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Abstract

Recent methods for reinforcement learning from images use auxiliary tasks to
learn image features that are used by the agent’s policy or Q-function. In particular,
methods based on contrastive learning that induce linearity of the latent dynamics
or invariance to data augmentation have been shown to greatly improve the sam-
ple efficiency of the reinforcement learning algorithm and the generalizability of
the learned embedding. We further argue, that explicitly improving Markovianity
of the learned embedding is desirable and propose a self-supervised representa-
tion learning method which integrates contrastive learning with dynamic models
to synergistically combine these three objectives: (1) We maximize the InfoNCE
bound on the mutual information between the state- and action-embedding and
the embedding of the next state to induce a linearly predictive embedding without
explicitly learning a linear transition model, (2) we further improve Markovianity
of the learned embedding by explicitly learning a non-linear transition model using
regression, and (3) we maximize the mutual information between the two nonlinear
predictions of the next embeddings based on the current action and two indepen-
dent augmentations of the current state, which naturally induces transformation
invariance not only for the state embedding, but also for the nonlinear transition
model. Experimental evaluation on the Deepmind control suite shows that our
proposed method achieves higher sample efficiency and better generalization than
state-of-art methods based on contrastive learning or reconstruction.

1 Introduction

Deep reinforcement learning (RL) is a promising framework for enabling robots to
perform complex control tasks from high-dimensional sensory inputs in unstructured en-
vironments, including household chores [I], manufacturing [2], and transportation [3].
Specifically, end-to-end reinforcement learning from images enables robots to learn new
skills without relying on object-specific detection and tracking systems. However, by op-
erating on high-dimensional observation spaces that are typically governed by complex



dynamics, reinforcement learning from images often requires many environment interac-
tions to learn successful policies, which is not possible for a wide range of real robotic
tasks.

Hafner et al. [4 [5] substantially improved the sample efficiency of image-based re-
inforcement learning, by learning a predictive model on a learned latent embedding of
the state. They alternately optimize a policy based on the learned models of the latent
reward and transition distributions, and improve their models based on newly collected
samples from the learned policy. However, they still need many samples to learn a model
of the environment. Furthermore, the learned world model is usually inaccurate, and the
resulting prediction errors lead to suboptimal policies.

Another solution to improve sample efficiency for reinforcement learning from images
is to use auxiliary tasks to learn compact state representations, which can be used by the
reinforcement learning agent. One common auxiliary task is to reconstruct raw images
with autoencoders and its variations [0, [7, 8]. However, since such approaches learn
a representation by minimizing the reconstruction error in the pixel space, they try to
capture pixel-level details even when they are task-irrelevant, which can degrade sample
efficiency [9].

Recently, contrastive learning objectives, which rely on mutual information estima-
tion, have been shown to improve sample efficiency of reinforcement learning algorithms.
In particular, two different types of contrastive learning have been shown to be effective
for reinforcement learning from images. The first line of research [10] maximizes the
mutual information between two independent transformations of the same image, which
increases the robustness of representations similar to data augmentation. The second line
of research [I1], [12], maximizes mutual information between consecutive states, aiming to
learn representations that have approximately linear latent dynamics.

We further argue that improving latent Markovianity—that is, maximizing the pre-
dictability of the next embedded state based on the current embedded state and action—
is important, since reinforcement learning assumes Markovian states and actions and an
agent using non-Markovian representations is, thus, not able to exploit non-Markovian
effects. Although mutual information based approaches that maximize predictive infor-
mation [I3] already improve Markovianity, we argue that it is more effective to explicitly
minimize the prediction errors of a learned model of the latent dynamics.

Based on the three desired properties that we identified, we propose a self-supervised
representation learning method that integrates contrastive learning with dynamic mod-
els, CoDy, for reinforcement learning from images. Our method consists of three auxiliary
tasks on the learned embedding. Namely, (1) we minimize the prediction error between
the current state- and action-embeddings and the true embedding of the next state to
increase Markovianity, (2) we maximize the InfoNCE [12] bound on the temporal mutual
information between the current state- and action-embeddings and the true embedding
of the next state to increase linearity of the latent dynamics, and (3) we maximize the
multi-view mutual information between the predicted embeddings at the next time step
for two independent data augmentations to improve invariance to data augmentations.

Compared to aforementioned contrastive learning methods, our proposed method of-
fers three appealing properties. Firstly, our method effectively improves Markovianity
of the latent embedding by explicitly learning a nonlinear transition models. Secondly,
instead of directly maximizing the mutual information of the augmented images, we
maximize the multi-view mutual information between the predicted embeddings of next
states, which additionally encourages the latent transition model to be invariant to data



augmentations. Thirdly, our mutual information objectives take into account the actions
such that the state representation does not implicitly depend on the actions in the replay
buffer.

We train our auxiliary tasks with a standard soft actor-critic [14] reinforcement learn-
ing agent for learning continuous policies from images. The main contributions of our
work are as follows.

e To improve the Markovianity of state embeddings, we propose a self-supervised
representation learning method that combines contrastive learning with a nonlinear
prediction task. Our method learns state embeddings while inducing Markovianity,
transformation invariance, and linearity of latent dynamics.

e We propose a novel multi-view mutual information objective that maximizes the
agreement between the predicted embeddings of the next states for different trans-
formations of the current state, which induces transformation invariance not only
for the state embeddings, but also for the latent dynamics.

e We evaluate our method on a set of challenging image-based benchmark tasks and
show that it achieves better sample efficiency and generalization than state-of-art
reconstruction-based, contrastive-learning-based and model-based methods.

The remainder of the paper is organized as follows. We present the problem statement
and preliminaries in Section In Section [2] we discuss previous work related to state
representation learning. We present the proposed framework and the auxiliary tasks in
Section [3] Section [4] contains details on our implementation of the proposed algorithm
and the results of the experimental evaluation. In Section 5| we draw a conclusion and
discuss limitations and future work.

1.1 Problem Statement and Preliminaries

We describe the problem of learning continuous control policies from high-dimensional
observations. Our algorithm is built on top of soft actor critic (SAC) [14], which is a
model-free off-policy reinforcement learning algorithm with entropy regularization. We
also introduce contrastive predictive coding [12] used for mutual information estimation.

