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ABSTRACT
Traditional fine-grained image classification generally requires abundant labeled samples to deal with
the low inter-class variance but high intra-class variance problem. However, in many scenarios we
may have limited samples for some novel sub-categories, leading to the fine-grained few shot learning
(FG-FSL) setting. To address this challenging task, we propose a novel method named foreground
object transformation (FOT), which is composed of a foreground object extractor and a posture trans-
formation generator. The former aims to remove image background, which tends to increase the
difficulty of fine-grained image classification as it amplifies the intra-class variance while reduces
inter-class variance. The latter transforms the posture of the foreground object to generate additional
samples for the novel sub-category. As a data augmentation method, FOT can be conveniently applied
to any existing few shot learning algorithm and greatly improve its performance on FG-FSL tasks. In
particular, in combination with FOT, simple fine-tuning baseline methods can be competitive with the
state-of-the-art methods both in inductive setting and transductive setting. Moreover, FOT can further
boost the performances of latest excellent methods and bring them up to the new state-of-the-art. In
addition, we also show the effectiveness of FOT on general FSL tasks.

1. Introduction
As a popular and challenging problem in computer vi-

sion, fine-grained image classification has been an active re-
search area for several decades [58]. The goal is to recog-
nize images belonging to multiple sub-categories of a super-
category [70] e.g., different species of animals, differentmod-
els of cars, different kinds of retail products, etc. With the
fast development of deep learning, fine-grained image clas-
sification has made a significant leap forward, typically re-
lying on supervised learning from large amounts of labeled
samples [59, 21, 60, 67, 18, 10]. In many real-world scenar-
ios, however, it may happen that very sparse training samples
are available for some sub-categories. For example, biolo-
gists often discover rare bird or fish as new species, and car
makers always produce new models of cars. This leads to a
more challenging setting, namely the fine-grained few shot
learning (FG-FSL) problem as shown in Figure 1.

To effectively learn from few samples, many few shot
learning (FSL) algorithms have been proposed in recent years
[8, 46, 48, 47, 7, 1]. However, few of them focus on the
FG-FSL task. Besides the characteristics of general FSL
tasks, FG-FSL also inherits the difficulty of fine-grained im-
age classification tasks, which appears as low inter-class vari-
ance but high intra-class variance. There are two main chal-
lenges in the FG-FSL task. First, subtle features for distin-
guishing different sub-categories always reside in the fore-
ground object, but there exist insufficient samples to learn
such discriminative features for novel sub-categories. Sec-
ond, the backgrounds of a same sub-category are quite dif-
ferent (e.g. each row in the lower part of Figure 1) but back-
grounds of different sub-categories may appear similar (e.g.
each column in the lower part of Figure 1). It means that the
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Figure 1: Illustration of the FG-FSL task. The upper part is
the 5-way 1-shot task, and the lower part is the 5-way 5-shot
task. In the lower part, rows represent different bird species:
Common Tern, Mallard, Heermann Gull, Gadwall, Ivory Gull,
and columns represent birds with different backgrounds: sky,
plant, sea, ground, snow. Observing horizontally, every cat-
egory has high intra-class variance. Observing longitudinally,
different categories have low inter-class variance. That is the
novel difficulty from FSL to FG-FSL.

image background tends to play a negative role in the FG-
FSL task, as it drastically increases the intra-class variance
and reduces the inter-class variance. Many data augmenta-
tion methods have been proposed to alleviate the first prob-
lem [14, 43, 63, 5, 4, 11]. However, most of them take the
image as a whole in the pixel space or feature space, which
could not avoid the negative influence of background while
generating additional training samples. Few attention based
methods have been proposed to solve the second problem
[23, 17] in FSL tasks, which rely on complex network struc-
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tures and training strategies, because it is very challenging to
localize foreground objects with only image-level labels and
very few samples. In fact, it is even more difficult to solve
the two problems simultaneously.

In this paper, we propose to consider the foreground and
background separately, and introduce a foreground object
transformation (FOT) method for FG-FSL tasks. It mainly
includes a foreground object extractor and a posture trans-
formation generator, which correspond to background re-
move and foreground augmentation respectively. Specifi-
cally, the first component leverages the popular salient ob-
ject detection (SOD) method to identify the foreground and
background area in an image, and then extract a zoomed-in
version of the foreground object without background infor-
mation. This avoids the negative effect of the background
and reinforces the features of the foreground object. The
second component contains a generator to learn the posture
transformations of foreground objects in base sub-categories
(hereafter referred to as base classes, which generally have
many training samples), and then transform the posture of
foreground objects to generate additional samples with dif-
ferent postures for novel sub-categories (hereafter referred to
as novel classes, which generally have very few training sam-
ples). A brief overview of FOT is shown in Figure 2. Spe-
cially, we propose a saliency map matching strategy to con-
struct a quadruplet-based training set for the posture trans-
formation generator learning.

Based on a common fine-tuning baseline, Baseline++
[3], FOT can be extended as a complete method to handle
FG-FSL tasks independently. On fine-grained benchmark
datasets, extensive experiments show that FOT significantly
outperforms existing inductive inference methods, includ-
ing typical FSL [8, 46, 48, 47], FG-FSL [57, 20, 28, 27],
and hallucination based FSL methods [14, 43, 55]. Based
on a transductive fine-tuning baseline [7], FOT can also be
extended as an independent transductive inference method,
which is competitive with the state-of-the-art transductive
inference methods [39, 71, 54, 1]. Furthermore, as a data
augmentation method, FOT is conveniently applied to any
existing FSL method and improves its performance on FG-
FSL tasks. In combination with FOT, several latest methods
are boosted to the new state of the art. In addition, we also
verify the generalization capability of FOT on general FSL
tasks, and conduct the ablation experiment to analyse the ef-
fectiveness of different components.

