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Abstract 
Modern multi-object tracking (MOT) systems usually model 
the trajectories by associating per-frame detections. However, 
when camera motion, fast motion, and occlusion challenges 
occur, it is difficult to ensure long-range tracking or even the 
tracklet purity, especially for small objects. Although re-iden-
tification is often employed, due to noisy partial-detections, 
similar appearance, and lack of temporal-spatial constraints, 
it is not only unreliable and time-consuming, but still cannot 
address the false negatives for occluded and blurred objects. 
In this paper, we propose an enhanced MOT paradigm, 
namely Motion-Aware Tracker (MAT), focusing more on 
various motion patterns of different objects. The rigid camera 
motion and nonrigid pedestrian motion are blended compati-
bly to form the integrated motion localization module. Mean-
while, we introduce the dynamic reconnection context mod-
ule, which aims to balance the robustness of long-range mo-
tion-based reconnection, and includes the cyclic pseudo-ob-
servation updating strategy to smoothly fill in the tracking 
fragments caused by occlusion or blur. Additionally, the 3D 
integral image module is presented to efficiently cut useless 
track-detection association connections with temporal-spatial 
constraints. Extensive experiments on MOT16 and MOT17 
challenging benchmarks demonstrate that our MAT approach 
can achieve the superior performance by a large margin with 
high efficiency, in contrast to other state-of-the-art trackers. 

1 Introduction 
Multi-object tracking (MOT) plays a crucial role in scene 
understanding tasks for video analysis. It aims to estimate 
the trajectories of objects and associate them with per-frame 
detection results in either online or offline way. With recent 
progresses on object detection task, tracking-by-detection 
becomes the preferred paradigm to solve the problem of 
tracking multiple objects. However, despite the semantic ad-
vantages of the dependence on detection, it also turns into a 
major limitation in complex scenes due to its visible require-
ments and non-temporal concerns.  

 Proverbially, the core part of tracking-by-detection para-
digm is data association, which is usually performed by us-
ing some spatial-scale metrics for the association between 

consecutive frames, and the re-identification (ReID) is often 
employed for long-range matching or per-frame association. 
Some methods like Tracktor++ (Bergmann, Meinhardt, and 
Leal-Taixé 2019), tending to directly use adjacent-frame de-
tections to carry out spatial-scale association with the as-
sumption of high frame rate and low pedestrian speed. Ac-
tually, most tracking scenarios come with a variety of chal-
lenges, such as camera motion, fast motion, and occlusion. 
When that happens, the detector may fail in steadily output-
ting high-quality detections and large displacement of ob-
jects may occur between adjacent frames. So, it is difficult 
for spatial-scale association to ensure long-range tracking or 
even tracklet purity in these cases, especially for small ob-
jects. To alleviate the spatial-scale inconsistency problem 
from large displacement or long occlusion, most tracking 
frameworks adopt a ReID branch to extract objects’ embed-
ding features for subsequent feature-level association. For 
example, DeepSort (Wojke, Bewley, and Paulus 2017) uses 
a trained ReID model to perform feature extraction, and 
FairMOT (Zhang et. al. 2020) adds a 512-Dim embedding 
head after backbone. But ReID-based trackers rely too much 
on the performance of the detector, the extracted appearance 
features are often of poor discriminability in complex or 
low-resolution scenes, such as the partial-detections, noisy 
pedestrian jamming, blur or similar appearance, and lack of 
temporal-spatial matching constraints. It is already very 
time-consuming for ReID computing, the above-mentioned 
issues may cause a mass of error associations with Identity 
Switches, and extensive false negatives result from occlu-
sion or blur still cannot be addressed.  

 In this paper, we abandon the ReID-based association 
which requires high-quality detections with clean and dis-
criminative appearance. Instead, we focus more on various 
motion patterns of different objects to realize motion-based 
prediction and association, and propose an enhanced track-
ing-by-detection MOT paradigm, namely Motion-Aware 
Tracker (MAT). Our tracking framework consists of three 
key modules, they are Integrated Motion Localization (IML), 
Dynamic Reconnection Context (DRC), and 3D Integral 



Image (3DII), respectively. In details, the IML module is de-
signed for the joint prediction of nonrigid pedestrian motion 
and rigid camera motion, which can be useful for motion-
based association. The DRC module determines the motion-
based reconnection windows dynamically for different ob-
jects, in order to balance the robustness of long-range track-
ing, based on estimated individual velocity and self-defined 
intensity of camera motion. Besides, when existing missed 
detections caused by occlusion or blur, cyclic pseudo-obser-
vation updating strategy is included to smooth the predic-
tions of IML nonlinearly as filled tracking fragments. The 
3DII module is presented to efficiently cut useless connec-
tions among all tracks and detections during data association 
stage, by imposing the temporal-spatial constraints on each 
connection. Thus, the tracks within partial-covering region 
of each detection will be obtained as association candidates 
integrally in nearly constant time cost, and all the detections 
will be transferred into multilayered encoding maps. 