1.1.1 Problem Statement and Notation

We formulate the problem of learning continuous control policies from images as an
infinite-horizon Markov decision process (MDP). An MDP can be formulated by the tuple
M= (S, A, P,r ), where S is the state space, and A is the action space, P(s;11|s¢, a;) is
a stochastic dynamic model, r(s, a) is the reward function and 7 the discount factor. The
state and action space fulfill the (first-order) Markov property, that is, the distribution of
the next state s;,; is conditionally independent of all prior states and actions, sy, and
ay ¢, given the current state s; and action a;. At every time step ¢, the agent observes
the current state and chooses its action based on its stochastic policy m(a|s;) and obtains
a reward r(s;, a;). Our goal is to optimize the policy to maximize the agent’s expected
cumulative reward.

We specifically focus on image-based reinforcement learning, that is, the state space
is provided in terms of images. A single image is usually not Markovian, since it contains



little information about object velocities (which could be estimated using previous im-
ages). Following common practice [15] in reinforcement learning from images, we stack
the k most recent images together and define the state as s; = (04,041,042, ** , 04—k+1),
where o; is the image observed at time ¢. While this problem could also be framed as a
partially observable MDP (POMDP), please note that we assume that the agent observes
s¢, which is assumed to be a Markovian state. Hence, in contrast to POMDP methods, we
neither need to use previous observations sy ; to better estimate an unobserved hidden
state, nor do we need to learn a policy that actively chooses informative actions. Instead,
we focus on representation learning, that is, we want to learn an embedding ¢, : S — R,
parameterized by «, that maps the high-dimensional state s to a lower-dimensional repre-
sentation z = @, (s) to increase sample efficiency. Along with the embedding ¢,, we want
to learn a policy 7(als) = m(a|¢a(s)) that maximizes the expected cumulative rewards
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where po(sp) is the distribution of the initial state and vy € (0,1) is a discount factor to
ensure finite returns.

1.1.2 Maximum Entropy Reinforcement Learning

Maximum entropy reinforcement learning optimizes a policy to maximize the sum
of the expected cumulative rewards and the expected entropy of the policy [16]. Un-
like standard reinforcement learning, in the maximum entropy reinforcement learning
framework the agent gets an additional reward that is proportional to the entropy,
H(m(|s;) = — [, m(-]s¢)log(m(:]s¢))) da, of the policy at every time step to encourage
stochastlclty Soft actor-critic [14] is an off-policy maximum entropy reinforcement learn-
ing algorithm that learns an entropy-regularized stochastic policy 7, parameterized by
w, and two @ functions (),, and @Q),, with parameters o; and oy respectively, to find an
optimal control policy. The soft () function can be learned by minimizing the Bellman
error,

LQ(Ui> = E(Sva1r75,1d)ND [<Q0i<87 a) - T(T, 5/7 d)))] ) (2)

where state s, action a, reward r, next state s’ and a termination flag d are sampled from
the replay buffer D. The target value T(r, s’, d) is computed from the @ function

T(r,s',d) =r+ (1 — d)(mln Q, (§,d)—alog ﬂw(alls/)>, (3)

i=1,2 targ,i

where a' ~ 7, (:|s"), and Qgt _denotes the target () function, which uses an exponential
arg,i

moving average of the parameters o; for © = 1,2. This particular parameter update has
been shown to stabilize training.
The policy can be optimized by minimizing

Ly(w) = Egoupolalogm,(als) — Q(s,a)], (4)

where the states s and actions a are sampled from the replay buffer and the stochastic
policy, respectively. Q(s,a) = mir% Q,, is the minimum of both @ function approximators.
1= 9



1.1.3 Contrastive Predictive Coding

For two random variables z; and x5, the mutual information I(z,x9) is defined as
the Kullback-Leibler divergence between the joint distribution p(z1, z5) and the product
of the marginal distributions p(z1)p(z2),

p(xlny)
I = log ——————dx;d
(21, 22) /XI’xzp(l"l,fz) og p(x)p(@2) T1dx2,

which is typically intractable to compute.

Contrastive predictive coding [12] introduced the InfoNCE loss for maximizing a lower
bound on the mutual information between the current embedding and a future embed-
ding. Specifically, given an anchor zy;, a positive sample x5 ; ~ p(z2|z1;) and K negative
samples x5 ; ~ p(z3), the InfoNCE loss corresponds to a binary cross-entropy loss for
discriminating samples from the joint distribution p(z;)p(z2|x1,) from samples from the
marginals, that is,

Lyeg =— E |lo ;37P<f(x1,i7332,i)) ’ (5)
p1,@2) Zj:l exp(f (21,4, T25))

where the learnable function f(-,-) measures the similarity between the anchor and sam-
ples.

Minimizing the InfoNCE loss is equivalent to maximizing a lower bound on the mutual
information between z; and o,

I(zy,29) > log(K) — Ly (6)

Contrastive predictive coding uses a recurrent neural network to extract a context my
from the embeddings of previous observation, and maximizes the InfoNCE bound of the
mutual information between the current context and the k-step future state embedding
zirk- Oord et al. [12] propose a simple log-bilinear model for the classifier, that is,

J(my, xeqr) = exp (mtTch(ﬂsm)),

where ¢ is the encoder. The embedding can thus be learned by minimizing the InfoNCE
loss both with respect to the parameters of the encoder ¢, and with respect to the
matrix W which parameterizes f. By maximizing the inner product between the context
m; and a linear transformation of the future embedding W¢(x;, ), the InfoNCE loss
with log-bilinear classifier favors linearly predictive embeddings [I1], although the mutual
information objective does not impose linearity perse.

2 Related Prior Work

Learning expressive state representations is an active area of research in robot control
and reinforcement learning. We will now briefly discuss robotic-prior based and recon-
struction based approaches, but will focus on methods based on mutual information,
which are most related to our work.



