back into its original413

channel dimension. Specifically,  (⋅) applies a 1 × 1 Conv414

layer to recover the feature from C1− to C−dimension.415

The correlation matrix  and  are defined as:
(F) = exp

(

emb
(

F,W�
)

emb
(

F,W�
)T
)

(F) = emb
(

F,Wg
)

(13)

where emb (F,W) is implemented using a 3 × 3 Conv layer416

of parameters W (i.e., W� , W� and Wg ∈ ℝC×C1 are the417

embedding weights). In(F), each element fi,j denotes the418

affinity between the i-th and j-th spatial locations in F.419

By exploiting the long-range dependencies of the image420

pixel or region in both modalities, we create an attention map421

for each branch. The attention map indicates the extent of422

information contribution from another one.423

Nevertheless, there exist two limitations. First, the com-424

putational complexity and memory usage of the correlation425

matrix increase quadratically with the increase of the size of426

the input features. The second limitation is that the direct427

processing of the single-sized features might not fully exploit428

the hidden cues and unable to obtain optimal predictions.429

These challenge the utilization of a selective cross-modality430

attention module for the large feature.431

To address the computational complexity issue and estab-432

lish the cross-modality attention association, we propose the433

SCAM to exploit the mutual attention in both modalities. To434

do this, the SCAM computes the selective attention map at435

the multi-level feature level. Here, we take the RGB features436

as the target source, and the depth features as the reference.437

In other words, we establish the attention association between438

the original RGB features and corresponding depth features 439

in multi-size. 440

Specifically, taking the enhancement of the RGB features
F̂r as an instance. The F̂r denotes the feature by the concen-tration of embedding depth features Êsd as shown in Fig. (4)-b.Here, we take the input consisting of Fr ∈ ℝH×W ×C and the
depth features F sd ∈ ℝH×W ×C to create the attention relation-
ships among multi-scale features. The self-similarity matrix
(F) and transformation operation (F) in the s-th level are
defined as:

(Fs
r) = exp

(

emb
(

Fsd ,W
s
�
)

emb
(

Fsd ,W
s
�

)T
)

(Fs
r) = emb

(

Fsd ,W
s
g

)

(14)

The kernel size and stride of the convolutional layer for the 441

depth feature in the s-th scale are set to 2s, whereas the values 442

in the image features are set to 1. Because the proposed 443

module employs downsampling depth features to compute 444

the weightsW� andW�, the rows in both weights are reduced 445

to HW ∕4s. This significantly reduces the computational 446

complexity of obtaining the self-similarity matrix. 447

Furthermore, the enhanced embedding features Es is ob-
tained as:

Ês = 1
(Fs)

(Fs)(Fs) (s ∈ {1,⋯ s}) (15)

The embedded features are concatenated together, followed
by a 1×1 convolution layer to reproduce its channel from sC1
to C . Therefore, the final output in both branches processed
by the SCAM are:

F̂rgb = 
([

Ê1rgb,⋯ , Êsrgb
]

,W 

)

+ Frgb (16)
and

F̂deptℎ = 
([

Ê1deptℎ,⋯ , Êsdeptℎ
]

,W 

)

+ Fdeptℎ (17)

Here, we concentrate the enhanced feature representation Ês 448

by a concentration operation [⋅], and  (⋅, ⋅) denotes a 1 × 1 449

convolution layer with weight W ∈ ℝsC1×C . This is rea- 450

sonable for restoring the features to their original dimensions. 451

In our experiments, we set S = 3. 452

Compared with the standard NL block adopted in SOD 453

[31], the proposed SCAM significantly reduces the computa- 454

tional complexity and further improves feature aggregation 455

capability from multi-scale and cross-modality aspects. Fur- 456

thermore, the SCAM captures the long-range dependencies 457

from a cross-modality and multi-scale perceptive, where Êsd 458

exploits the depth information to generate a spatial weight 459

for the RGB feature, and Êsr refines the depth information by 460

using the spatial weight generated from the RGB feature. 461

3.3. RGB-D Saliency Detection Network 462

As shown in Fig. (2), we propose a symmetrical two- 463

stream encoder-decoder architecture for RGB-D SOD based 464

on the proposed SCAM and deformable feature fusion strat- 465

egy. 466
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5: Qualitative comparison of the proposed approach with some state-of-the-art RGB-D SOD methods. (a) RGB images.
(b Depth map. (c) GT. (d) Ours. (e) A2dele[38]. (f) S2MA[31]. (g) D3Net[15]. (h) DMRA[37]