The main contributions of our work are:
• We propose a novel data augmentation method, fore-

ground object transformation (FOT), which enhances
the diversity of foreground while eliminating the neg-
ative effect of background by considering the foreground
and background separately.

• We propose a novel saliency map matching strategy
to construct a quadruplet-based dataset to train a pos-
ture transformation generator, which can effectively
transform the posture of foreground objects in novel
classes, yielding diversified and visualized augmented
images without changing their class labels.

X1

X2

Z1

Z2

A pair of samples

in a base class

A sample in a

novel class

Foreground object 

extractor

Posture transformation

generator

A generated sample

for novel class

S(δ)
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Figure 2: A brief overview of proposed FOT method. For a
sample Z1 in a novel class, we find a pair of samples (X1, X2) in
a base class, and use a foreground object extractor to remove
backgrounds of these samples. Then, the posture transforma-
tion between X1 and X2 is added to Z1 by a generator, in order
to get an additional sample like Z2 for the novel class.

• Our method can be conveniently applied to any ex-
isting FSL algorithm to handle FG-FSL tasks effec-
tively. In combination with FOT, simple fine-tuning
baseline methods can obtain competitive performance
with the state-of-the-art methods, and the state-of-the-
art methods can be pushed to new heights.

2. Related work
We briefly review existing research on related topics.

2.1. Few shot learning
The human visual systems can recognize novel classes

with extremely few labeled samples. It is thus of great in-
terest for neural networks to learn to recognize novel classes
with a few labeled samples, known as few shot learning (FSL).
Currently meta-learning has been a broad paradigm for FSL
tasks. Most of popular works can be divided into three main
categories: initialization based, metric learning based, and
hallucination based methods. Initialization based methods
aim to learn good model initialization (i.e., the parameters
of a network) so that the classifier for novel classes can be
learned with a few labeled samples and a few gradient up-
dated steps [38, 8, 9, 42]. Metric learning based methods
aim to learn a sophisticated comparison model to determine
the similarity of two images [32, 48, 46, 47, 35, 12]. Halluci-
nation based methods learn a generator from samples in the
base classes and use the learned generator to hallucinate new
novel class samples for data augmentation[14, 43, 55, 5, 4].
According to this classification criterion, the proposed FOT
belongs to the hallucination based methods.

The most relevant to our approach is the work of [14],
which considers the image as a whole and conjectures that
the relative linear offset in feature space between a pair of
samples in the same class conveys information on a valid
deformation. However, [14] is difficult to apply to small
fine-grained datasets. The main reason is that, even within
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the same class, the deformations of images are quite com-
plex, including color, posture, background, size of object,
and so on. In order to learn these infinite deformations ac-
curately, it theoretically requires infinite data and sufficiently
complex generative models. Furthermore, although [14] im-
proves the FSL performance to some extent, the generated
samples could not be visualized and accurately indicate the
learned deformation style. Different from [14], we remove
the negative effect of the background by using a foreground
object extractor, and then employ saliency maps to constrain
image deformations to the posture transformation in pixel
space, which greatly reduces the cost of the generator train-
ing and results in visual generated samples.

Recently, some approaches tackle FSL problems by re-
sorting to additional unlabeled data [41, 29, 54, 36, 33, 1].
Specifically, semi-supervised FSL methods [41, 29, 54] en-
able unlabeled data from the same categories to better handle
the true distribution of each class. Furthermore, transductive
inference methods [36, 39, 71, 54, 1], which utilize the un-
labeled samples from the query set, show great performance
improvements over inductive inference. As a data augmen-
tation method, the proposed FOT is adapted to both induc-
tive inference methods and transductive inference methods.
In combination with FOT, some excellent transductive infer-
ence methods [54, 1] can be brought up to the new state of
the art on FG-FSL tasks.
2.2. Fine-grained image classification

Fine-grained image classification is a challenging prob-
lem and has been an active topic [58]. Since subtle visual dif-
ferences mostly reside in local regions of images, discrimi-
native part localization is crucial for fine-grained image clas-
sification. There are numerous emerging works proceeding
along part localization [59, 62, 61, 21], which tend to learn
accurate part localization models with manual object bound-
ing boxes and part annotations. Considering that the anno-
tations are laborious and expensive, some researchers begin
to focus on how to exploit parts under a weakly-supervised
setting with only image-level labels [13, 64, 65, 16, 66, 60].
Additionally, some weakly-supervised methods use visual
attention mechanism to automatically capture the informa-
tive regions [19, 22, 44, 60, 67, 18, 10, 69, 56, 6]. Compared
with previous work, we study fine-grained image classifica-
tion in a challenging few shot learning setting. We build
the classifier of novel classes using few samples with only
image-level labels, which belongs to the weakly-supervised
methods typically. [57] proposed the first FG-FSL model,
which adopted a piecewise mappings function in the clas-
sifier mapping module to improve generalization. [30] pro-
posed to employ two similarity measures in the metric learn-
ing based methods, generating more discriminative features
than using a single measure.
2.3. Salient object detection

A salient object detector highlights the image region con-
taining foreground objects which correlate with human vi-
sual attention, thus producing a dense likelihood saliency
map which assigns some relevance score in range [0, 1] to

each pixel. With the success of deep learning in computer
vision, more and more deep learning based SOD methods
have been springing up since 2015 [26, 50, 68]. Earlier deep
SOD models typically utilize multi-layer perceptron classi-
fiers to predict the saliency score of deep features extracted
from each image processing unit [26, 50, 68]. Inspired by the
great success of Fully Convolutional Network (FCN) [37] in
semantic segmentation, latest deep SODmethods adapt pop-
ular classification models, e.g., VGGNet [45] and ResNet
[15], into fully convolutional ones to directly output saliency
maps instead of classification scores. These deep SODmeth-
ods benefit from end-to-end spatial saliency representation
learning and efficiently predict saliencymaps in a single feed-
forward process [2, 31, 34, 52, 40].