2.1 Robotic Prior-based Methods

Prior work in this area has explored using prior knowledge about the world or dynam-
ics, called robotic priors, for learning state representations [17, [I8]. These robotic priors
can be defined as loss functions to be minimized without additional semantic labels. Jon-
schkowski and Brock [I7] use prior knowledge, such as temporal continuity or causality,
to learn representations that improve the performance of reinforcement learning. Lesort
et al. [19] propose to stabilize the learned representation by forcing two states correspond-
ing to the same reference point to be close to each other. For example, the fixed starting
position of the arm can be used as a reference point, which acts as a reference or calibra-
tion coordinate. Morik et al. [20] combine the idea of robotic priors with LSTMs to learn
task relevant state representations, which have been shown to be robust to states that
are incorrectly classified as being close to each other. However, these robotic prior based
approaches often rely on significant expert knowledge and hence limit the generalizability
of the learned representations across tasks.

2.2 Reconstruction-based Approaches

Many existing approaches use a reconstruction loss to learn a mapping from observa-
tions to state representations [0, 21]. Reconstruction-based methods aim to reconstruct
their input under constraints on their latent representations, e.g. their dimensionality.
Autoencoders can be used to encode high-dimensional inputs into a low-dimensional la-
tent state space [6]. In order to improve training stability, Yarats et al. [§] incorporate
variational autoencoders into an off-policy learning algorithm. However, there is no guar-
antee that the learned representation will encode useful information for the task at hand.
To alleviate this problem, constraints on the latent dynamics have been proved effective
in learning useful task-oriented representations [7, 22, 23]. These methods encourage
the encoder to capture information necessary to predict the next state. However, since
they extract representations by minimizing the reconstruction error in pixel space, these
reconstruction-based methods aim to capture the full diversity of the environment, even
if it is irrelevant to the task.

2.3 Mutual Information Based Approaches

Recent literature on unsupervised representation learning focuses on extracting latent
embeddings by maximizing different lower bounds on the mutual information between
the representations and the inputs. Commonly used bounds include MINE [24], which
estimates mutual information based on the Donsker-Varadhan representation [25] of the
Kullback-Leibler divergence, and InfoNCE [12], which uses a multi-sample version of
noise-contrastive estimation [26].

Hjelm et al. [27] maximize mutual information between the input and its representa-
tions. They propose to maximize both, this global mutual information and local mutual
information that considers small patches of the input. The local mutual information ob-
jective should encourage the encoder to capture features shared by different patches, and
thus put less focus on pixel-level noise. Bengio et al. [28] considered simple reinforcement
learning problems, and propose to learn independently controllable features, by learning
a separate policy for every dimension of the embedding that only affects variation of that
respective dimension. Anand et al. [T1] proposed to learn state representations by max-
imizing the mutual information of observations across spatial and temporal axes. Their



key idea is to improve temporal coherence of observations. However, they do not take
into account the action for their temporal mutual information objective and hence the
predictive information is specific to actions that were used in the training set.

More recently, several works apply mutual information objectives for representation
learning in a deep reinforcement learning setting. Oord et al. [12] introduced the InfoNCE
bound on the mutual information and already evaluated it in a reinforcement learning
setting. They maximize the mutual information between the current context, which is
computed from all previous state embeddings, and the embedding several time steps in
the future. Laskin et al. [I0] learn useful state representations by maximizing the mutual
information between the features of independent transformations of the same observa-
tions, improving transformation invariance of the learned embedding. The importance
of data augmentation for deep reinforcement learning from images has also been stressed
by Yarats et al. [29]. Laskin et al. [10] generate transformed images for data augmen-
tation, where a random patch is cropped from a stack of temporally sequential frames
sampled from the replay buffer. Moreover, they use separate online and target encoders
for the anchor, and positive /negative samples, respectively, when computing the InfoNCE
loss on the mutual information, rather than using same encoder for the anchor, and pos-
itive/negative samples, which was proposed by Oord et al. [I2]. Our method shares
several aspects with their method, CURL, since we also apply the InfoNCE [12] bound
to maximize the mutual information between two embeddings that result from different
image crops in one of our auxiliary tasks. However, we do not consider the embeddings
directly, but the predicted embeddings at the next time step, additionally targeting latent
dynamics invariant to the transformation of the current embedding. Lee et al. [13] apply
the conditional entropy bottleneck [30] to maximize the mutual information between the
current embedding and the future state and reward, while compressing away informa-
tion that is not also contained in the next state or reward. Their conditional entropy
bottleneck objective is conditioned on multiple future states and rewards for multi-step
prediction. Instead, we propose to compress away task-irrelevant information by using
data augmentation without compromising the ability to predict the embedding of the
next state.

Model-based reinforcement learning methods iteratively build a predictive model of
the environment from high-dimensional images along with a policy based on that model [5]
311, 32, 33]. For example, Dreamer [4] learns models of the latent dynamics and rewards
and uses them for reinforcement learning in the latent MDP. By iteratively applying the
policy on the real system, new data is collected to improve the models. Some recent
model-free reinforcement learning approaches learn latent dynamic models to compute
intrinsic reward for solving many reinforcement learning tasks with sparse rewards [34, [35].
For instance, Li et al. [35] compute intrinsic rewards by estimating the novelty of the next
state based on the prediction error of a dynamic model that is smoothly updated during
training. Learning predictive dynamic models has also been shown to be promising for
many robotic control tasks. For example, Li et al. [36] propose a neural fuzzy-based
dynamic model for reliable trajectory tracking, which effectively facilitates the control
performance of the wheel-legged robot. We also learn a model of the latent dynamics,
but we use it only for learning better representations. However, making better use of the
learned models is a natural extension for future work.