Here, we denote the output features of the RGB branch467

in the encoder blocks as DREi(i = 1, 2, 3) and REi(i = 4, 5),468

and the features of the depth branch in the decoder block as469

RDi(i = 1, 2,⋯ , 5). The structure of the depth branch is470

analogous to the RGB branch. 471

We employ the CDCM at the beginning convolution 472

blocks in both branches, (i.e.,DRE1-DRE3 andDDE1-DDE3), 473

to handle the geometric variations and process the cross- 474
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modality cues, especially in the depth maps. Supervised by475

these cross-modality details, both encoder branches can ex-476

tract more valuable low-level features. For the details, we477

replace the last Conv layer with a cross-modality deformable478

convolution module (CDCM) to enable these blocks to re-479

ceive and losslessly process the geometric information. Tak-480

ing the first image encoder block DRE1 as an instance, the481

last regular 3 × 3 Conv layer is then replaced by a 3 × 3482

CDCM. (i.e., Conv(3,3) → ReLU → Conv(3,3) → ReLU →483

CDCM(3,3), where (3,3) represents the kernel size).484

We then obtain the features from the RGB and depth485

branches in the CNN and perform the proposed SCAM to486

obtain the cross-modality attention. The global contexts for487

both views are then propagated.488

The decoder blocks of the two branches progressively489

integrate multi-scale features. We first apply 512 channels490

to the convolution layers at RD5 and DD5 to receive the en-491

hanced features from the SCAM. Following the UNet[43]492

architecture, we then to progressively skip-connect the corre-493

sponding encoder features (e.g., RE1-RD5 and DE1-DD5).494

To further improve the performance of the final saliency495

map, we then apply the cross-stream fusion operation F to496

fuse the image features and the corresponding depth features497

with a cascaded residual module as shown in Fig. (2)-(c).498

We also employ the MFRM at the final decoder blocks499

RD1 and DD1 to refine the final saliency map. The RGB fea-500

tures [F 1r , F 2r , F 3r
] and the depth feature vector [F 1d , F 2d , F 3d

]

501

are obtained from RD3-RD1 and DD3-DE1, respectively.502

The enhanced feature is propagated forward in both branches,503

and we employ the operation F to concentrate the feature504

in the current module with the previous one. To ensure that505

the dimension of the final prediction is the same as the input,506

we adopt a 3 × 3 convolution layer with one channel on the507

last decoder feature map. We also use the sigmoid activation508

function to obtain the final saliency map for both streams.509

Each convolution layer in our decoder has a 3 × 3 kernel and510

is followed by a BN [22] layer and the ReLU activation.511

3.4. Loss Function512

As for the training loss of both streams, we consider a513

hybrid loss function between the predicted saliency maps514

and the ground truth mask. We also use in-depth supervision515

for each decoder module, where we first apply a 3 × 3 Conv516

layer with the sigmoid activation function on each decoder517

feature map to generate a saliency map compute their loss.518

We then set up a scale aggregation architecture for each side-519

output branch that densely accumulates the features from the520

largest scale 256× 256 in RD1 and DD1 to the smallest scale521

32 × 32 in RD5 and DD5. The aggregation of the features522

from each scale is then used to estimate the saliency maps523

and supervised by the ground-truth saliency maps.524

Our hybrid loss is defined as the summation of the inter-
mediate and final saliency result losses as:

 =
K
∑

k=1
(�kl(k)r + �kl

(k)
d ), k ∈ {1, 2,⋯ , 5}, (18)

where l(k)r denotes the loss of the k-th side output in the525

RGB branch, l(k)d is the loss of the k-th side output in the 526

deptℎ stream, and K denotes the total number of the outputs. 527

Moreover, �k and �k are the weight of each loss in both 528

branches. 529

To obtain high-quality region segmentation and clear
boundaries, the hybrid loss l(k) for each scaled prediction is
defined as:

l(k) = l(k)bce + l
(k)
ssim + l

(k)
edge, (19)

where l(k)bce, l(k)ssim and l(k)edge denote the BCE loss [1], SSIM
loss [60] and Edge loss, respectively. Hence, we supervise
these multi-scale predicated saliency maps in both streams
using a hybrid loss. Here, we consider BCE loss in l(k)bce asfollows:

lkbce = −
∑

i,j
[Gk[i, j]) log(Sk[i, j])