A pre-trained SOD model can identify the foreground
and background of an image automatically, which gives us
an inspiration to deal with FG-FSL tasks. We need to choose
a pre-trained SOD model with good generalization capabil-
ity, which means that the SOD model performs well on fine-
grained benchmark datasets, even though it is pre-trained
on a disjoint SOD dataset. We compare the performance of
three code-exposedmethods, including PiCANet [34], DGRL
[52] and BASNet [40]. BASNet [40] is chosen as our pre-
trained SOD model to capture the foreground object of im-
ages, because it has excellent generalization capacity and
gets clearer, sharper saliency maps.

3. Method
In this section, we first review the fine-tuning baselines

in the inductive and transductive setting for FSL tasks in Sec-
tion 3.1. Then, we present the architecture of FOT and elab-
orate its algorithm in Section 3.2. Next, we explain the two
novel components of FOT, foreground object extractor and
posture transformation generator, in section 3.3 and section
3.4 respectively.
3.1. Review the fine-tuning baselines

Given a base class setDb with abundant labeled samples,
a novel class support set Ds with few labeled samples, and
a novel class query set Dq with limited unlabeled samples,
the goal of FSL algorithms is to train classifiers for novel
classes and test its classification accuracy on the query set. A
FSL baseline method generally follows the standard transfer
learning procedure of network pre-training and fine-tuning
[3, 7], which can be directly transferred to FG-FSL tasks as
shown in Figure 3. In the training stage, a feature extractor
F (�) and a classifier of base classes C(Wb) are trained with
samples in Db by minimizing a standard cross-entropy loss
Lbase. It is formalized as follows:

Lbase = − 1
Nb

∑

(x,y)∈Db

y ⋅ log(p(x)), (1)

where (x,y) represents a sample x with true label y,Nb is thesize of mini-batch fromDb, p(x) is the softmax output of the
classifier C(Wb). In the fine-tuning stage, we consider two
different schemes: inductive inference[3] and transductive
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Transductive setting

Inductive setting

C(Wn)F(θ)Support set Ltrans

Feature extractor Classifier

Lbase
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F(θ)

Base class set

C(Wb)

Classifier

C(Wn)F(θ) Lin

2. Fine-tuning stage

Support set

Query set

Feature extractor

ClassifierFeature extractor

Figure 3: Fine-tuning baseline methods for FG-FSL tasks.
Both the inductive inference baseline and the transductive in-
ference baseline have two stages: training stage and fine-tuning
stage. Differences between them are in the fine-tuning stage,
including different input data, different loss functions and dif-
ferent gradient propagation paths. The solid lines represent
the data transmission paths and the dashed lines represent the
gradient propagation paths.

inference[7]. In inductive setting, we fix the feature extractor
F (�) and train a new classifier C(Wn) with samples in Dsby minimizing a standard cross-entropy loss Lin, which is
formalized as follows:

Lin = − 1
Ns

∑

(x,y)∈Ds

y ⋅ log(p(x)), (2)

where Ns represents the number of samples in the support
set. In transductive setting, we fine-tune the feature extrac-
tor F (�) and train the new classifier C(Wn) with samples in
Ds andDq by minimizing an expanded loss Ltrans, which isformalized as follows:

Ltrans = − 1
Ns

∑

(x,y)∈Ds

y ⋅ log(p(x))+ 1
Nq

∑

x∈Dq

p(x) ⋅ log(p(x)), (3)

whereNq represents the number of samples in the query set.
We clarify that these two baseline methods are not our

contribution. The inductive inference baseline method has
been extensively studied in [3] and the transductive inference
baselinemethod has been proposed in [7]. Typically, the fea-
ture extractor F (�) is a ConvNet-4 or ResNet-18 backbone,
and the classifiersC(Wb) andC(Wn) are cosine-distance clas-sifiers by following [3, 7].
3.2. Foreground object transformation

To solve the two key problems of FG-FSL tasks men-
tioned in Section 1, we consider the foreground and back-
ground separately and propose two novel components, a fore-
ground object extractor and a posture transformation gener-
ator. The former aims to extract a zoomed-in version of the

foreground object from an input sample. It avoids the neg-
ative effect of the background and highlights the features of
the foreground object. The latter is used to generate addi-
tional samples for each novel class by transforming the pos-
ture of extracted foreground object. We add these two com-
ponents to a fine-tuning baseline and form a new FG-FSL
method, which is called foreground object transformation
(FOT). In fact, combining with different baselines in Section
3.1, we can get an inductive FOT or a transductive FOT. For
simplicity, wemark the transductive FOT as FOT∗ in this pa-
per. On the other hand, since the application of our method
is independent of inductive or transductive setting, we do not
specifically discuss FOT∗ except for the experimental part.

The architecture of FOT is shown in Figure 4. To illus-
trate how FOT works in detail, we split the algorithm into
five steps. Figure 4 shows the procedure and relevant nota-
tions in different color boxes.

Extracting foreground object (1st stage). We use a
foreground object extractor S(�) to obtain the foreground
object of an input image. More details on the foreground ob-
ject extractor are provided in Section 3.3. All samples from
both base classes and novel classes are processed in this way.
Subsequent steps use the processed samples instead of orig-
inal images.

Training on base classes (2nd stage). We train the fea-
ture extractor F (�) and the classifier of base classes C(Wb)with Equ. 1 by feeding with samples of base classes.

Learning posture transformation (3rd stage). In order
to transform the posture of foreground object, we design a
generator G(�) to learn the posture transformations of fore-
ground objects from base classes. We adopt a saliency map
matching strategy to construct a quadruplet-based dataset for
training the generatorG(�). More details on how to construct
the dataset and design the generator structure are provided in
Section 3.4.