In this paper, we propose an approach for representation learning in the context of
deep reinforcement learning, that is based on mutual information, without relying on
robotic prior knowledge or pixel-reconstruction. Most aforementioned mutual informa-



Figure 1: Our framework contains three auxiliary tasks and respective loss functions.
The temporal mutual information loss Lty aims to maximize the InfoNCE bound of
the mutual information between the current state-action embedding and the next state-
embedding, that is, I([c;, 2], z:41). The prediction loss Lpreq is given by the squared
{5 error between the predicted next embedding and the actual embedding of next state.
The multi-view mutual information loss uses the InfoNCE bound to maximize the mutual
information between the predicted next embeddings based on two different state augmen-
tation s7 and sy, (2}, 27,,). The parameters of the target encoder and target transition
function are an exponential moving average of the parameters of the online models. The
online encoder is used by the Q-functions and the policy of the soft actor-critic agent,
which is trained along with the auxiliary tasks.

tion based methods either improve temporal coherence of observations or maximize the
similarity of two independently augmented images, which cannot effectively guarantee
the Markovianity of state and action embeddings. However, non-Markovian embeddings
can make it harder to learn an optimal policy or Q-function, since reinforcement learning
agents assume their states and actions to be Markovian. To alleviate this problem, our
proposed method imposes a nonlinear dynamic model on the latent state space. More-
over, instead of directly maximizing the agreement of embedding of augmented images,
we propose to maximize the mutual information between the predicted embedding at
the next time step, additionally improving data augmentation invariance of the latent
dynamic models. The comparative experiments presented in Section {4 have shown that
the proposed method outperforms leading reconstruction-based and contrastive-based
methods on typically challenging image-based benchmark tasks.

3 Integrating Contrastive Learning with Dynamic
Models

We will now present the architecture of the proposed framework and our method,
which consists of three auxiliary tasks, in detail. We will also show how to train the
representations together with the policy and the Q-function.



3.1 The Mechanism and Architecture for Mutual Information
Maximization

Our mutual information maximization architecture is presented in Figure[l We apply
stochastic data augmentation to raw states s; in order to obtain two independent views
(image crops) of the current states, s} ~ A(s;) and s? ~ A(s;), where A(-) denotes
the distribution of augmented images. In order to extract compact representations from
states, we use an online encoder ¢, : S — R? with parameters a and a target encoder
¢s : S — R? with parameters § to transform augmented observations s; and s? into
representations z; and 27, respectively. An action encoder 1., : A — R"™ with parameters
~v maps actions a; into a feature vector ¢;. Finally, the representations of states and
actions are concatenated together. An online transition model g, with parameters v
and a target transition model g, with parameters p (e.g., neural networks) predict the
representation of the next state based on a given state- and action-embedding,
étl—i-l = gv(ztlv Ct)> (7)

= a2 ) (8)

At the next timestep, the target encoder maps the state s, into the latent represen-
tations z;11. Motivated by He et al. [37], the parameters of the target state encoder and
the target transition model are computed as an exponential moving average (EMA) of
the parameters of the online encoder and online transition model, respectively,

ﬂ:TOé—i_(l_T)ﬂa (9)
p=1v+(1—7)u, (10)

where 7 € [0, 1) is the coefficient of the exponential moving average.

3.2 A Prediction Task for Improving Latent Markovianity

The Markov assumption is critical in reinforcement learning and states that the distri-
bution over the next state is conditionally independent of all previous states and actions,
given the current state and action. When the Markov assumption is violated, the learned
policy and value function in general cannot make use of the environmental information
that is contained in the previous state but not in the current one. By providing the state
embedding z instead of the original state s as input to the agent’s policy and Q-function,
we effectively change the state space from the agent’s perspective.

Although the original state space is assumed Markovian, the learned state represen-
tation is not Markovian in general. For example, consider a simple linear system, where
the state space is given by the position and velocity of a point mass, and the action
corresponds to a bounded change of acceleration. While the state space is Markovian,
a representation that discards the velocity is no longer Markovian, since the position at
time step ¢ — 1 can improve our estimate of the current velocity and thus the prediction
of the next position.

However, we argue that a maximally compressed embedding of a Markovian state,
that keeps sufficient information for learning an optimal policy and Q-function, should
also be Markovian, which we can prove by contradiction: Assume a non-Markovian em-
bedding of a Markovian state that is maximally compressed while keeping all information



that is useful for predicting the expected cumulative reward. As the current state—due to
Markovianity of the state space—contains all information for predicting the next state,
and thus also for predicting the next embedded state, a non-Markovian state repre-
sentation necessarily discards information that would be useful for predicting the next
embedded state. Hence, either we lost information that would be useful for predicting
the expected cumulative reward, or the state representation contains information that
is unnecessary for predicting the expected cumulative reward, and, thus, not maximally
compressed.

While latent Markovianity is a necessary condition for learning a concise and sufficient
representation of the state, it is clearly not sufficient, since even a constant embedding,
¢(s) = const, is Markovian. However, we hypothesize that introducing an auxiliary ob-
jective to induce Markovianity improves the effectiveness of the learned embedding by
improving its consistency. Strict enforcement of latent Markovianity seems challenging,
but we can improve latent Markovianity in the sense that we reduce the predictive in-
formation about the next embedding that was present in previous state embeddings but
not in the current one. We hypothesize that improving Markovianity by means of an
auxiliary prediction tasks, improves the consistency and thereby the sample efficiency
and generalizability for the learned embedding. This hypothesis is consistent with the
experimental results of Lee et al. [I3] and Anand et al. [I1], where auxiliary prediction
tasks were shown to improve the effectiveness of the learned embedding. We improve
Markovianity by introducing the auxiliary task of predicting the next state embedding
2¢41 based on the embeddings of the current state and action, z;} and ¢; and a learned
non-linear transition model g,. The prediction error is defined as

Lpred(a”y’ U) = H’ZtlJrl - 2t+1H§ ) (11)

with the squared £, norm denoted by ||-||2 and the prediction 2}, ,. By minimizing this
forward prediction error, the transition model forces the state encoder to learn predictive
features.