+ (1 − Gk[i, j]) log(1 − Sk[i, j])],
(20)

where Gk[i, j] and Sk[i, j] denote the values at the location 530

(i, j) of the ground truth map Gk and the corresponding esti- 531

mated saliency map Sk, respectively. 532

For the edge-preserving loss l(k)edge, we compute the dif-
ference between the extracted edge information Sek of the
side-output saliency map Sk and the corresponding boundary
Gek of the ground-truth saliency map Gk as:

lkedge = −
∑

i,j
(Gek[i, j]) log(S

e
k[i, j])

+ (1 − Gek[i, j]) log(1 − S
e
k[i, j])],

(21)

where Gek[i, j] and Sek[i, j] denote the values at the location 533

(i, j) of the obtained edge details from the ground truth map 534

Gk and the corresponding estimated saliency map Sk, respec- 535

tively. Both edge map prediction Gek and Sek are obtained 536

using the Canny edge detector. 537

Besides, the SSIM strengthens the saliency boundary’s
supervision, as illustrated in [40]. Therefore, we employ
the SSIM loss as a key component in the joint loss function,
which is defined as:

lkssim = 1−
1
M

M
∑

j=1

(

2�xj�yj + C1
)(

2�xjyj + C2
)

(

�2xj + �
2
yj
+ C1

)(

�2xj + �
2
yj
+ C2

)

(22)
Here, the estimated map Sk and the ground truth map Gk are 538

divided intoM patches using a sliding window of 11 × 11 539

with a stride of 1. We then obtain the patches for both maps 540

{x1,⋯ , xM} and {y1,⋯ , yM}, respectively. In the above, 541

�xj , �yj , �xj and �yj are the mean and standard deviation of 542

patches xj and yj , where j ∈ {1,⋯ ,M}. Furthermore, �xj 543

and �yj are their covariance, while C1 and C2 are constant 544

used to avoid division by zero. 545
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Table 1
Quantitative performance comparison of our proposed model with several other state-of-
the-art RGB-D saliency models on eight benchmark datasets in terms of four evaluation
metrics. (Figures highlighted in red indicate the best performance).

ACSD LBE DCMC SE DF CTMF MMCI PCFN TAN CPFP DMRA D3Net A2dele S2MADataset Metrics [24] [16] [11] [42] [45] [19] [4] [2] [3] [65] [37] [15] [39] [31] Ours

N
JU

2K
[2
4]

Sm ↑ 0.699 0.695 0.685 0.644 0.763 0.849 0.858 0.877 0.878 0.879 0.886 0.895 0.892 0.894 0.902
max-F ↑ 0.711 0.748 0.715 0.748 0.804 0.845 0.852 0.872 0.874 0.877 0.886 0.889 0.888 0.889 0.902

E� ↑ 0.803 0.803 0.799 0.813 0.864 0.913 0.915 0.924 0.925 0.926 0.927 0.932 0.930 0.929 0.940
MAE ↓ 0.202 0.153 0.172 0.169 0.141 0.085 0.085 0.059 0.060 0.053 0.051 0.051 0.053 0.054 0.044

N
LP

R
[3
6]

Sm ↑ 0.673 0.762 0.724 0.756 0.802 0.860 0.856 0.874 0.886 0.888 0.894 0.911 0.890 0.915 0.923
max-F ↑ 0.607 0.745 0.648 0.713 0.778 0.825 0.815 0.841 0.863 0.867 0.888 0.896 0.875 0.902 0.907

E� ↑ 0.780 0.855 0.793 0.847 0.880 0.929 0.913 0.925 0.941 0.932 0.944 0.953 0.937 0.953 0.956
MAE ↓ 0.179 0.081 0.117 0.091 0.085 0.056 0.059 0.044 0.041 0.036 0.036 0.030 0.030 0.030 0.026