Generating samples for novel classes (4tℎ stage). Us-
ing the trained posture transformation generator G(�), we
can transform the posture of foreground objects from the
novel classes to obtain more samples with different postures.
In this way, the support set can be effectively augmented.

Training on novel classes (5tℎ stage). We fix the fea-
ture extractor F (�) and train the classifier C(Wn) for novelclasses with samples in the augmented support set by mini-
mizing Equ. 2. Please note that if it is FOT∗, we fine-tune
the feature extractor F (�) and train the new classifier C(Wn)with samples in the augmented support set and query set by
minimizing Equ. 3.

Through the above steps, we get the specific parameters
of all components. In the test stage, we pass test samples
through the foreground object extractor S(�), feature extrac-
torF (�) and novel class classifierC(Wn) to get the final clas-sification labels.
3.3. Foreground object extractor

As previouslymentioned, image background plays a neg-
ative role in FG-FSL tasks, because it tends to amplify the
intra-class variancewhile reduce inter-class variance. There-
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Figure 4: The architecture of the proposed FOT method. Its algorithm is split into five steps shown in different color boxes.
Based on a fine tune baseline method, we add two additional components: a foreground object extractor S(�) and a posture
transformation generator G(�).

Zoom in operationPixel-level logical operation Multiply operation Mask operation

Y =⊳ (𝑔(𝜎𝑓(𝑋) × 𝑋))𝑓(𝑋) 𝜎𝑓(𝑋) × 𝑋

𝑔𝑔 𝑔⊳BASNet

𝑔𝑔 𝑔⊳

𝑔(𝜎𝑓(𝑋) × 𝑋)𝑋 𝜎𝑓(𝑋)

Figure 5: The detailed architecture of the foreground object extractor. The evolution from X to Y is introduced step by step.

fore, we propose to construct a foreground object extractor
to remove the background and capture the foreground object
of an image.

Fortunately, the rapid development of SOD technology
has made it possible to identify the background and fore-
ground of an image. We propose to choose a pre-trained
SODmodel to construct the foreground object extractor. We
select three code-exposed supervised SODmodels, PiCANet
[34], DGRL [52] and BASNet [40], trained on DUTS [51]
(the largest SODdataset containing 10,553 training and 5,019
test images, which is disjoint with fine-grained datasets). Test-
ing the performance of thesemethods on fine-grained datasets,
we choose BASNet [40] as our SOD model due to its su-
perior performance, which means the saliency maps pro-
duced by BASNet are clearer and sharper than others on
these datasets.

The architecture of foreground object extractor S is con-
structed with a pre-trained BASNet module f , a pixel-level
logical operation �, a multiply operation ⊗, a mask opera-
tion g and a zoom-in operation ⊳ as shown in Figure 5. In
the experiment, given an input picture X, let Y be the out-
put of S. The process from X to Y is formally described as

follows:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

Xs = f (X),
X̂s = �(Xs),
Xm = g(X̂s ⊗X),
Y =⊳ (Xm).

(4)

Specifically, given an image X with shape C ×H ×W , we
first obtain the original saliency map Xs via the BASNet
module f . Considering that Xs is still an rgb-image with
pixel value between [0, 255], we simply apply a pixel-level
logical operation � as follows:

X̂s = �(Xs) ⇔ X̂s
i =

{

1, Xs
i ⩾ �,

0, Xs
i < �,

(5)

where X̂s
i is the value of the itℎ pixel in X̂s which is a one-

channel logical map with shape 1 ×H ×W ,Xs
i is the mean

of Xs
i on channel C , and � is a threshold value. Simply,

we set � as 40 for all datasets. Then, we do multiplication
between X and X̂s to get a separate foreground object with
black background. Furthermore, we crop X̂s⊗X to get the
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part of foreground objectXm with amask operation g, which
captures the position and size of a bounding box according
to the values of X̂s

i . Finally, we zoom in the part Xm with a
zoom-in operation ⊳, and then get the zoomed-in version Y
of the foreground object. Another brief equation equivalent
to Equation 4 is as follows:

Y =⊳ (g(�(f (X))⊗X)). (6)
3.4. Posture transformation generator

It is difficult to estimate the true distribution of a novel
class with high intra-class variance by utilizing limited sam-
ples. For example, if the novel class is a particular bird
species, then we may only have a few samples of the bird
perched on a branch, but none in flight. The classifier might
erroneously conclude that this novel class only consists of
perched birds.

However, this mode of posture transformation is com-
mon to many other bird species in the base classes. From
the base class samples, we can learn the posture transforma-
tion from perched birds to flying birds. Then we may ap-
ply this transformation to a perched bird in a novel class to
generate a flying bird for the novel class. Similarly, many
different posture transformations can be learned from base
classes and applied to novel classes. In this way, the diver-
sity of novel class samples is significantly increased, which
is beneficial to the generalization of the classifier.

Construction of training set. To learn posture trans-
formations in base classes, we first construct an additional
datasetDg with a large number of quadruplets like {A1, A2,
B1, B2}. The internal relationship of a quadruplet {A1, A2,
B1,B2} has been shown in Figure 6. Specifically, (A1, A2) isa pair of samples in one base class, (B1, B2) is another pairof samples in another base class. Â1, Â2, B̂1, B̂2 represent
respectively the saliency maps of A1, A2, B1, B2. We make
sure that Â1 is similar to B̂1 while Â2 is similar to B̂2. Sincethe saliencymap represents the posture of foreground object,
the posture transformation of A1 to A2 is similar to that of
B1 to B2. Some real examples of quadruplets from Dg havebeen shown in Figure 7. Obviously, it verifies an objective
rule that similar postures are often accompanied by similar
saliency maps. However, the opposite is not always true.
The right side shows some counter-examples. In these cases,
the saliency maps may be similar in different postures, espe-
cially in dog and car datasets. In fact, the negative examples
are relatively rare in Dg , so we simply ignore them. We can
obtain many quadruplets with these constrains by searching
within base classes. The seaching strategy is called saliency
map matching, which is formalized as follows:

find all {A1, A2, B1, B2},

s.t.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

A1, A2 ∈ Cb1 ,
B1, B2 ∈ Cb2 ,
Distance(Â1, B̂1) < �,
Distance(Â2, B̂2) < �,
b1 ≠ b2, � > 0, � > 0.