3.3 A Temporal Mutual Information Based Prediction Task

Although minimizing the prediction error as discussed in Section should be more
effective in improving Markovianity compared to maximizing a bound on the mutual
information between embeddings of consecutive time steps, the latter approach has been
shown to be very effective [13, [I1]. The better performance of methods that maximize
predictive information using the InfoNCE bound with log-bilinear classifiers, may be
caused by implicitly inducing linearly predictive representations [I1], or by the fact that
these approaches only rely on a discriminative model [38]. Hence, we propose to use both
auxiliary tasks, the prediction task discussed in Section for inducing Markovianity
more strongly, and a task based on mutual information, which induces linearly predictive
representations without relying on a generative model. Namely, we optimize the state
encoder ¢, and action encoder 1., to maximize the temporal mutual information, between
the current state- and action-embeddings and the next state-embedding, that is,

(2}, ¢y ze01)
max I ([, ¢], z41) = maxE| log 7
a,y (e ], 241) ayy Pz, c)p(2ee1)

where p denotes the joint distribution of these variables, as well as their associated
marginal distributions.

(12)
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We maximize the temporal mutual information by minimizing the InfoNCE loss
(Eq. , and use a log-bilinear classifier to induce linearity. More specifically, let
(2}, ¢4, z¢41) denote samples drawn from the joint distribution p(z}, ¢, 2¢41) which we
refer to as positive sample pairs, and N; denotes a set of negative samples sampled from
the marginal distribution p(z;,1). The InfoNCE loss for maximizing the lower bound of
this temporal mutual information is given by

hl(Zl Ct Zt-i—l)
L (Oé,’)/) - = E |:]E [log S * ) (13)
TMI p(zhcnzei) [ M1 ZzgﬂeNlu%H hi(zf, ¢, 24q)
where hi(z}, ¢, z:41) is a log-bilinear score function given by
hi(2, ¢, z01) = exp (m(ztla Ct)TWIZt—i—l)- (14)

Here, the function m(-, ) concatenates the representations of states and actions and W is
a learned matrix. The term m(z}, ¢;)WW; in Equation [14| performs a linear transformation
to predict the next state representations z;,1, which forces the encoders of states and
actions to capture linearly predictive representations.

In practice, we randomly draw a minibatch of state-action pairs and corresponding
next states (s, a, s;11) from the replay buffer. We obtain a minibatch of positive sample
pairs (2}, ¢t, 2¢41) by feeding sy, a; and s;11 into their corresponding encoder, respectively.
For a given positive sample pair (2}, ¢, 2;41), we construct Ny by replacing 2,41 with all
features z;,; from other sample pairs (z;", ¢}, z/,,) in the same minibatch.

3.4 A Mutual Information Based Task for Improving Transfor-
mation Invariance

The temporal mutual information objective presented in Section [3.3| can encourage
the encoder of states and actions to capture task-irrelevant information which may help
in discriminating the positive and negative samples in the InfoNCE loss (Eq. . Lee
et al. [13] propose to learn a more compressed representation by applying the conditional
entropy bottleneck, which additionally punishes the conditional mutual information be-
tween the past states and the embedding, conditioned on the future. However, in general,
information that is no longer available at the next time step might still be relevant for
the agent at the current step. Instead, we use data augmentation to add an inductive
bias on which information is not relevant for the agent, which has been shown crucial by
Yarats et al. [29].

For example, some lower-level factors presented in the observed states and actions,
including noise or external perturbations, are typically not useful for the agent. For our
experiments, we consider a multi-view setting, inspired by Laskin et al. [10], where we
assume each view of the same scene shares the same task-relevant information while the
information not shared by them is task-irrelevant. Intuitively, this assumption represents
an inductive bias that the way we see the same scene should not affect the internal state
of the environment. Instead, the representations should extract task-relevant information
that is shared by different views for predicting the next embedding. Hence, we propose
to maximize the multi-view mutual information (2}, , 27,,) between the predicted rep-
resentation of next states 2}, and 27 ,, based on independent views s; and s7 of the
same scene with respect to the state embedding ¢,, the action embedding 1), and the
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nonlinear transition model g,,,

21 252
maX[(étl-i-la 27524_1) = maxE log M

p
- (15)
a,y,v a,Y,v p(ztl-H )p<zt2+1>

Since mutual information measures the amount of information shared between random
variables, this objective forces the encoder of states to capture transformation invariant
information about higher-level factors (e.g. presence of certain objects) from multiple
views of the same scene. Notably, instead of modelling the mutual information between
the representations of two augmented states (2}, 22) [10], the mutual information objec-
tive that we consider imposes transformation invariance not only on the state embedding,
but also on the transition model.

We employ InfoNCE to maximize a lower bound of the above multi-view mutual in-
formation objective. By (2},4, 27,;) we denote samples drawn from the joint distribution
p(2li1, 27,1) which we refer to positive sample pairs, and by N, we denote a set of neg-
ative samples sampled from the marginal distribution p(z7.;). The multi-view mutual
information objective is thus given by

(16)

ha (2141, 241) } }
)

L (a,v,v)=— E [E [log =
MvA ENaUZ2, | ha(2i41, 20)

P(2t1+172t2+1) N2 222*

t+1

with score function hy(-, -) which maps feature pairs onto scalar-valued scores. We employ
a log-bilinear model,

h2(£§+17 5’152+1) = exp (2751+1W223+1>7 (17)

with weight transformation matrix Ws. Minimizing L, ., With respect to ¢a, 1y, gu
and W5 maximizes the mutual information between the predicted representations of next
states. In practice, we randomly sample a minibatch of state-action pairs and corre-
sponding next states (s, as, $4+1) from the replay buffer. We obtain positive sample pairs
(241, 22,1) by feeding the above minibatch into our mutual information framework. For a
given positive sample pair (2}, ,, 27,,), we construct N by replacing 27, , with all features
22, from other sample pairs (2, 2%,,) in the same minibatch.

Finally, the total loss function LCoDy for the auxiliary tasks consists of the prediction
loss Lpre > the temporal mutual information loss L, . and multi-view mutual information
loss Ly g Weighted by hyperparameters A and 7

LcoDy(oz, v, v) = LMVMI(a, v,v) + )\LTMI(a, v) + anred(a, v, v). (18)

The online encoder ¢,, the action encoder v, and online transition model g, is optimized
simultaneously by minimizing this total loss function.