ST
E
R
E

[3
5]

Sm ↑ 0.692 0.660 0.731 0.708 0.757 0.848 0.873 0.875 0.871 0.879 0.886 0.886 0.879 0.890 0.896
max-F ↑ 0.669 0.633 0.740 0.755 0.757 0.831 0.863 0.860 0.861 0.874 0.886 0.886 0.879 0.882 0.888

E� ↑ 0.806 0.787 0.819 0.846 0.847 0.912 0.927 0.925 0.923 0.925 0.938 0.938 0.928 0.932 0.933
MAE ↓ 0.200 0.250 0.176 0.148 0.141 0.086 0.068 0.064 0.060 0.051 0.047 0.047 0.044 0.051 0.047

R
G
B
D
13
5

[8
]

Sm ↑ 0.728 0.703 0.707 0.741 0.752 0.863 0.848 0.842 0.858 0.872 0.900 0.897 0.883 0.941 0.939
max-F ↑ 0.756 0.788 0.666 0.726 0.766 0.844 0.822 0.804 0.827 0.846 0.888 0.884 0.873 0.935 0.937

E� ↑ 0.850 0.890 0.773 0.856 0.870 0.932 0.928 0.893 0.910 0.923 0.943 0.945 0.920 0.973 0.978
MAE ↓ 0.169 0.208 0.111 0.090 0.093 0.055 0.065 0.049 0.046 0.038 0.030 0.031 0.030 0.021 0.019

SS
D
10
0

[2
6]

Sm ↑ 0.675 0.621 0.704 0.675 0.747 0.776 0.813 0.841 0.839 0.807 0.857 0.857 0.803 0.868 0.877
max-F ↑ 0.682 0.619 0.711 0.710 0.735 0.729 0.781 0.807 0.810 0.766 0.844 0.834 0.776 0.848 0.859

E� ↑ 0.785 0.736 0.786 0.800 0.828 0.865 0.882 0.894 0.897 0.852 0.906 0.911 0.861 0.906 0.922
MAE ↓ 0.203 0.278 0.169 0.165 0.142 0.099 0.082 0.062 0.063 0.082 0.058 0.059 0.070 0.052 0.047

LF
SD

[2
8]

Sm ↑ 0.727 0.729 0.746 0.692 0.783 0.788 0.779 0.786 0.794 0.820 0.839 0.824 0.826 0.829 0.843
max-F ↑ 0.763 0.722 0.813 0.786 0.813 0.787 0.767 0.775 0.792 0.821 0.797 0.815 0.828 0.831 0.842

E� ↑ 0.829 0.797 0.856 0.832 0.857 0.857 0.831 0.827 0.840 0.864 0.846 0.856 0.867 0.865 0.878
MAE ↓ 0.195 0.214 0.155 0.174 0.146 0.127 0.139 0.119 0.118 0.095 0.083 0.106 0.084 0.102 0.090

D
U
T
-R
G
B
D

[6
2]

Sm ↑ 0.361 0.568 0.659 0.499 0.736 0.831 0.791 0.801 0.808 0.818 0.889 0.824 0.885 0.903 0.907
max-F ↑ 0.247 0.625 0.723 0.411 0.740 0.823 0.767 0.771 0.790 0.795 0.898 0.815 0.891 0.900 0.904

E� ↑ 0.590 0.734 0.800 0.654 0.823 0.899 0.859 0.856 0.861 0.859 0.933 0.856 0.930 0.937 0.941
MAE ↓ 0.332 0.174 0.280 0.243 0.144 0.097 0.113 0.100 0.093 0.076 0.048 0.073 0.043 0.043 0.043

SI
P

[1
5]

Sm ↑ 0.732 0.727 0.683 0.628 0.653 0.720 0.716 0.833 0.835 0.850 0.806 0.860 0.870 0.872 0.877
max-F ↑ 0.763 0.751 0.618 0.661 0.465 0.702 0.608 0.771 0.803 0.821 0.811 0.861 0.865 0.877 0.880

E� ↑ 0.614 0.651 0.598 0.592 0.565 0.793 0.704 0.845 0.870 0.870 0.875 0.909 0.910 0.918 0.917
MAE ↓ 0.172 0.200 0.186 0.164 0.165 0.118 0.139 0.086 0.075 0.064 0.085 0.063 0.063 0.058 0.053