(7)

A1 A2 B1 B2

1Â 2Â 1B̂ 2B̂

∽∽

2bC
1bC

Figure 6: The internal relationship of a quadruplet {A1, A2,
B1, B2} in Dg.

Where,Cb1 ,Cb2 represent two different base classes, Â1, Â2,
B̂1, B̂2 represent respectively the saliency maps of A1, A2,
B1, B2. Euclidean distance is used to calculate the distance
between two saliency maps. It is non-trivial to determine the
values of �, �. Therefore, we simply choose the top 5 closest
B1 for each A1, and then choose the closest B2 for each A2.Sufficient quadruplets can be acquired to avoid overfitting by
traversing all base classes.

when training the posture transformation generatorG(�),
we concatenate {A1, A2, B1} as input, take B2 and B̃2 =
G�([A1, A2, B1]) as the target and predicted output.

Design of generator. We simply use an encoder net-
work consisting of three convolutional layers with built-in
resblocks and symmetric deconvolutional layers for the gen-
erator. In order to ensure that the generated samples play a
positive role in the classification, we connect the trained fea-
ture extractor F (�) and classifier C(Wb) to the output layer
of the encoder. For each quadruplet {A1, A2, B1, B2}, weminimize the following loss function:

Lg = �Lmse(B̃2, B2) + Lce(Wb, F�(B̃2), y), (8)

where Lmse(B̃2, B2) is the mean squared error between B̃2
and B2. Lce(Wb, F�(B̃2), y) is the cross-entropy classifica-
tion loss of the classifierC(Wb) on the sample (B̃2, y), where
Wb is the fixed classifier of base classes trained before, F (�)is the fixed feature extractor trained before, y is the label of
B2, � is a regulated parameter.

Sample generation for novel classes. For each sam-
ple Z1 from a novel class, we find some samplesX1 in baseclasses with similar posture, whichmeans that euclidean dis-
tance between the saliency map ofX1 and that ofZ1 is mini-
mum. Then we randomly sample some pairs (X1, X2)whichrepresent posture transformations ofX1 toX2 fromDg . Fedwith {X1, X2, Z1}, the posture transformation generator is
able to generate Z̃2 with the posture ofX2 and the class fea-ture of Z1. Theoretically, we can get many X1 with similar
posture from base classes, so that many generated Z̃2 can
be obtained. A right amount of generated samples are ben-
eficial to increase the diversity of a novel class. Too many
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A1

A2

B1

B2

Figure 7: Some examples of quadruplets from Dg. Each column represents a quadruplet {A1, A2, B1, B2}. The left side shows
some positive examples while the right side shows some negative ones.

generated samples will lead to additional bias of the true dis-
tribution. Therefore, we have a hyperparameter k, which is
an appropriate number of generated samples for each novel
class. Empirically, in order to ensure that the generated sam-
ples are not dominant, k usually does not exceed 3 for 1-shot
tasks and 5 for 5-shot tasks.

4. Experiments
In this section, we conduct extensive experiments to vali-

date the proposed FOT method. We first compare FOT with
the following methods on fine grained datasets: 1) typical
FSL and FG-FSL methods; 2) state-of-the-art FSL methods;
3) typical hallucination based methods. Secondly, the FOT
is used as an data augmentation module to boost some typ-
ical FSL methods on FG-FSL tasks. Thirdly, we test the
generalization capacity of FOT on Mini-Imagenet dataset.
Fourthly, an ablation study is conducted to evaluate the ef-
fectiveness of each component. Finally, some visualization
results are shown to illustrate that generated samples have
meaningful semantics.
4.1. Datasets

In our experiments, we mainly test our approach on three
widely used fine-grained datasets, i.e., Cub birds [49], Stan-
ford dogs [24] and Stanford cars [25]. Detailed statistics are
summarized in Table 1.

Table 1
The class split for three fine-grained benchmark
datasets. Ctotal is the original number of classes in the
datasets, Cbase is the number of base classes, Cval is the
number of validation classes and Cnovel is the number of
novel classes.

Dataset Cub birds Stanford Dogs Stanford Cars
Ctotal 200 120 196
Cbase 120 70 130
Cval 30 20 17
Cnovel 50 30 49

Cub birds contains 200 categories of birds and a total
of 20,580 images [49]. Following the evaluation protocol of

[27], we randomly split the dataset into 120 base, 30 valida-
tion, and 50 novel classes.

Stanford Dogs contains 120 categories of dogs and a
total of 20,580 images [24]. Following the evaluation pro-
tocol of [27], we randomly split the dataset into 70 base, 20
validation, and 30 novel classes.

Stanford Cars contains 196 categories of cars and a to-
tal of 16,185 images [25]. Following the evaluation protocol
of [27], we randomly split the dataset into 130 base, 17 val-
idation, and 49 novel classes.

We also test the generalization capacity of FOT on the
general image dataset, Mini-Imagenet.