 The contributions of this paper can be summarized as fol-
lows: 
• We propose an enhanced MOT paradigm, namely Mo-

tion-Aware Tracker (MAT), which can be easily extend 
to any tracking-by-detection architecture with the state-
of-the-art performance on MOT16&17 benchmarks. 

• We blend the nonrigid pedestrian motion and rigid cam-
era motion seamlessly to balance their compatible issues. 

• We design a general dynamic reconnection context mod-
ule to ensure the robustness and smoother filled tracking 
fragments for long-range motion-based reconnection. 

• We apply the temporal-spatial constraints to filter useless 
track-detection association connections with lower time 
cost by 3D integral image encoding.  

2 Related Work 

Recent related studies on tracking-by-detection MOT can be 
categorized as follows: 

ReID-based data association. Thanks to the great pro-
gresses of object detection over the past few years, most de-
tection-based MOT methods first locate the positions of ob-
jects through the detection outputs, then extract the corre-
sponding appearance features via ReID module for long-
range matching or per-frame data association. Tracktor++ 
exploited the bounding box regression of Faster R-CNN 
(Ren et al. 2015) detector to modify the predicted position 
of a trajectory in the next frame, and associated the deac-
tivated tracks with detections by a straightforward ReID net-
work. CTracker (Peng et. al. 2020) extended the single-
frame regression to the adjacent-frame paired regression, 
and treated a ReID module as identity-attention to form the 
detection and tracking into an end-to-end chained structure. 

CenterTrack (Zhou, Koltun, and Krähenbühl 2020) incorpo-
rated CenterNet (Zhou, Wang, and Krähenbühl 2019) as de-
tection module, and used the spatial distance of track-detec-
tion center points to calculate the similarity for data associ-
ation. Furthermore, FairMOT integrated the CenterNet and 
ReID into one framework for joint spatial-embedding asso-
ciation, which greatly reduced the Identity Switches and 
maintained the high tracking speed. However, most existing 
detector-based trackers often fail to model the temporal-spa-
tial relations of large displacement detections when camera 
motion, fast motion, and occlusion challenges occur. Add 
the noisy detections and similar appearance, the ReID-based 
data association may be highly unreliable and the missed de-
tections still cannot be found back. In contrast, our MAT 
mainly focuses on motion-based prediction, association and 
reconnection to ensure long-range tracking with high effi-
ciency. 

Motion models for trajectory prediction. Several track-
ers resort to motion to predict the temporal-spatial variations 
of trajectories and compensate the detector failures in com-
plex scenes. The motions in video sequences can be summa-
rized as nonrigid motion (objects like pedestrians) and rigid 
motion (changing camera pose). The nonrigid motion is 
commonly described by constant velocity model (Choi and 
Savarese 2010). In (Yang, Huang, and Nevatia 2011), tra-
jectories were smoothed by observation-based Gaussian dis-
tributions. Recently the Kalman Filter tends to be more pop-
ular using the provided detections as observations (Bewley 
et. al. 2016; Wojke et al. 2017). Moreover, the social force 
models were applied due to complex pedestrian motion in 
crowded scenarios (Leal-Taixé et. al. 2014). As for the rigid 
motion caused by camera pose variances, researchers study 
it mainly in two directions. One is the 3D-information based 
methods, such as Ego-motion (Wang et. al. 2019) and SFM 
(Choi and Savarese 2010). The other one is based on affine 
transformation. Besides, the conditional probability model 
with recurrent neural network (Fang et. al. 2018) was also 
proposed to predict the object’s position and shape in the 
next frame. Moreover, the single object tracking (SOT) 
based methods (Chu and Ling 2019; Chu et al. 2020; Feng 
et al. 2019; Huang et al. 2020; Y. Xu et al. 2020; Zhu et al. 
2018) were gradually adopted to search multiple objects di-
rectly. While in these methods, the pedestrian motion and 
camera motion are always modeled and used separately, and 
the objects’ motion states cannot be estimated precisely. 
Differently, our MAT designs the Integrated Motion Local-
ization module to blend the pedestrian and camera motions 
seamlessly to balance their compatible issues, and the cam-
era motion state can be estimated by calculating our defined 
metric named as intensity of camera motion. 
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Fig. 1. Illustration of the MAT architecture with a regression-based detector. For a given frame T, the IML module is applied to predict each 
track’s position in frame T+1 considering both pedestrian and camera motion. Second, all tracks within partial-covering searching region of 
each corrected detection will be efficiently matched using the 3DII module for motion-based association. Finally, for deactivated trajectories, 
the DRC module is used to determine their reliable reconnection windows and fill in the tracking fragments smoothly.

