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Abstract

The challenge for next generation system identification is to build new flexible
models and estimators able to simulate complex systems. This task is especially
difficult in the nonlinear setting. In fact, in many real applications the performance
of long-term predictors may be severely affected by stability problems arising due
to the output feedback. For this purpose, also the use of deep networks, which
are having much success to solve classification problems, has not led so far to
any significant cross-fertilization with system identification. This paper proposes
a novel procedure based on a hierarchical architecture, which we call deep predic-
tion network, whose flexibility is used to favor the identification of stable systems.
In particular, its structure contains layers whose aim is to improve long-term pre-
dictions, with complexity controlled by a kernel-based strategy. The usefulness of
the new approach is demonstrated through many examples, including important
real benchmark problems taken from the system identification literature.

Keywords: Nonlinear System identification, long-term predictions, system
stability, Nonparametric estimation, deep networks

1. Introduction

In many dynamical systems the relationship between the input and the output
is described by a nonlinear function. Its estimation thus requires the introduction
of a nonlinear model and the problem to infer it from the available measurements
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is called nonlinear system identification. This area is complex and the litera-
ture surrounding it turns out to be extremely vast. The main reason underlying
such richness is that several input-output parameterizations have been introduced,
each with different proposed estimation approaches. As explained e.g. in the sur-
vey [1], different parametrizations may describe various degrees of system prior
knowledge, hence defining grey box models with different shades of grey.

In this paper, we are concerned with black-box identification of the nonlinear
input-output map. As in supervised learning [2], we are given some data in form of
couples {x;,y, } and the aim is to reconstruct the functional relationship underlying
them. In our dynamic context, y; is the system output measured at instant ¢, x;
contains past input-output samples up to  — 1. A Nonlinear Autoregressive model
with eXogenous inputs (NARX model) is postulated of dimension related to the
size of x;. Its identification provides the one-step ahead predictor which returns,
for any possible future input location x, the estimated output y [3, 4]. We will
just assume that such map is smooth and will reconstruct it in a nonparametric
fashion. Hence, we will search for it in a very-high (possibly infinite-dimensional)
space, then introducing regularization to control model complexity. Important
approaches use kernels to encode in an implicit way smoothness information [5,
6,7, 8, 9]. Relevant for the system identification scenario is the fact that they can
also encode fading memory concepts, i.e. past inputs and outputs are expected
to be less influent on y; as the time lag increases [10, 11], or regularized Volterra
models [12, 13, 14, 15]. Complexity is then controlled by continuous tuning of a
few hyperparameters whose values establish the sensitivity of the estimated output
to inputs variations.

Many recent works document how kernel-based techniques may return highly
performing one-step-ahead predictors [16, 17, 18, 19]. However, this does not en-
sure a good simulation of complex systems. This task is much more difficult than
one-step-ahead prediction. Indeed, in simulation, the one-step-ahead predictor is
evaluated repetitively, with the input defined using previously estimated outputs
v We will refer to this class of prediction networks as iterated shallow prediction
network (ISPN). Stability of the one-step ahead predictor does not imply system
stability and, hence, reliable long term predictions [20]. Such issues can be often
encountered in real applications due to the presence of output feedback.

The problem of stable system identification can be arguably faced through two
major routes. The first one is structural and consists of designing penalty terms
or constraints that guarantee some form of system stability. Notable contributions
are [21, 22] where incremental stability [23] is studied in a parametric fashion
adopting discrete orders, linearly parametrized polynomials and LMI. However,
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regularization is not exploited and model complexity selection is an important
issue. Considering other important properties, like Sontag’s input-to-output sta-
bility that includes Lyapunov-like stability notions [24, 25], is instead an hard and
largely unexplored task.

The second way aims to favour estimation of stable systems by designing com-
putational architectures tailored to improve long-term predictions. For instance,
an approach suggested to favour long term prediction performance and stability is
to estimate separately different k-step ahead predictors, see [26] (Section 2 - Iden-
tification Criteria). The stability of each predictor guarantees the stability of the
simulation. In the following, we will refer to this class of predictors as multiple
shallow prediction network (MSPN). The major drawbacks of MSPN are due to
the increasing dimension of the input predictor. Indeed, to compute y; ¢, the input
of the k-step ahead predictor must include also the history of the system input u up
to time t + k — 1. The increasing dimension of the prediction input augments the
risk of overfitting, limiting generalization and accuracy. Moreover, computational
cost might become prohibitive, since for each prediction step k we have to train a
distinct model, with complexity that augments with k.