Mini-Imagenet contains 100 different categories and 600
random samples in each class from ILSVRC-12 dataset [48].
Following the evaluation protocol of [47], we randomly split
the dataset into 64 base, 16 validation, and 20 novel classes.
4.2. Experimental settings

For the proposed FOTmethod, we apply a published pre-
trained BASNet model [40] to obtain saliency maps of all
samples, and train the generator G(�) with 1, 000 epochs,
32 batch size, 50, 000 quadruplets that satisfy the constrains
defined in section 3.4. In the fine-tuning stage, the classifier
C(Wn) is trained with both original and generated samples
in support set (FOT∗ additionally requires unlabeled data in
query set). Specifically, we set the number of iterations as
100, and simply adopt a strategy that C(Wn) is only fed withoriginal samples in the first 40 iterations and mixed-up sam-
ples in the rest 60 iterations, which boosts the generalization
capability of C(Wn) effectively.The other settings of FOT are the same as [3]. For typical
FSL methods [48, 8, 46, 47], we also take the same settings
as [3] to ensure fairness. For five specialized FG-FSL meth-
ods [57, 20, 28, 27, 30], we completely keep the original
settings to ensure their performances at the best. In fact, it
is disadvantageous for FOT to compare with them, because
they generally adopt the best hyperparameters to improve
performances, whereas we simply use the same settings as
Baseline++ [3]. For state-of-the-art FSL methods [53, 39,
71, 54], we use results reported in their original papers or
obtained by reproducing the official codes. For three hallu-
cination based FSLmethods[14, 43, 55], we adopt ConvNet-
4, ResNet-18, and ResNet-34 as different backbones for fair
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Table 2
Compared results with tyical FSL and FG-FSL methods on three fine-grained datasets (with the same ConvNet-4 backbone).
The mean accuracies of the 5-way 1-shot and 5-shot tasks are evaluated in three independent experiments. For each column,
the best is bolder and red, the second best is bolder and blue.

Method Cub birds Stanford Dogs Stanford Cars
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Baseline[3] 45.97 ± 0.74 67.09 ± 0.70 34.42 ± 0.59 51.95 ± 0.64 35.60 ± 0.65 53.08 ± 0.75
MatchingNet[48] 57.78 ± 0.91 72.44 ± 0.74 42.88 ± 0.77 58.03 ± 0.75 41.26 ± 0.80 62.77 ± 0.79
ProtoNet[46] 44.53 ± 0.83 75.28 ± 0.70 37.32 ± 0.75 59.09 ± 0.71 30.46 ± 0.64 61.89 ± 0.77
MAML[8] 54.92 ± 0.95 73.18 ± 0.77 44.64 ± 0.89 60.20 ± 0.80 46.71 ± 0.89 60.73 ± 0.85
RelationNet[47] 59.58 ± 0.94 77.62 ± 0.67 43.05 ± 0.86 63.42 ± 0.76 45.48 ± 0.88 60.26 ± 0.85
PCM[57] 42.10 ± 1.96 62.48 ± 1.21 28.78 ± 2.33 46.92 ± 2.00 29.63 ± 2.38 52.28 ± 1.46
PABN[20] 63.56 ± 0.79 75.23 ± 0.59 45.64 ± 0.74 58.97 ± 0.63 53.39 ± 0.72 66.56 ± 0.64
CovaMNet[28] 58.51 ± 0.94 71.15 ± 0.80 49.10 ± 0.76 63.04 ± 0.65 53.85 ± 0.86 71.33 ± 0.62
DN4[27] 55.60 ± 0.89 77.64 ± 0.68 45.41 ± 0.76 63.51 ± 0.62 59.84 ± 0.80 88.65 ± 0.44
BSNet(R&C)[30] 65.89 ± 1.00 80.99 ± 0.63 51.06 ± 0.94 68.60 ± 0.73 54.12 ± 0.96 73.47 ± 0.75
Baseline++[3] 61.08 ± 0.84 79.28 ± 0.68 42.01 ± 0.73 62.52 ± 0.72 46.64 ± 0.80 65.29 ± 0.73
FOT (ours) 67.46 ± 0.68 83.19 ± 0.43 49.32 ± 0.74 68.18 ± 0.69 54.55 ± 0.73 73.69 ± 0.65

and broad comparison. Our experiments are implemented in
PyTorch, and models are trained on the Titan Xp GPU using
an Adam optimizer.
4.3. Main results

Comparison with typical FSL and FG-FSL methods.
We compare FOT with four typical FSL methods (Match-
ingNet [48], MAML [8], ProtoNet [46], RelationNet [47])
and five specialized FG-FSL methods (PCM [57], PABN
[20], CovaMNet [28], DN4 [27], BSNet[30]) on three fine-
grained benchmark datasets. For fair comparison, we show
the results with the same ConvNet-4 backbone (complete re-
sults with other backbones can not be found). Table 2 shows
the compared results on standard 5-way 1-shot and 5-shot
protocols. Based on Baseline++ [3], FOT averagely boosts
Baseline++ 7.20% on 1-shot and 5.99% on 5-shot. Com-
pared with Baseline and four typical FSLmethods [48, 8, 46,
47], FOT exceeds them significantly. Compared with five
FG-FSL methods[57, 20, 28, 27], the results of FOT on the
bird dataset are the best, while the results of FOT on the car
and dog datasets [24] are the second best. These compared
results validate the high stability and strong generalization
capacity of FOT.

Comparison with state-of-the-art FSL methods. Re-
cently, some excellent FSLmethods (SimpleShot [53], TEAM
[39], LaplacianShot [71], ICI [54], TIM [1]) also show their
results on Cub dataset. We compare FOT with these state-
of-the-art methods on Cub dataset. For fair comparison, we
show the results with the same ResNet-18 backbone (com-
plete results with other backbones can not be found). Table 3
shows: 1) Transductive inference methods usually achieve
better performance than inductive inference methods due to
the utilization of unlabeled data. 2) FOT has the best results
among inductive inference methods, while FOT∗ also obtain
competitive performance with other transductive inference
methods. It must be noted that FOT and FOT∗ only adopt
the simplest fine tune architecture. In fact, they have the po-
tential to be applied to other more advanced architectures to

Table 3
Compared results with state-of-the-art FSL methods on Cub
dataset (with the same ResNet-18 backbone). (⋅)1 are reported
in original papers. (⋅)2 are reproduced with the official codes.
Note that ICI [54] uses the bounding box information to crop
the images, but we use the original images for fairness when
reproducing. In. and Tran. indicate inductive and transductive
setting, respectively. The best results are bolder.