3.5 Joint Policy and Auxiliary Task Optimization

We train our auxiliary tasks jointly with SAC, a model-free off-policy reinforcement
learning agent, by adding Eq. as an auxiliary objective during policy training. The
policy takes the representations computed with the online encoder to choose what action
to take, and to approximate (Q-values. Since the reward function can provide some
task-relevant information, we allow the gradient of the Q-function to back-propagate
through the online encoder in order to further capture task-relevant representations of
observations. We do not backpropagate the actor loss through the embedding because
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Algorithm 1: Training Algorithm for CoDy
Require: parameters o, v, 5, u, v, w, o, 7, batch size B, replay buffer D,
learning rates pe, p, and p.
initialize replay buffer D
for each training step do
collect experience (s, at, ¢, S¢+1) and add it to the replay buffer D
for each gradient step do
Sample a minibatch of tuple: {s;, a;,7;,si:1}7 ~ D
Update soft Q-function:
{o;,a} « {0s,a} — pVo, Lo(o;) for i € {1,2}
Update policy:
W w— pa@wLw(w)
Update online encoder, online transition model and action
encoder: X
{a> v, 7} — {O‘a v, 7} - pev{a,v,'y}LcoDy (CL/, v, 7)
Update target Q-function:
0, 10, + (1 —19)0; for i € {1,2}
Update target encoder and transition model:
B=1a+(1—-7)B
=10+ (1 =T
end

end

this degrades performance by implicitly changing the Q-function during the actor update,
as noted by Yarats et al. [§].

The training procedure is presented in Algorithm [I] in detail. « and v are the pa-
rameters of the online encoder ¢, and transition model g, respectively. S and p are the
parameters of the target encoder ¢g and transition model g,, while v are the parame-
ters of the action encoder 1,. The parameters of policy m, the Q-function and target
Q-function are denoted as w, o and &, respectively. p, and p. are the learning rates for
the policy and Q-function. p. is the learning rate for the online encoder, online transi-
tion model and action encoder. The experience is stored in a replay buffer D, which is
initialized with tuples {s;, a;, r¢, s;+1} by using a random policy. The algorithm proceeds
by alternating between collecting new experience from the environment, and updating
the parameters of the soft Q-function, policy and auxiliary prediction model. The pa-
rameters of the policy network and Q-function network are optimized by minimizing the
SAC policy loss (Eq and actor loss (Eq, respectively. The parameters of the online
encoder, online transition model and action encoder are optimized by minimizing Eq.
jointly. The parameters of the target Q-function network are given by an exponential
moving average of the parameters of the online Q-function.

4 Experimental Evaluation

We evaluate the data efficiency and performance of our method and compare it against
state-of-the-art methods—both a model-based reinforcement learning method and model-
free reinforcement learning methods with auxiliary tasks—on various benchmark tasks.
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(a) Ball-in-cup Catch  (b) Cartpole Swingup (¢) Finger Spin (d) Reacher Easy (e) Walker Walk (f) Cheetah Run

Figure 2: Continuous control tasks from the Deepmind control suite used in our experi-
ments. (a) The Ball-in-cup Catch task only provides the agent with a sparse reward when
the ball is caught. (b) The Cartpole Swingup task attains images from a fixed camera
and, hence, the cart can move out of sight. (c) The Finger Spin task requires contacts
between the finger and the object. (d) The Reacher Easy task has a sparse reward that
is only given when the target location is reached. (e) The Walker Walk task has complex
dynamics. (f) The Cheetah Run task has both high action dimensions and contacts with
the ground.

We test the generalization of our method to unseen tasks and compare it with other
methods. We will now describe the experimental setup and present the results. We will
also show the results of an ablation study to show the effects of the different auxiliary
tasks and a visualization of the learned representations. Our code is open-sourced and
available at https://github.com/BangYouO1/Pytorch-CoDy.

4.1 Experimental Setup

We implement the proposed algorithm on the commonly used PlaNet [5] test bed,
which consist of a range of challenging imaged-based continuous control tasks (see Figure
from the Deepmind control suite [39]. Specifically, six tasks are considered: Ball-in-cup
Catch, Cartpole Swingup, Reacher Easy, Finger Spin, Walker Walk and Cheetah Run.
Every task offers a unique set of challenges, including sparse rewards, complex dynamics
as well as contacts. We refer to Tassa et al. [39] for more detailed descriptions.

We parameterize the online encoder of states, the action encoder and the transition
model using feed forward neural networks. The online encoder of observations consists
of four convolution layers following a single fully-connected layer. We use a kernel of
size 3 x 3 with 32 channels and set stride to 1 for all convolutional layers. We employ
ReLU activations after each convolutional layer. The output of the convolutional neural
network is fed into a single fully-connected layer with 50-dimensional output. The action
encoder consists of two fully-connected layers with ReLLU activation functions. The hidden
dimension is set to 512 and the output dimension is set to 16 for the action encoder. The
transition model uses three fully-connected layers with ReLLU activation functions. Its
hidden dimension is set to 1024 and the output dimension is set to 50. The target encoder
and transition model share the same network architecture with the online encoder and
transition model, respectively. We stack 3 consecutive frames as an observation input,
where each frame is an RGB rendering image with size 3 x 84 x 84. We follow Lee et al.
[13] by augmenting states by randomly shifting the image by [—4,4]. We set A = 100 and
n = 1000 for all tasks.

We use the publicly released implementation of SAC by Yarats et al. [8]. The Q-
function consists of three fully-connected layers with ReLLU activation functions. The
policy network is also parameterized as a 3-layer fully-connected network that outputs the
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Table 1: Shared hyperparameters used for
the comparative experiments
Table 2: Per-task hyperparameters

Parameter Value
Replay buffer capacity | 100000 Task Action| Batch
Initial steps 1000 Repeat size
Optimizer Adam Ball-in-cup Catch 4 256
Q-function EMA 7 0.01 Finger Spin 2 256
Critic target update freq 2 Reacher Easy 4 256
Learning rate (pq, pe) 1073 Cartpole Swingup 8 256
Learning rate (p,) 107° Walker Walk 2 256
Encoder EMA T, 0.05 Cheetah Run 4 512
Discount 0.99
Initial temperature 0.1

mean and covariance for a Gaussian policy. The hidden dimension is set to 1024 for both
the Q-function and policy network. Table [I| presents the remaining hyperparameters in
detail. Following common practice [27, 8, [10], we treat action repeat as a hyperparameter
to the agent. The number of repeated actions and the batch size for each task are listed
in Table 2

We compare our algorithm with the following leading baselines for continuous control
from images: CURL [10], which combines a model-free RL agent with a contrastive
learning objective that captures mutual information between two augmented images,
PISAC [13], which maximizes the predictive information between the past and the future
to learn latent representations which are used by a model-free RL agent, SAC+AE [§],
which uses a regularized autoencoder for learning a mapping from high-dimensional states
to compact embeddings, Dreamer [4], a model-based reinforcement learning method which
learns a predictive dynamic model for planning, and Pixel SAC which uses a vanilla SAC
operating purely from pixels.