R
eD

W
eb
-S

[3
2]

Sm ↑ - 0.637 0.427 0.435 0.595 0.641 0.660 0.655 0.656 0.685 0.592 0.688 0.705 0.710 0.719
max-F ↑ - 0.629 0.348 0.393 0.579 0.607 0.641 0.627 0.623 0.645 0.579 0.669 0.685 0.694 0.706

E� ↑ - 0.730 0.549 0.587 0.683 0.739 0.754 0.743 0.741 0.744 0.712 0.765 0.772 0.779 0.783
MAE ↓ - 0.253 0.313 0.283 0.233 0.204 0.176 0.166 0.165 0.142 0.188 0.149 0.145 0.140 0.141

4. Experiments546

4.1. Benchmark Datasets and Evaluation Metrics547

In this work, we conduct experiments on nine widely used548

RGB-D SOD datasets, including NJU2K [24] (1985 RGB-D549

images), NLPR [36] (1000 RGB-D images), RGBD135 [8]550

(135 RGB-D images), STERE [35] (1000 RGB-D images),551

LFSD [28] (100 RGB-D images), SSD [26] (80 RGB-D im-552

ages), DUT-RGBD[37] (1200 RGB-D images), SIP [15] (929553

RGB-D images) and ReDWeb-S [32] (3600 RGB-D images). 554

For fair comparisons, we perform the same training as de- 555

scribed in [37, 39], which contains 800 samples from the 556

DUT-RGBD dataset, 1485 samples from NJU2K and 700 557

samples from NLPR for training. The remaining images and 558

the other five datasets are used for testing to evaluate the 559

performance. 560

To avoid over-fitting, we adopt the following data aug- 561

mentation. First, we resize the training images, and the corre- 562
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sponding depth maps to 288 × 288 pixels and then randomly563