Setting Method Cub birds
1-shot 5-shot

In.

Baseline[3] 65.511 82.851
△-encoder[43] 69.811 84.541
SimpleShot[53] 68.901 84.011
Baseline++[3] 67.022 83.582
FOT (ours) 72.56 87.22

Trans.

TEAM[39] 80.161 87.171
LaplacianShot[71] 81.001 88.701
TIM-GD[1] 78.722 87.742
ICI[54] 81.342 88.322
FOT∗ (ours) 80.40 89.68

achieve better performance.
Comparison with other hallucination basedmethods.

FOT belongs to hallucination based methods. So we also
compare FOTwith three hallucination basedmethods (Linear-
hallucinator [14]1, Meta-hallucinator [55]2,△-encoder [43])
On Cub dataset. Table 4 shows the compared results on
Cub dataset with three different backbones. The results indi-
cate: 1) Linear-hallucinator [14] degrades the performance
of Baseline++ [3]. In fact, we find that this method can not
converge and obtain effective additional samples on small
fine-grained datasets. 2) The performance improvement of
the FOT method for Baseline++ is much more significant
than that of Meta-hallucinator [55] or △-encoder [43]. It

1[14] uses a linear offest in the feature space to represent a deformation.
For simplicity, we refer to it as Linear-hallucinator in the experiment part.

2[55] combines meta-learning with hallucination. For simplicity, we
refer to it as Meta-hallucinator in the experiment part.
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Table 4
Compared results with other hallucination based methods on Cub dataset (with three different backbones). The mean
accuracies of the 5-way 1-shot and 5-shot tasks are evaluated in three independent experiments. For each column, the best
is bolder and red, the second best is bolder and blue.

Method ConvNet-4 ResNet-18 ResNet-34
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Baseline++[3] 61.08 ± 0.79 79.28 ± 0.68 67.02 ± 0.90 83.58 ± 0.54 68.00 ± 0.83 84.50 ± 0.51
Baseline++[3] + Linear-hallucinator[14] 59.74 ± 0.39 78.12 ± 0.85 64.45 ± 0.53 81.75 ± 0.66 64.94 ± 0.56 82.36 ± 0.88
Baseline++[3] + Meta-hallucinator[55] 63.77 ± 0.90 80.62 ± 0.71 69.46 ± 0.55 84.78 ± 0.78 69.33 ± 0.65 84.87 ± 0.59
Baseline++[3] + △-encoder[43] 64.47 ± 0.66 81.09 ± 0.68 69.81 ± 0.57 84.54 ± 0.92 70.63 ± 0.76 85.64 ± 0.37
Baseline++[3] + FOT (ours) 67.46 ± 0.68 83.19 ± 0.43 72.56 ± 0.77 87.22 ± 0.46 73.38 ± 0.85 89.01 ± 0.64

means that a simple but clear deformation in posture may be
more effective than diversified but ambiguous deformations.

Application results as an auxiliary module. As a data
augmentationmethod, FOT also can be conveniently applied
to any existing FSLmethods as an auxiliary module. Specif-
ically, we use the foreground object extractor to process the
base class, support and query sets, and then use the posture
transformation generator to augment the support set. We
conduct experiments by combining FOT with four typical
inductive inference FSL methods (with the same ConvNet-
4 backbone) and two latest excellent transductive inference
FSL methods (with the same ResNet-18 backbone) on Cub
dataset. Table 5 shows that FOT can boost the typical FSL
methods significantly. Specifically, MatchingNet [48] is im-
proved by 5.07% on 1-shot and 5.41% on 5-shot; ProtoNet
[46] is improved by 11.21% on 1-shot and 4.40% on 5-shot;
MAML [8] is improved by 5.10% on 1-shot and 5.76% on 5-
shot; RelationNet [47] is improved by 5.70% on 1-shot and
4.05% on 5-shot. Surprisingly, the two excellent FSL meth-
ods can also be improved effectively. Specifically, TIM-GD
[1] is improved by 4.26% on 1-shot and 1.69% on 5-shot;
ICI [54] is improved by 2.78% on 1-shot and 2.25% on 5-
shot. As far as we know, ICI [54] and TIM-GD [1] are the
state-of-the-art FSL methods. FOT brings them up to the
new heights on Cub dataset.

Generalization on general FSL tasks. We test the gen-
eralization capacity of FOT on the general image dataset,
Mini-Imagenet. Table 6 shows that FOT can also obtain
better performance than the typical FSL methods. Specif-
ically, compared with Baseline++, FOT averagely boosts
Baseline++ 3.22% on 1-shot and 1.93% on 5-shot. We ob-
serve that results of FOT onMini-Imagenet are not as signifi-
cant as those on fine-grained datasets. Themain reasonsmay
be: 1) Mini-Imagenet have more complex or multi-objective
images, which makes it difficult to extract their foreground
objects accurately by the SODmodels; 2) foreground objects
of some categories have no obvious posture characteristics,
such as balls and crabs, which degrades the effectiveness of
the posture transformation generator. Overall, FOT is more
suitable for datasets with single object images and categories
possessing rich posture features.
4.4. Ablation study

To get a better understanding of different components in
FOT, we conduct the ablation study. In specific, we split the

Table 5
Results of combining FOT with typical FSL methods on Cub
dataset. In. and Tran. indicate inductive and transductive
setting, respectively. The inductive inference methods apdopt
the same ConvNet-4 backbone, while the transductive infer-
ence methods apdopt the same ResNet-18 backbone. Results
of FOT are bolder.