3 Proposed Method 

In this work, we propose an enhanced MOT paradigm MAT, 
which can be easily included to extend any tracking-by-de-
tection tracker. Here, we employ a regression-based detector 
like Tracktor++ as our baseline tracker, and treat the MAT 
predictions and the provided detections as self-defined pro-
posals to obtain corrected detections by passing them into 
ROI Pooling block for regression and classification. Our 
MAT architecture is illustrated in Fig. 1, it mainly contains 
three motion-based modules, namely the Integrated Motion 
Localization (IML) for track prediction, Dynamic Recon-
nection Context (DRC) for trajectory reconnection, and 3D 
Integral Image (3DII) for fast temporal-spatial association.  

3.1 Integrated Motion Localization (IML) 
Given high-quality detections with the simple motion as-
sumption, the data association based on IoU (Intersection-
over-Union) metric can obtain admirable tracking results. 
However, if there exist camera motion, fast motion, occlu-
sion, or low frame rate challenges, the IoU-based trackers 
without advanced motion compensation may fail in long-
range tracking, especially for small objects. Therefore, our 
IML module focuses on studying in combining rigid camera 
motion and nonrigid pedestrian motion tightly. 

As for camera motion, the pixel alignment among sequen-
tial frames can usually be established by the epipolar geom-
etry (Ego) constraints or affine transformations. With the as-
sumption that the objects in adjacent frames have slow mo-
tion and constant shapes, then the camera states can be 

formulated as an optimization problem using Ego motion. 
Whereas, the fundamental matrix in Ego model needs to be 
estimated by feature point matching, and it will be seriously 
interfered by textural pedestrian parts since most of the fea-
ture points locate in the areas full of gradient information. In 
contrast, the global affine transformation is more suitable 
and robust for approaching the changes of exterior parame-
ters caused by camera motion. Consequently, the Enhanced 
Correlation Coefficient Maximization (ECC) (Evangelidis 
and Psarakis 2008) model is included in IML module to es-
timate the global scene rotation and translation.  

Additionally, the Kalman Filter used in DeepSort is our 
best choice to model the pedestrian motion for high effi-
ciency and flexibility. When blending the camera and pedes-
trian motions, considering the temporal-spatial consistency 
and compatibility of different motion patterns, the pedes-
trian motion is agreed to be processed always before the 
camera motion, due to the fact that pedestrian motion often 
plays the principal role in most MOT scenarios. In details, 
each object’s position needs to be predicted by Kalman Fil-
ter firstly and then aligned by the ECC model. Thus, our 
IML model can be simply established as below. 

 �
𝑠𝑠𝑡𝑡+1 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝐹𝐹𝑠𝑠𝑡𝑡)
𝑃𝑃𝑡𝑡+1 = 𝐹𝐹𝑃𝑃𝑡𝑡𝐹𝐹𝑇𝑇 + 𝑄𝑄 (1) 

where 𝐹𝐹, 𝑄𝑄, 𝑃𝑃, 𝑠𝑠 respectively denote the state transition ma-
trix, process uncertainty, covariance matrix, and state esti-
mate of Kalman Filter. Here 𝑠𝑠 = [𝐵𝐵𝐵𝐵𝐵𝐵,𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵]𝑇𝑇, 𝐵𝐵𝐵𝐵𝐵𝐵 repre-
sents the predicted coordinates of target bounding box, and 
𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵  contains the estimated velocities of all elements in 
𝐵𝐵𝐵𝐵𝐵𝐵. Besides, the 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 operation denotes the ECC align-
ment, notice that it is only applied to the 𝐵𝐵𝐵𝐵𝐵𝐵 part of 𝐹𝐹𝑠𝑠𝑡𝑡. 



3.2 Dynamic Reconnection Context (DRC) 
When heavy occlusion or blur happens, it surely will lead to 
plenty of missed detections and force the trajectories to be 
deactivated temporally. To guarantee the robustness of long-
range tracking, this section proposes the DRC module for 
motion-based reconnection, based on the estimated motion 
states and predictions of above IML module. It includes two 
parts, which are dynamic motion-based reconnection mech-
anism, and cyclic pseudo-observation trajectory filling. 
Dynamic Motion-Based Reconnection Mechanism 
In crowded multi-object scenarios, there are lots of interac-
tions and occlusions among different pedestrians, which will 
cause trajectories to break or overlap.  