In this work, we follow an alternative route, proposing a novel form of deep
networks. Deep networks are having much success for classification and pattern
recognition [27]. Applications abound even if the reasons of their effectiveness
are not well understood. For instance, it is unclear why overparametrization may
perform well, see however [28, 29] for some insights on benign overfitting for
linear regression and some types of compositional functions. Such approaches
have also recently attracted the attention of control community [30, 31] but still
without a significant impact on system identification. Likely, the main reason is
that no deep networks able to incorporate dynamic systems features have been so
far designed.

For this reason, in this work we propose a new computational structure for
learning nonlinear dynamics, which we call deep prediction network (DPN), whose
layers are used to promote system stability. Its architecture does not exploit benign
overfitting since it includes regularization. In fact, each layer includes kernel-
based technology to improve out-of-sample performance. However, our hierar-
chical scheme adds flexibility to the long-term predictors and exploits it to guard
against possible instabilities of the estimated system. Beyond the use of the non-
parametric regularized setting, the novelty of our deep prediction network is its
ability to connect all the predictors, which is not exploited in ISP and MSPN. All
the layers communicate with each other to improve their performance and share
the same hyperparameters to control model complexity. Once such hyperparame-



ters are determined from data, all the desired predictors are obtained by solving a
single sequence of convex problems whose solutions are available in closed form.
Advantages of this new structure in terms of future data prediction will be demon-
strated by using artificial and real data taken from the literature. Our results show
that, compared to ISP, the DPN favors stability and accuracy. Instead, compared
to MSPN, the DPN is more accurate and much more computationally efficient.

The paper is organized as follows. Section 2 reports the problem statement,
while Section 3 describes the proposed strategy, highlighting differences w.r.t. the
classical approach. Numerical results are discussed in Section 4. Conclusions
then end the paper.

2. Problem statement

We consider a discrete-time time-invariant nonlinear dynamic system fed with
an input u, with t € 2. Our measurements model is

yl:F(xl)+et7 tzla"'aN7 (1)

where y; and e; indicate, respectively, the system output and the noise at instant ¢
while F is the unknown dynamic system. The input-output map depends on the
vectors x; containing past input-output values, i.e.

Xt = [)’t—l Yt=2 - Yi—my Ut—1 Us—2 ... ul—mu]‘ 2)

For the sake of simplicity, let m = my, = m,, so that m is the system memory. We
also assume m < oo so that (1) now becomes a NARX model. Our aim is then to
estimate F from N measured couples {x;,y,}V ;.

3. From shallow to deep prediction networks

3.1. Reproducing kernel Hilbert spaces

We will assume that the compositional maps which define the predictors be-
long to a special Hilbert space equipped with a reproducing kernel [32]. For-
mally, the space which contains all the possible regressors x is R?”. Then, K :
R?" x R*™ — R is a positive definite kernel if Y Yi_, cic;K (x;,x;) > 0 for any
possible n-uple of coefficients ¢; and regressors x;. Such kernel then defines a
unique Hilbert space .7 generated by basis functions which are implicitly en-
coded by K. Under mild assumptions, one can write K (x,z) = Y¢ A;pi(x)pi(z)
were A; are positive scalars. Then, p; are the basis functions and the Reproducing
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Kernel Hilbert Space (RKHS) dimension is d.

A relevant example for nonlinear system identification is given by the (inhomo-
geneous) polynomial kernel [33]. Given a couple of input locations (row vectors)
X,z € R one has

P
K(x,Z)=<sz+q), peEN, ¢=>0, 3)

where ¢ is the only kernel hyperparameter. When g > 0, such a kernel induces
a (zmﬂ’ ) -dimensional RKHS spanned by all possible monomials up to the p-th
degree. The number d of basis function is thus finite but exponential in p. To
make an example, assume g = 1, m = 1 and p = 2 with x = [x, x| and z = [z, 2
Then, one obtains the kernel expansion

K(x,2) = 1 +x222 + X225 + 2XaXp2aZ + 2XaZa + 2Xp2p,
and the functions p; which span .7 are all the 6 monomials of degree up to 2, i.e.
2 2
17 Xas Xps XaXb, Xa, Xp-