crop 256 × 256 regions to train the network. We also use564

random horizontal flipping. To match the channel dimen-565

sion between depth and RGB images to fit the network input566

layer, we further replicate each depth map to three channels.567

Besides, each image and the three-channel depth map are sub-568

tracted by their mean pixel values before being considered as569

the inputs to the whole network.570

Following the recent work [15, 31], we adopt the maxi-571

mumF-measure (max-F), Structure-measure (Sm), Enhanced-572

alignment measure (E�) and Mean Absolute Error (MAE) for573

quantitative evaluations. Specifically, max-F is the weighted574

harmonic mean of precision and recall, and it is a comprehen-575

sive measure indicating the performance. Further, Sm [13]576

score measures the difference between the saliency map and577

ground truth, and the larger of the score, the higher the per-578

formance. Also, E� [14] is a reasonable measure to capture579

both global statistics and local pixel matching information of580

the saliency maps. The MAE score further measures the dif-581

ference between the continuous saliency map and the ground582

truth. The smaller the value of the MAE, the smaller the gap,583

indicating a higher performance.584

4.2. Implementation Details585

We implement the proposed network by using the Py-586

Torch package and two NVIDIA 1080 Ti GPUs for comput-587

ing acceleration. The stochastic gradient descent (SGD) with588

the momentum algorithm is adopted to optimize our network589

with a total of 40,000 iterations. The weight decay, momen-590

tum and batch size are set to 1e-4, 0.9 and 8, respectively.591

The initial learning rate is set to 0.01 and divided by 10 at592

the 15, 000tℎ and the 30, 000tℎ iterations.593

4.3. Comparisons with State-of-the-art Methods594

We compare our method with 14 state-of-the-art RGB-595

D SOD methods (including four classical traditional non-596

deep models, i.e. ACSD [24], LBE [16], DCMC [11], and597

SE [42], and ten learning-based models, i.e. DF [45], CTMF598

[19], MMCI [4], PCFN [2], TAN [3], CPFP [65], DMRA599

[37], D3Net [15], A2dele [39] and S2MA [31]. We use the600

released codes and default hyper-parameters as provided by601

the corresponding authors to reproduce the final saliency602

maps.603

1) Qualitative Evaluation: To illustrate the advantages604

of the proposed method, we provide several visual examples605

of different methods. As shown in Fig. (5), the proposed606

method can obtain better experimental results with precise607

saliency location, clean background, complete structure, and608

sharp boundaries. Moreover, it is efficient in various chal-609

lenging scenarios, such as low contrast, complicated scene,610

background disturbance, and unreliable depth maps. To be611

specific:612

(a) Our model handles the disturbance of a similar appear-613

ance between the salient object and the background. For ex-614

ample, in the eighth image, the robot’s arms and legs are sim-615

ilar to the background, and the whole scene has low contrast.616

The existing methods are unable to address this challenging617

case very well as their results ignore these almost identical618

regions with the background. By contrast, our method shows 619

a competitive advantage in terms of completeness, sharpness, 620

and accuracy. Specifically, AMDFNet highlights the robot 621

and its entire limbs using the depth maps. 622

(b) Our model can produce robust results even in the 623

cases where the available depth information is inaccurate or 624

blurred (e.g., the second and fifth images). This indicates 625

the robustness of the SCAM. In these challenging scenarios, 626

because of the negative effect caused by unreliable depth 627

maps, the existing methods are unable to locate the accurate 628

boundaries of the salient objects. The proposed method, how- 629

ever, utilizes the cross-modal complementary information 630

and suppresses the impact of unreliable depth maps. 631

(c) Our model produces a complete structure and sharp 632

boundaries in the results. For example, in the third and fourth 633

images, the irregular shape of the purple flower is accurately 634

and entirely detected by the existing methods, such as A2dele 635

[38], and S2MA [31] and the unnecessary background (e.g., 636

the red flower at the right of the third image and purple petals 637

at the right of the fourth image) are wrongly retained. By con- 638

trast, our method obtains complete and accurate boundaries 639

and has an improved ability to process complex scenarios. 640

In summary, the experimental results indicate that our 641

model accurately localizes the salient objects and segments 642

them precisely, whereas the existing models are disturbed in 643

the complex scenes. 644

2) Quantitative Evaluation: For a more intuitive com- 645

parison of performance, here we obtain the quantitative met- 646

rics including max-F, Sm, E� , and MAE score in Tab. (1). It 647

can be seen that our proposed method outperforms almost 648

all of the existing methods on all datasets, except for the 649

LFSD and RGND135. On these two datasets, our model 650

also achieves a performance comparable to the best existing 651

methods. 652

Furthermore, AMDFNet outperforms all other methods 653

by a notable margin on the DUT-RGB, SIP and ReDWeb 654

datasets, containing more challenging scenarios. The exper- 655

imental results further indicate that our modifications inte- 656

grate informational cues in both modalities and transfer the 657

qualified depth knowledge to facilitate a more accurate final 658

saliency prediction. 659

4.4. Ablation Study 660

To verify the effectiveness of each key component in our 661

proposed network, including CDCM, SCAM and MFRM, we 662

conduct ablation studies on NJU2K, NLPR, RGBD135 and 663

LFSD datasets. The basic model with the standard fusion de- 664

coder modules is regarded as the baseline model to guarantee 665

the fairness of the ablation experiments. Tab. (2) validates 666

all components in our proposed system based on four widely 667

used benchmarks and the above four metrics. 668

First, we choose the basic network that removes the multi- 669

level feature refinement module (MFRM), removes the cross- 670

modality deformable convolution module (CDCM), and re- 671

places the selective cross-modality attention module (SCAM) 672

with the standard channel and spatial attention operation [61] 673

as the baseline (denoted as “B”). From the Tab. (2), compar- 674
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Figure 6: Visualization of the output from SCAM. (a) RGB image. (b) Depth maps. (c) GT. (d) Predicted saliency maps. (e)
and (f) Heat-maps of RGB and depth channel (without SCAM). (g) and (h) Heat-maps of RGB and depth channel (with SCAM).

Table 2
Ablation study of module verification on NJU2K, NLPR, RGBD135 and LFSD dataset.
The best results on each dataset are highlighted in boldface.