We evaluate the performance of every agent after every 10K environment steps by
computing an average return over 10 episodes. For each method, the SAC agent performs
one gradient update per environment step to ensure a fair comparison. For a more reliable
comparison, we run each algorithm with five different random seeds for each task. All
figures show the average reward and 95% confidence interval unless specified otherwise.

4.2 Sample Efficiency

Figure |3| compares our algorithm with PISAC [13], CURL [I0], SAC-AE [§],
Dreamer [4] and Pixel SAC [I4]. We use the version of PISAC that uses the same
implementation of the SAC algorithm [§] to ensure a fair comparison to other model-free
approaches. The evaluation data of Dreamer was provided to us by the author. The
proposed algorithm achieves state-of-the-art performance on all the tasks against all the
leading baselines, both model-based and model-free.

Following CURL [10], in Table [3|we also compare performance at a fixed number of en-
vironment interactions (100k and 500K). Dreamer’s results provided by the author didn’t
show the performance of the agent at exactly 100k and 500K environment interactions,
and hence we interpolated between nearby values. We compare our algorithm with above
baselines and an upper bound performance achieved by SAC [14] that operates directly
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Figure 3: We compared the performance of CoDy with existing methods on six tasks
from the Deepmind control suite. On all tasks, CoDy performs best in terms of sample
efficiency.

from internal states instead of images. Averaged over 5 seeds, our algorithm achieves
better sample-efficiency at 100K environment interactions and asymptotic performance
at 500K environment interactions against existing baselines on all tasks. Furthermore,
our algorithm matches the upper bound performance of SAC that is trained directly from
internal states on several tasks at 500K environment interactions.

Table 3: Scores achieved by our method (mean and standard error for 5 seeds) and
baselines at 100k and 500k environment steps. * indicates the best average return among
these methods. The bold font indicates that the upper-bound on the reward (based on the
given standard error intervals) for the given method, is larger or equal than the respective
lower bound for every other image-based method.

500K step scores | CoDy(Ours)  PISAC CURL SAC-AE  Dreamer Pixel SAC | State SAC
Finger Spin 937+ 41* 916 + 58 854+ 48 839+ 68 320435 530+24 927 + 43
Cartpole Swingup 869+ 4~ 857 £ 12 837+ 15 748447 7114+ 94 436+94 870 £ 7
Reacher Easy 957+ 16 922 + 32 891+ 30 678461 5814 160 191+40 975 £ 5
Cheetah Run 656+ 43* 510 £+ 27 492422 476+ 22 5714+ 109 250+26 772 £+ 60
Walker Walk 943+ 17 822 + 98 897+ 26 83624 924+ 35 97162 964 £+ 8
Ball-in-cup Catch 970+ 4~ 961 + 3 957+ 6 831+£25 966+ 8 35577 979 + 6
100K step scores
Finger Spin 887 + 39* 789 +£34 750+ 37 751457 33+ 19 315 £ 78 | 672+ 76
Cartpole Swingup | 784 + 18* 591 £ 70 547 £ 73 305+ 17 235+ 73 263 £ 27 | 812 + 45
Reacher Easy 624 + 42* 482 4+ 91 460 £ 65 321 £26 148 + 53 160 + 48 | 919 + 123
Cheetah Run 323 + 29 310 + 28 266 + 27 264+ 12 159+ 60 160 + 13 228 £ 95
Walker Walk 673 + 94 518 + 70 482+ 28 362+ 22 216 £+ 56 105 £ 20 | 604 4+ 317
Ball-in-cup Catch 948 + 6* 847 £ 21 741 £ 102 222 £21 172 + 96 244 + 55 957 £+ 26
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Figure 4: Generalization comparisons on the Deepmind control suite. Generalization of
an encoder trained on the Cartpole Balance task and evaluated on the unseen Cartpole
Swingup task (left). Generalization of an encoder trained on the Walker Walk task and
evaluated on the unseen Walker Run (centre) and Walker Stand (right) task, respectively.

4.3 Generalization to Unseen Tasks

We test the generalization of our method by transferring the learned representations
without additional fine-tuning to unseen tasks that share the same environment dynam-
ics. Specifically, we learn representations and a SAC agent on a source task, fix the
representations and then train a new SAC agent for a target task using the fixed repre-
sentations. We use Cartpole Balance and Cartpole Swingup as the source task and the
target task, respectively, which share the same environment dynamics but differ in their
initial pole positions. We also use Walker Walk as the source task and Walker Stand
and Walker Run as the target task, which all have different reward functions. Figure [4]
compares the generalization of our method against PISAC, CURL, SAC-AE and a Pixel
SAC that was trained from scratch. Our algorithm achieves not only better generaliza-
tion than baselines, but also much better performance than vanilla Pixel SAC trained
from scratch. We attribute the improved generalization compared to other contrastive
learning based methods to our additional focus on improving latent Markovianity. The
source and target tasks differ only in their reward function or the inital position, and
share the same state-action dynamics. A Markovian representation is consistent with the
state-action dynamics, in the sense that it does not discard information that would be
useful for predicting aspects of the state that it chose to encode. We conjecture that this
consistency improves the generalization of CoDy to unseen tasks.