3.2. Shallow network

Let us assume that the NARX model belongs to a RKHS 7, i.e. F € 27,
and use || - || s~ to denote the RKHS norm. A kernel-based approach can then be
adopted to estimate F. Using a quadratic loss to measure the data fit leads to an
estimator known as kernel ridge regression or also regularization network [7]. The
regularized NARX is given by

N

F=arg min 3 (= f0u))* + 71713 4)
7T or=1

where the positive scalar y trades-off adherence to data and the penalty term which
typically encodes information on function smoothness. For instance, from the pre-
vious discussion around (3), it comes that the polynomial kernel models the un-
known function F as a truncated Volterra series. Strictly speaking, such model is
called polynomial NARX in the system identification literature, whereas the term
Volterra models is typically adopted only for NFIR models, i.e. when x; contains
only past input values, i.e., u;_1 ... u;—p. The induced RKHS norm then penalizes
the monomial expansion coefficients leading to a regularized Volterra model, e.g.
see [12].



For the moment, we assume that the regularization parameters (which include
Y and possibly also other variables present in the kernel) are known. The repre-
senter theorem [16, 5] makes the NARX estimate F available in closed-form. In
particular, let ¥ = [yy,...,yn]? and K € R¥*N be the kernel matrix with (z,i)-
entry given by K;; = K(x;,x;) for ¢,i ranging over {1,...,N}. Then, the nonlinear
system estimate is sum of the N kernel sections centred on the x;, i.e.

N
F(x)=Y &K(xx), vxeR™ (5)
=1

where the coefficients ¢; are the components of the vector
¢=(K+vy)"'Y, ()

with Iy the N x N identity matrix. The expression (5) points out the shallow
structure of the network, revealing its one-hidden layer architecture.

The function F' returned by (4) corresponds to the estimate of the one-step
ahead predictor. In principle, it also provides long-term predictions over any de-
sired horizon. In fact, exploiting previously estimated outputs y;, they are typically
computed as

V1= F(yt;yt—];yt—%-"77ut7ut—17"')
.)A)H-z = F(y\l-l-l?yt?yt—l?' ceg oy Up1,Ugy e )
(7
Fevn = FOrin15 9 1h—2:Pith—3s- - U ph— 1, Ur 1 h25 -+ -)-
In the following, we will refer to the predictor in (7) as Iterated Shallow Prediction

Network (ISPN).

3.3. Deep prediction network

The proposed predictor, named Deep Prediction Network (DPN), considers a
different network w.r.t. ISPN. We instead refine the recursions (7) as follows

Vi1 =H (ytayt—layt—Zw"7>ut7ut—17"')

.)’}\H-Z - FZ()’)\Z—Hvylayt—l?' ceyy Ur 1, Uz, )

®)

yl‘—l-h = Fh(ﬁt+h—l7ﬁt+h—27ﬁt+h—3a s Ut n—1,Ut4p—2,5 - - ')7
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Figure 1: Deep prediction network

hence allowing maps £; to be different each other. Important reasons justify such
increased flexibility. While £ can well perform for one step-ahead prediction,
recursions (7) may lead to numerical instabilities. This phenomenon is well doc-
umented when using polynomial NARX models, induced e.g. by the kernel (3).
To improve the different prediction targets, the rationale behind (8) is to intro-
duce different ¥ to define the recursions. This appears also well appropriate in
the nonlinear setting where (differently from the linear case) minimum variance
predictors are not in general the composition of the one-step ahead predictor F.

How stated in mathematical terms a few lines below, each function that char-
acterizes any layer is assumed to belong to a RKHS. This can make the network
especially rich, e.g. able to approximate any function in the space of continu-
ous functions exploiting e.g. universal kernels [34]. Some similarities among
the functions F;, that define the optimal predictors, should however be expected.
This can be taken into account by assuming that all of them share the same hy-
perparameters and, hence, the same kernel model. All the above observations are
encoded in the DPN reported in Fig. 1.