Settings NJUD-test [24] NLPR-test [36] RGBD135 [8] LFSD [28]

B BS MF C Sm max-F E� MAE Sm max-F E� MAE Sm max-F E� MAE Sm max-F E� MAE

✓ 0.865 0.852 0.902 0.072 0.897 0.873 0.941 0.039 0.875 0.834 0.927 0.046 0.786 0.775 0.836 0.131
✓ 0.893 0.887 0.928 0.056 0.915 0.896 0.952 0.032 0.933 0.924 0.970 0.024 0.821 0.824 0.854 0.105
✓ ✓ 0.897 0.892 0.933 0.052 0.923 0.909 0.957 0.028 0.939 0.932 0.972 0.023 0.838 0.846 0.873 0.097
✓ ✓ ✓ 0.902 0.902 0.940 0.044 0.923 0.907 0.956 0.026 0.939 0.937 0.978 0.019 0.843 0.842 0.878 0.090

ing the “B” with the “BS”, we replace the standard attention675

operation by the selective cross-modality attention module676

(denoted as ‘BS ’) which improves the baseline by about 3 ∼ 4677

points in terms of the maximum F-measure in the NJU2K678

dataset. Our proposed SCAM aims to adaptively select the679

informative and vital details in depth to solve two issues:680

(1) how to effectively remove the adverse effects from the681

low-quality depth input. (2) how to provide complementary682

information to support cross-modality fusion. The experi-683

mental results prove that adding the cross-modality attention684

module can significantly improve the SOD performance.685

By adding the multi-level feature refinement module in686

the last feature decoding block (denoted as ‘BS +MF ’),687

the F-measure increases to 0.902 on the NJU2K dataset688

which is comparable with the state-of-the-art methods. Fur-689

thermore, the performance is significantly enhanced after690

adding the CDCM at the first three encoder blocks (denoted691

as ‘BS +MF +C’), which yields the best performance with692

F-measure and MAE percentage gains of 5.0% and 2.8%, re-693

spectively compared with the original baseline on the NJU2K694

dataset. The MFRM applies the advantages of multi-scale 695

feature and cross-modality deformable operation. This effec- 696

tively captures the global context in multi-scale features and 697

determine the salient object fully and resolve the challeng- 698

ing ambiguity in the SOD with a similar appearance and a 699

cluttered background. The experiments on the other three 700

datasets, i.e., NLPR, RGBD135 and LFSD, also show the 701

effectiveness of the proposed components significantly. 702

Selective Cross-modality Attention Mechanism 703

(SCAM)To thoroughly understand the selective cross-modality 704

attention mechanism, we visualize several feature maps and 705

their corresponding heat-maps in Fig. (6). Taking the RGB 706

output produced by SCAM as an example, the module learns 707

the cross-modality complementarity from a cross-modality 708

perspective and prevent unreliable depth maps. As shown 709

in Fig. (6), the model with SCAM accurately locates the 710

salient object positions, and the focus covers the whole ob- 711

ject (e.g., the first and second images). In case of a cluttered 712

background or where the depth input is not ideal, the third 713

image contains several cans, and the foreground has a similar 714
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Figure 7: Visualization of the sampling locations in RGB and
depth stream employed in the original convolution, modulated
convolution network (DCNv2) and cross-modality deformable
convolution module (CDCM). The green dots in each image
represent the activation units and the red dots are sampling
locations. (a) Standard convolution. (b-c) DCN in depth and
RGB stream. (d-e) CDCM in depth and RGB stream.