Setting Method Cub birds
1-shot 5-shot

In.

MatchingNet[48] 57.78 72.44
MatchingNet + FOT 62.85 77.85
ProtoNet[46] 44.53 75.28
ProtoNet + FOT 55.74 79.68
MAML[8] 54.92 73.18
MAML + FOT 60.02 78.94
RelationNet[47] 59.58 77.62
Relationnet + FOT 65.28 81.67

Trans.

TIM-GD[1] 78.72 87.74
TIM-GD + FOT 82.98 89.43
ICI[54] 81.34 88.32
ICI + FOT 84.12 90.57

Table 6
Compared results on Mini-Imagenet dataset (with the same
ConvNet-4 backbone). The mean accuracies of the 5-way 1-
shot and 5-shot tasks are evaluated in three independent ex-
periments. The results of our FOT method are bolder.

Method Mini-Imagenet
1-shot 5-shot

Baseline [3] 42.11 ± 0.71 62.53 ± 0.69
MatchingNet[48] 48.14 ± 0.78 63.48 ± 0.66
ProtoNet[46] 44.42 ± 0.84 64.24 ± 0.72
MAML[8] 46.47 ± 0.82 62.71 ± 0.71
RelationNet[47] 49.31 ± 0.85 66.60 ± 0.69
Baseline++[3] 48.24 ± 0.75 66.43 ± 0.63
FOT (ours) 51.46 ± 0.76 68.36 ± 0.45

foreground object extractor into two stages: removing the
background (for example, the fourth image in Figure 5) and
resizing the foreground (for example, the sixth image in Fig-
ure 5). We take the posture transformation generator as a sin-
gle component. Table 7 shows the ablation results on three
benchmark datasets. Compared with Baseline++ method,
simply removing background can averagely increase the ac-
curacy by 2.96% on 1-shot and 2.20% on 5-shot. It vali-
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Table 7
Ablation study on three fine-grained datasets. RB means only removing background of samples, RF means using a bounding
box to crop the image and then zoom in the foreground object. The results of integrated FOT method is bolder.

Method Cub birds Stanford Dogs Stanford Cars
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Baseline++[3] 61.08 ± 0.84 79.28 ± 0.68 42.01 ± 0.73 62.52 ± 0.72 46.64 ± 0.80 65.29 ± 0.73
Baseline++ + RB 63.47 ± 0.85 80.29 ± 0.59 44.88 ± 0.77 64.63 ± 0.75 50.26 ± 0.80 68.77 ± 0.79
Baseline++ + RB&RF 65.19 ± 0.89 82.57 ± 0.60 46.18 ± 0.75 67.09 ± 0.71 52.46 ± 0.64 71.89 ± 0.77
Baseline++ + FOT 67.46 ± 0.68 83.19 ± 0.43 49.32 ± 0.74 68.18 ± 0.69 54.55 ± 0.73 73.69 ± 0.65

X1

X2

Z1

Z2
͠

Figure 8: Visualization results of generated samples. Each column represents a quadruplet {X1, X2, Z1, Z̃2}. (X1, X2) represents
a pair of samples from a base class. Z1 represents a sample from a novel class, which has similar posture with X1. Z̃2 represents
the generated sample. The left side shows some well generated samples, and the right side shows some bad ones.

dates that image background tends to play a negative role
in FG-FSL tasks. Resizing the foreground object increases
the accuracy by 1.74% on 1-shot and 2.62% on 5-shot. It
verifies that a zoomed-in foreground object is more favor-
able for FG-FSL tasks. Additional samples generated by the
posture transformation generator increases the accuracy by
2.50% on 1-shot and 1.17% on 5-shot, which means that it is
an effective data augmentation method by transforming the
posture of foreground objects.
4.5. Visualization results

To demonstrate that FOT is able to generate meaning-
ful semantically augmented samples, we show some gener-
ated images in Figure 8. Each column represents a quadru-
plet {X1, X2, Z1, Z̃2}. (X1, X2) represents a pair of sam-
ples from a base class. Z1 represents a sample from a novel
class, which has similar posture with X1. Z̃2 represents thegenerated sample. The left side shows some well generated
samples. Obviously, each generated sample Z̃2 have the pos-ture of X2 and the class feature of Z1. This means that the
generator works well. The right side shows some bad cases.
We find that the bad samples are mainly caused by two fac-
tors. One is that the foreground object extractor does not
capture the accurate foreground object. The other is that it
is difficult to learn a rare posture transformation while there
are not enough similar training quadruplets in the training
dataset Dg .However, some bad generated samples also contain some
features of samples in the novel class, which can still play
a positive role in FG-FSL tasks. The rightmost column of
Figure 8 shows a typical example. The generated bird does
not look like a flying bird, but the red beak (framed by the

yellow rectangle) still indicates its true category.

5. Conclusion
In this paper, we have proposed a novel data augmenta-

tion method to deal with FG-FSL tasks, named foreground
object transformation (FOT). It mainly consists of two care-
fully designed components, a foreground object extractor and
a posture transformation generator. Essentially, the former
decreases intra-class variance by removing the image back-
ground, while the latter increases sample diversity by strength-
ening the features of foreground objects and generating ad-
ditional samples with different postures. Experimental re-
sults have validated that our method can boost simple fine-
tuning baselines to a competitive level with the state-of-the-
art methods both in inductive setting and transductive set-
ting. It also brings the latest FSL methods up to the new
state-of-the-art on FG-FSL tasks. Moreover, FOT can also
be easily extended tomore general image classification tasks.
Currently, the performance gain of our method may be less
significant when dealingwith complex tasks, such as datasets
with multi-object images. In the future, extending FOT to
handle more complicated images can be considered as an
interesting research direction.
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