Each layer present in the network focuses on a certain prediction horizon and
is trained by using the data reported on the right of each node. Here, u’ and y' are,



respectively, the inputs and the outputs collected up to instant z. At the first level
the notation F| indicates the optimal one-step ahead predictor. It is estimated by
exploiting the couples {(',u'), 41} _01 through the kernel-based estimator (4).
Hence, we let

X1 =y ], t=0,...,.N—1
T
Y = [yla"'7yN]
where here, and in what follows, «’ and y' are suitably truncated to make the di-
mension of x; | equal to 2m. Then, using the aforementioned representer theorem,
one has:

F](X) 6[K(x,xt), ¢ = (K+YIN)_1Y

I
M=

t

1
}’}H-l(t): l(xt)v t=1,...,N,

>

so that the y,,| indicate the one step-ahead predictions. These latter are then
propagated to the second layer and the estimate of F; is obtained exploiting the
couples {(§,+1,yt,u’+1),yt+2}i\': _02 and (4). For this purpose, the input locations
x;, the data vector Y and the kernel matrix K all have to be redefined. In particular,
at the second level it holds that
xl+2: b’)\t+],yt,l/lt+l], tZO,,N—z
Y =[ya,....ov] .

Then, the new (N — 1) x (N — 1) kernel matrix K has (¢,i)-entry equal to K;; =
K (x;+1,Xi+1) and one has

N
Bx)=Y ¢K(xx), ¢=K+yly) 'Y
=2

)7r+2(t):F2(xt), t=2,...,N

so that ¥, are the two step-ahead predictions.
The above formulas generalize in an obvious way to obtain all the F;. The third
layer uses the data sets

A A 1 t+2
Xt+3:[)’t+2>)’t+17y7”+ ]7 t:()a"'aN_?)

Y = [y37"'ayN]T
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the fourth exploits instead

N N N t 113
Xt+4 = [yl+37yt+27yl‘+17y yu ]7 = 077N_4

Y = [y47"'7yN]T7

and so on. Then, the data used by the k-th predictor are

X4 = Prrk—ts ey w7, =0, Nk (%)
Y = [y, ..oon), (9b)

The process of sending predictions to form the new data sets (of decreasing
size) then continues up to the desired depth A.

3.4. Derivation of ISPN and DPN

Here, we summarize the training procedure needed to derive ISPN and DPN,
detailing computational costs and hyperparameters optimization. Hereafter, we
will denote the hyperparameters set with 6, which is the vector collecting the
regularization parameter Yy and the other kernel hyperparameters. For instance,
referring to the polynomial kernel in (3), we have 6 = [, ¢].

ISPN derivation
The ISPN derivation requires the following steps:

e Hyperparameters estimation: select 6;
e Computation of ¢ with (6);

The hyperparameters selection can be done through heuristic approaches, such as
cross validation [2], or maximizing the Marginal Likelihood (ML) of the training
samples [35, 36]. In this paper, we consider the second strategy. Specifically,
we minimized the ML negative log of the training samples {(u',y"), yt+1}£\lzz)l,
namely,

A

1 1
6 = argming <§YT(K+ yiy) Yy + 510g|K+ }/IN|> ,

where matrix K is the same used in (5). The last optimization problem can be
solved relying to any optimization algorithm for non-convex problems. However,
experimental evidence shows that also standard gradient descent algorithm with
adaptive learning step are effective.



DPN derivation

As discussed before, to consider similarities between the different layers of the
DPN we assume that the F;s share the hyperparameters 0, see Figure 1. Then, also
with the DPN model, hyperparameters selection is done only one time, adopting
the same strategy of ISPN. After optimizing the hyperparameters, the algorithm
computes the F;s through the iterative procedure described in the Section 3.3. Each
iteration accounts for three steps. In particular, at step k, we have to:

e Build the training dataset following (9);

e Compute the ¢ of F; with (6), defining Y and K in accordance with the
dataset build;

e Compute y; witht =k...N .

These three steps are iterated / times.

Computational costs

Regarding computational costs, the most expensive step is hyperparameters
optimization, which requires the evaluation of the likelihood and its gradient sev-
eral times. However, this operation must be executed with both ISPN and DPN.
From the computational point of view, the difference between ISPN and DPN is
that ISPN computes a single vector of coefficients ¢, while DPN has £ different
vectors of coefficients. Assuming that 4 is significantly smaller than N, the cost to
compute each vector is &(N?3), since it involves a matrix inversion with dimension
N —k with k = 1...h. Then, neglecting hyperparameters optimization, the ISPN
and DPN derivation cost, respectively, ¢(N?) and &' (N?). The last expression
show that, compared to ISPN, the DPN derivation is more expensive. However,
the feasibility of the derivation depends on the number of samples NV, and not on
h, so DPN can be applied in the same cases of ISPN. Moreover, it is worth men-
tioning that these computations are performed offline, an so the gap between the
two computational costs is not so significant.