appearance to the background. This results in an unclear715

attention map in the heat-map produced by the baseline (‘B’).716

By adding the SCAM, our model maintains more structural717

information of the desired mode and successfully suppresses718

most background noise.719

To verify the effectiveness of SCAM in memory reduc-720

tion, we design an ablation study to analyze the required721

computational resources in terms of floating-point operations722

(FLOPs), memory consumption and parameters. The results723

are shown in Tab. (3). Specifically, all experimental results724

are obtained by testing methods on a 256 × 256 input sample.725

We compare our method with SCAM against the original non-726

local block. The original non-local operation dramatically727

increases memory consumption since it requires computing a728

large correlation matrix. In contrast, the additional memory729

requirement of the proposed SCAM (1.251Gb) is 22.5% less730

than (1.621Gb) the standard non-local operation. This means731

that our method can reduce the required memory in the train-732

ing process, and our method allows larger training batch size733

or bigger image size under the same GPU memory.734

In summary, the designed SCAM strengthens the fea-735

ture from a cross-modality perspective and prevents contam-736

ination caused by unreliable depth maps. Furthermore, the737

computing and memory consumption significantly decreased738

compared with the relevant structure.739

Cross-modality Deformable Convolution Module740

(CDCM) To better understand the behavior of CDCM, we741

visualize the sampling location [69], which contributes sig-742

nificantly to the final network prediction. Specifically, we743

analyze the visual support regions in both feature encoder744

modules (i.e., RGB and depth streams). First, we employ745

standard convolution layer inDREi andDDEi (i = 1, 2, 3) as746

Table 3
Ablation study of efficiency in terms of floating point operations
(FLOPs) and memory consumption.

Non-Local Module Type FLOPs Memory #Params

NLB [59] 142.27G 1.614Gb 1.949M

Ours 140.83G 1.251Gb 1.311M

Figure 8: Failure examples. (a) RGB images. (b) Depth maps.
(c) GT. (d) Heat maps. (e) Our results.

baseline. Besides, the three 3 × 3 standard convolutions lay- 747

ers inserted in the above blocks are replaced by DCNv2 [69] 748

and the sampling locations of this operation are shown in 749

Fig. (7)-(e) and (f). In comparison, we employ CDCM in 750

corresponding convolution blocks, and the sampling results 751

are illustrated in Fig. (7)-(e) and (f). 752

As shown in Fig. (7), the spatial support of the DCNv2 753

expands the sampling distribution and enlarges the receptive 754

field by deformable filters significantly. The network’s ability 755

to model geometric transformation is considerably enhanced, 756

and the spatial support adapts much more to image content, 757

with nodes on the foreground having support covering the 758

whole salient object. In contrast, nodes on the background 759

have expanded support that encompasses greater context. 760

However, the range of spatial support may be inexact, i.e., 761

the boundary splitting salient regions and background could 762

not be detected, and salient regions contain irrelevant areas. 763

To regulate the sampling distribution and make full use of 764

cross-modal cues, the CDCM receives extra information from 765

another modal to guide the filter training and enhance the 766

network’s feature extraction ability. Based on these visible 767

results, we observed that these adaptive sampling location 768

produced by the CDCM highly emphasises the salient object 769

boundaries and dramatically suppresses the interference of 770

background information. 771

4.5. Failure Cases 772

To further promote the SOD, Fig. (8) shows several fail- 773

ure cases produced by our AMDFNet. As it shows in this 774
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figure, our approach had troubles to recognize the accurate775

boundaries of the salient objects in these examples. Fur-776

ther investigating the typical characteristics of the failure777

cases, we can identify two factors that contribute to the low778

quality of the predicted maps. First, the conflict of a salient779

object between the depth maps and the RGB images leads780

to false alarms. Although our SCAM reduces the adverse781

effects resulted from the depth maps and the heat-maps, it782

is challenging to suppress the contamination for these cases.783

Secondly, the combination of the salient object and back-784

ground region significantly interferes with the results. For785

the cases where the spatial distance between the objects is786

small, especially when the salient object is embedded in other787

non-salient objects in the background (e.g., the red door is788

located in a house and the letters are printed on the seats), the789

depth maps cannot provide the exact location details. This790

results in incorrect SOD by the algorithm.791

5. Conclusion792

In this paper, we have proposed a selective cross-modality793

attention module to capture the dense attention among vari-794

ous features maps in both modalities. The proposed module795

enables selecting informative regions and suppressing the796

impact of unreliable depth maps. We have also developed797

a multi-level feature refinement mechanism to adaptively798

strengthen those maps of different scales and refine the fea-799

tures from the multi-scale and cross-modality perspectives.800

Both the embedded selective attention module and densely801

cooperative refinement strategy have been empirically proved802

to be effective for exploiting the cross-modality complemen-803

tarity. Our next challenge is to improve the quality of the804

depth maps. The work presented in this paper lays the ground-805

work for future therapeutic research. The multi-modal feature806

fusion method further provides new insights into other chal-807

lenging visual tasks, e.g., RGB-D image enhancement and808

multi-source image fusion.809
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