4.4 Ablation Studies

We perform ablation studies to disentangle the individual contributions of the multi-
view objective and the temporal mutual information objective, as well as the role of the
prediction loss. We investigate three ablations of our CoDy model: Non-Tem CoDy,
which only optimizes multi-view mutual information objective and the prediction error;
Non-Pred CoDy, which only optimizes the multi-view and temporal mutual information
objective, and Non-MV CoDy, which only optimizes the temporal mutual information
objective and the prediction error. We present the performance of these ablations in Fig-
ure 5] CoDy achieves better or at least comparable performance and sample efficiency to
all its own ablations across all tasks. This indicates that all three auxiliary tasks in CoDy
play an important role in improving the performance on the benchmark tasks. Notably,
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Figure 5: Performance on Deepmind control suite under consideration for ablated variants
of our method.

CoDy outperforms Non-Pred CoDy across all tasks, which indicates that improving the
Markovianity of embedding by minimizing the prediction error of dynamic models ef-
fectively achieves better sample efficiency. By comparing the performance of CoDy and
Non-MV CoDy, we observe that our multi-view mutual information objective based on
predicted embeddings helps to achieve better performance.

4.5 Representation Visualization

We visualize the representations learned by CoDy using t-SNE [40] to inspect the
learned embedding. With t-SNE visualization, there tend to be many overlapping points
in the 2D space, which makes it difficult to view the overlapped representation examples.
Therefore, we quantize t-SNE points into a 2D grid with a 30 x 20 interface by Raster-
Fairy [41]. Figure |§| visualizes the representations learned with CoDy after training has
completed on the Walker Walk task. Observations with similar robot configurations
appear close to each other, which indicates that the latent space learned with CoDy
meaningfully organizes the variation in robot configurations. Similar visualization for
the remaining 5 tasks from the Deepmind control suite are shown in Appendix [A]

5 Discussion and Conclusion

We presented CoDy, a self-supervised representation learning method which integrates
contrastive learning with dynamic models for improving the sample efficiency of model-
free reinforcement learning agents. Our method aims to learn state representations that
are Markovian, linearly predictive and transformation invariant by minimizing three re-
spective auxiliary losses during reinforcement learning from images. We compared our
method with state-of-the-art approaches on a set of challenging image-based benchmark
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Figure 6: We visualize the representations learned with CoDy after training has completed
on the Walker Walk task using t-SNE Visualization on a 30 x 20 grid.

tasks. The results showed that our method can achieve better sample efficiency and
performance compared to all the leading baselines on the majority of tasks, including
reconstruction-based, contrastive-based as well as model-based methods. Furthermore,
we found representations learned with our method can achieve better generalization to
unseen tasks than other model-free methods.

Although our method performed better than previous methods in our experiments,
it is also a bit more complex by using three auxiliary tasks. We propose to learn a
transition model in latent space and showed that it can be helpful for learning compact
state embeddings, however, we do not make direct use of this model during reinforcement
learning, which seems wasteful. Making use of the learned transition model for planning
is a natural extension for future research. Moreover, we plan to extend our method to
multimodal data, which incorporates other modalities, such as tactile and sound, into
our representation learning model.
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Figure A.1: t-SNE Visualization of representations learned with CoDy after training has
completed on Cheetach Run task. The grid size is 20 x 15.
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Appendix
A Additional Visualizations of the Learned Repre-
sentation

Additional results for the experiment in Section [£.5] that demonstrate that the latent
space learned by CoDy meaningfully organizes the variations in robot configurations are

shown in Figure

B Computation Time

In order to evaluate whether our algorithm increases the time cost while improving the
sample efficiency, we test computation time of our method and all baselines during policy
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Figure A.2: t-SNE Visualization of representations learned with CoDy after training has
completed on Ball-in-cup Catch task. The grid size is 20 x 15.
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Figure A.3: t-SNE Visualization of representations learned with CoDy after training has
completed on Finger Spin task. The grid size is 20 x 15.
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Figure A.4: t-SNE Visualization of representations learned with CoDy after training has
completed on Reacher Easy task. The grid size is 20 x 15.
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Figure A.5: t-SNE Visualization of representations learned with CoDy after training has
completed on Cartpole Swingup task. The grid size is 20 x 15.
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Table B.1: Computation time in seconds per 1000 environment steps(mean and standard
error for 5 seeds) comparison to existing methods on six tasks from the Deepmind control
suite. Bolded font indicates minimum mean among these methods.

CoDy(Ours) PISAC CURL SAC-AE Dreamer Pixel SAC
Cartpole Swingup 14+ 1 211 251 10£0 18+ 1 5+ 0
Ball-in-cup Catch 28+ 0 47+1 5H50+£0 19+0 18+ 1 9+ 0
Finger Spin 56+ 1 80+£1 980 37+0 18+ 0 18+ 0
Walker Walk 56+ 1 80+£1 981 38+£0 19+ 0 18+ 0
Reacher Easy 28+ 1 43+1 500 19+0 19+ 0 9+ 0
Cheetah Run 51+ 0 38+1 49+1 1941 19+ 1 9+ 0

learning. Specifically, we use a single NVIDIA RTX 2080 GPU and 16 CPU cores for
each training run and record training time per 1000 environment steps after initializing
the replay buffer. Table [B.I] compares our method against PISAC, CURL, SAC-AE,
Dreamer and Pixel SAC with respect to wallclock time. Pixel SAC has minimum time
cost on all tasks among these methods, since Pixel SAC operates directly from pixels
without any auxiliary tasks or learned dynamic model. Besides, we observe that the time
cost of each method highly depends on the chosen hyperparameters, especially the batch
size. This may explain why our method requires less training time than CURL as well
as more training time than Dreamer and SAC-AE, as the batch size of CoDy is smaller
than CURL’s and larger than Dreamer’s and SAC-AE’s. Moreover, we notice that the
computation time of each method is highly related to the amount of action repeat across
different tasks. Hence, we assume that most of the training time is spent on gradient
updates, rather than image rendering of simulated environments. When PISAC has the
same amount of action repeat and batch size as our method, it has on the majority of
tasks a higher computation cost than CoDy, since a single sample of PISAC contains
more image frames.
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