As concerns simulation, both with ISPN and DPN each simulation step re-
quires the evaluation of (5), that costs &'(N). The linear dependence makes such
models attractive also for online applications. Finally, it is worth mentioning that,
in case that the number of training samples N is too high, the training and evalu-
ation computational cots can be reduced relying on approximate models, see [37]
for a complete overview.
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4. Numerical experiments

We tested the proposed strategy with artificial data as well as with data coming
from real benchmark systems. The predictors compared are:

e ISPN: the Iterated Shallow Prediction Network described in Section 3.2.
Thus, this is the classical one-step ahead predictor iterated using the pre-
dicted in place of the measured output, see (7);

e DPN: the Deep Prediction Network, as proposed in Section 3.3 and sum-
marized by (8);

e MSPNs: the Multiple Shallow Prediction Networks. MSPNs computes the
k-step ahead prediction by means of an ad-hoc predictor £;. Each £}, is given
by a shallow network of the kind described by (5), using the system inputs
up to time ¢ + k — 1 while only the system outputs up to r — 1 are exploited.
This means that the MSPNs prediction is

Pk = Fi (V= 1, V-2 135+ oy Ur sk 1y Up k-2, - -]) -

We implemented the three predictors in PyTorch [38], starting from the GPR-
PyTorch library!. Performances are compared using the FIT, defined as

_ [y -7
FYT-IOO(I——W?jT?W), (10)

where Y and ¥ are the system output and the simulated output, while ¥ is the mean
of Y. To evaluate the simulation accuracy as a function of the prediction step & we
used the norm of the cumulative error, denoted by Ej, and defined in the following
way:

&:W%Yh, (11)

where Y" and ¥ are the vectors collecting the system output and the simulated
output up to the prediction step A.

ttps://bitbucket.org/Albertoballalibera/gpr-pytorch/admin
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4.1. Simulated pendulum

The first setup considered is a pendulum with dynamics described by the fol-
lowing equation
u—by— %MLg sin(y)

7 ;

where y and u are the pendulum angle and the input torque, while M, L, and J are,
respectively, the mass, length, and inertia of the pendulum; g is the gravitational
acceleration. We simulated the system using the odeint function of the Python
package scipy. We assumed that noisy measurement of the pendulum position y
were collected at 30[Hz]; velocities were not measured. We excited the system
with two different realizations of Gaussian noise filtered with a low-pass filter.
The cutoff frequency of the low-pass filter was 7.5[Hz]. The standard deviation of
the measurement noise was 0.001[rad]. The training and test data sets contain 600
and 1500 samples, respectively. Our aim is to find good long-term predictions by
adopting a simple linear kernel with memory m =3, i.e.

K(x,z) =o(xz' +1) (12)

with p = 1; o is a kernel hyperparameter determined, together with ¥, through the
procedure explained in Section 3.4.

In the first experiment, we compared the simulation performance of ISPN,
MSPNs, and DPN through a Monte Carlo experiment composed of 100 exper-
iments. In each experiment, we generated training and test data sets starting
from the input trajectories described before, varying the measurement noise’s re-
alization. After training the three predictors, we simulated the system ahead for
h = 300 steps starting from an initial condition randomly picked from the test
set. The box-plots in Figure 2 show that DPN outperforms ISPN and MSPNs.
MSPNs does not improve the classical approach ISPN, probably due to the high
dimensional input and the small number of training samples. DPN exhibits larger
variance w.r.t. ISPN (not considering the largely negative fit returned by ISPN),
since, in a few experiments, the resulting FIT is quite smaller than in the rest of the
runs. However, DPN performs significantly better than ISPN, and the additional
variance is acceptable.

In Figure 2, one can see that in one out of the 100 experiments the ISPN
FIT is much negative. This result is due to the estimation of an unstable system
with a pole outside the unitary circle. To evaluate if DPN can consistently help
to find stable predictors when ISPN is unstable, we considered another Monte
Carlo experiment with the noise realization fixed to that leading to the unstable
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Figure 2: Box-plots of the FITs (10) obtained by ISPN, MSPN and DPN in the pendulum system,
varying the noise realization and the test initial condition.
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Figure 3: Box-plots of the FITs (10) obtained by ISPN, MSPN and DPN in the pendulum system
when ISPN is unstable, varying the test initial condition.
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Figure 4: Evolution of the ISPN, MSPN and DPN mean E; (11) as function of the prediction step
obtained during the pendulum experiment when the model returned by ISPN is unstable.

ISPN model, then varying only the system initial conditions. In Figure 3, we
reported the box-plots of the obtained FITs. As expected, due to the unstable
pole, in almost all the experiment ISPN FIT is negative. In contrast, MSPNs and
DPN perform as in the previous experiment, showing their stabilizing features.
In Figure 4, we reported the avergae cumulative errors evolution as a function of
the prediction step. As expected, with 7 = 1 the three cumulative errors coincide,
and they grow with h. Due to the unstable pole, the average E; of ISPN grows
exponentially, while the ones of MSPNs and DPN grow slower. Interestingly, the
gap between MSPNs and DPN increases with the prediction step /4, confirming
the lager accuracy of DPN. This behavior could be due to the fact that MSPNs
input dimension augments with 4, decreasing generalization.

In Figure 5, we reported the evolution of the noiseless and simulated outputs,
computed by ISPN, MSPNs, and DPN, in one of the 100 experiments.

For what the training time is concerned, ISPN training is cheaper than MSPN
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Figure 5: Evolution of the noiseless and simulated output obtained by ISPN, MSPN and DPN in
the pendulum system when the model returned by ISPN is unstable.
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’ Algorithm H Training time [min] ‘

ISPN ~ 1
MSPN ~ 150
DPN ~?2

Table 1: Comparison of the ISPN, MSPN and DPN training time in the pendulum experiment.

and DPN, since it requires a single optimization of the hyperparameters plus the
evaluation of (6), which involves a matrix inversion. When compared with ISPN,
DPN requires 4 — 1 additional matrix inversions, which do not significantly aug-
ment the computational burden if the number of training samples is not exception-
ally large, as in these examples. On the contrary, MSPN training is much more
expensive since it requires the solutions of 4 hyperparameters optimization prob-
lems and / evaluations of (6), one for each prediction layer. In the setup described,
the ISPN and DPN training required a few minutes; instead, the MSPNs training
needed 2 hours and a half (see Table 1). For this reason, in what follows we limit
the comparison to ISPN and DPN.

4.2. Liquid-saturated steam heat exchanger

In this experiment, we considered the heat exchanger dataset [39], publicly
available in DalSy database?. It contains data from a real process industry system
where water is heated by pressurized steam in a copper tube. The system input is
the liquid flow rate while the output is the liquid temperature. This data set was
recently adopted in [22], where authors highlighted possible instabilities when
considering as NARX models a third-degree polynomial. The data set accounts
for 4000 samples, collected exiting the system with a random flow rate. The first
100 inputs were sampled from a Gaussian distribution centered on the nominal
steady-state speed. The distribution of the next 1800 inputs instead was described
by two different beta distributions, one privileges low rates, the other high rates.
The remaining inputs were sampled from a uniform distribution. See [39] for
details. We used the first 1000 samples for training and the remaining samples for
the test. We considered the polynomial kernel in (12), with m = 3 and p = 3. As
done in [22], the predictors of y; use as input also u;, besides the past history of
the system input and output; we verified that the use of &, is important to obtain

https://homes.esat.kuleuven.be/~smc/daisy/daisydata.html
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Figure 6: Box-plots of the FITs (10) obtained by ISPN and DPN in the heat exchanger data set for
different test initial conditions.

sufficiently accurate one-step ahead predictors since there is no delay between the
commanded input and the output variation.

After training ISPN and DPN using the 1000 training samples, we simulated
the system for 300 steps, initializing the predictors in 100 different ways by ran-
domly picking the initial conditions from the test set. The FIT box-plots reported
in Figure 6 show that ISPN does not diverge in this example: its FITs are pos-
itive and larger than 40%. However, DPN does a better job and this reveals its
potentialities in improving the prediction capability of ISPN also when this latter
returns stable models. Similar considerations hold by considering Figure 7, where
we reported the average Ej, as a function of the prediction step.

4.3. Silverbox system

We tested the ISPN and DPN in another real system, the Silverbox [40]. This is
an electrical system similar to a mass-spring-damper system. The spring exhibits
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Figure 7: Evolution of the ISPN and DPN mean Ej; (11) as function of the prediction step obtained
using the heat exchanger data set.
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nonlinear behaviors, described by the following differential equation
my (1) +dy (1) +kiy(t) + kay (1) = u(1),

where y and u are, respectively, the mass displacement and the input force applied
to the mass, while d, k1, and k3 are the damper and spring parameters. We consid-
ered a polynomial kernel with degree 3 and m = 4. Differently from the previous
examples, we adopted a richer parametrization of the polynomial kernel, defined
by the following equation,

K(x,2) = (22 + o).

where the hyperparameter £ > 0 is a diagonal matrix which allows a more fine
regularization w.r.t. (12). The data set is publicly available®. The training dataset
used in this experiment is given by the firsts 4000 samples of the original training
data set, which is composed of 87000 samples collected by feeding the system
with an odd random phase multisine signal. Instead, the test data set accounts for
all the available test samples, which are approximately 40000 samples collected
after exciting the system with filtered Gaussian noise. The maximum amplitude of
the test signal grows linearly over time, from zero to the higher permissible value.
Instead, to stress generalization, the maximum amplitude of the training signal
is limited to a smaller value. To compare ISPN and DPN with another standard
approach used in nonlinear identification we also tested an adaptive neuro-fuzzy
inference system (ANFIS)[41], exploiting the implementation of the MATLAB
nonlinear identification toolbox. We trained the ANFIS using the same dataset
adopted with ISPN and DPN, selecting hyperparameters by cross validation

As done in the previous experiments, after training ISPN and DPN we initial-
ized the predictors by using 100 different initial conditions randomly picked from
the test data set, and we simulated the system for 1000 steps. ISPN returned an
unstable model and FIT computation in all the 100 Monte Carlo runs was not pos-
sible due to numerical issues. Instead, DPN can simulate the system accurately.
Figure 8 reports the DPN and ISPN FITs box-plot. Except for a few cases, DPN
FITs are over 97%, and in any case better than ANFIS FITs. In Figure 9 we plot-
ted the mean Ej, evolution as a function of the prediction step. The DPN mean E},
does not grow significantly with E;, while, due to the instability, ISPN mean Ej,
grows rapidly. Figure 10 compares the evolution of the measured and simulated

3http://www.nonlinearbenchmark.org/
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’ Algorithm H Training samples \ RMSE sim [mV] ‘

DPN (proposed approach) 4000 0.65
ANFIS (in this work) 4000 11.49
PNLSS [42] 87000 0.26
Direct Identification [43] 87000 0.96
State-space Encoder [44] 87000 1.4

Best Linear Approximation [45] 87000 13.5

Table 2: Comparison with the previous simulation results obtained on the Silverbox system.

outputs. The ISPN simulation diverges rapidly, while DPN simulation is adherent
to the system output.

Finally, in Table 2 we compared the mean of the DPN and ANFIS Root Mean
Squared Errors (RMSEs) with some of the most significant results previously ob-
tained on the silverbox dataset. The DPN mean RMSE is close to the best results
obtained in this benchmark, despite we used only 4000 training samples, instead
of 87000. This fact further confirms the effectiveness of the proposed solution.

5. Conclusions

Long-term predictions and simulations rely on compositional maps. Hence,
they should represent an important topic for system identification, motivating the
development of new computational structures for dynamic systems. In this set-
ting, our deep prediction network contains layers which communicate each other
and are associated with different k-step ahead predictors. Compared with a shal-
low network architecture, this introduces a larger number of degrees of freedom
in the estimator. They are used to favour system stability, a feature especially
critical in nonlinear system identification. Regularization is also introduced in the
estimation process: network complexity is controlled by a few hyperparameters
contained in the common kernel each layer is equipped with. The use of simu-
lated and real benchmarks problems show that such deep network may outperform
a shallow network in terms of prediction performance. DPN application might be
particularly convenient in all the applications where ISPN simulation may not be
stable.

Developments of this work along many directions are possible. For instance,
the use of different hyperparameter estimation strategies, more tailored to the dif-
ferent layers, could lead to improved results in some circumstances. Open issues
could regard also the possibility to avoid to update the predictors at any network
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Figure 9: Evolution of the ISPN and DPN mean E; (11) as a function of the prediction step
obtained in the silverbox data set.
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level to better control the variance of the hierarchical structure. Developments
could also include the design of even more complex architectures, with layers
including other important information on system dynamics, as well as theoreti-
cal results concerning statistical consistency and learning rate of this new kind of
networks for prediction.
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