 The normal solution is to use ReID embedding metric to 
reconnect deactivated trajectories. But this way cannot work 
well for discriminating small scale, occluded, blurred, and 
similar objects. Moreover, ReID-based association is a fully 
connected matching strategy, which is time-consuming and 
unreliable due to the absence of temporal-spatial constraints. 
Worst of all, it still cannot recover any pieces of the tracking 
fragments even if successfully reconnected. 

 To alleviate the problems mentioned above, we design the 
dynamic motion-based reconnection mechanism. In details, 
we suggest to enable the full-lifecycle predictions for all tra-
jectories using our IML module, even though the trajectory 
is deactivated temporally due to association failure, which 
can be employed as the temporal-spatial cues to wait for the 
following track-detection association.  

 In addition, on account of various motion patterns of dif-
ferent objects, such as the diverse moving speed of pedes-
trian and scene, it is unsuitable to set a unified reconnection 
window for all deactivated trajectories. Although our IML 
module can work steadily with continuous observation up-
dating, the pure inertia prediction without observation up-
dating during deactivated period may become more and 
more unreliable especially for trajectories with fast pedes-
trian and camera motion. Therefore, so as to balance the ro-
bustness of long-range tracking, we propose an adaptive 
mechanism to determine the motion-based reconnection 
window dynamically for each object based on its current 
motion states as shown in formula (2). 
 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑒𝑒−[𝛼𝛼∗𝐼𝐼𝐶𝐶𝑎𝑎𝑎𝑎+(1−𝛼𝛼)∗|𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵|] (2) 
where 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 denotes the dynamic length of patient reconnec-
tion window, 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 represents the maximal length of possi-
ble reconnection, |𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵|  denotes the estimated individual 
Kalman velocity as defined in the description of formula (1), 
and 𝛼𝛼 is an adjustment coefficient describing the weights of 
different motion patterns. Besides, 𝐼𝐼𝐶𝐶𝑎𝑎𝑎𝑎 is the intensity of 
camera motion that can be defined as formula (3). 

 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶 = 1 − 𝑊𝑊×𝑅𝑅
∥𝑊𝑊∥2×∥𝑅𝑅∥2

,𝑅𝑅 = [𝐼𝐼;𝑂𝑂] (3) 

Here 𝑊𝑊 denotes the vectorization of affine matrix in ECC 
model, and 𝑅𝑅 means the affine matrix of static frames. 𝐼𝐼 is 
the identity matrix and 𝑂𝑂 is the all-zero matrix. 
Cyclic Pseudo-Observation Trajectory Filling  
With the help of dynamic motion-based reconnection, most 
deactivated trajectories can be reconnected successfully in 
longer windows with highly reliable temporal-spatial con-
straints. Although the predictions of IML module during the 
deactivated period can be directly retained to construct the 
missed tracking fragment after reconnection, they may still 
be far away from the true trajectory, and not smooth enough 
with a saltation at reconnection point, as shown in Fig. 2. 

Therefore, we include the cyclic pseudo-observation tra-
jectory filling strategy to smooth the predictions of IML 
nonlinearly as the final filled tracking fragments. Assuming 
that some trajectory is interrupted from active to deactivated 
at point A, and reconnected successfully at point B thought 
track-detection association as demonstrated in Fig. 2. Then 
our trajectory filling strategy can be described as the follow-
ing three steps. 1) Linear initialization, using the linear in-
terpolation algorithm to generate the initial boxes for all 
frames between point A and B with uniform changes in po-
sition and scale. 2) Forward IML updating, using the initial 
boxes obtained at last step as the pseudo-observations to for-
ward update the trained IML model at point A frame by 
frame until to point B. 3) Backward IML updating, training 
a new IML model backward with several frames of the 
tracklet after point B, and use the predictions obtained at last 
step as the pseudo-observations to backward update the 
trained IML model at point B frame by frame until to point 
A. After these three steps, the final corrected predictions are 
employed to fill in the tracking fragment.  

 Consequently, the final filled tracking fragment will take 
the linear initialization as the baseline, and the first half is 
mainly forward smoothed by the IML model at point A, 
while the latter half is mainly backward smoothed by the 
IML model at point B. This kind of cyclic nonlinear smooth-
ing can further reduce the offset between the filled trajectory 
and true trajectory. 
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Fig. 2. Illustration of the cyclic pseudo-observation trajectory fill-
ing process. 



3.3 3D Integral Image (3DII) 
In a dense multi-object scenario, the object number can be 
dozens or even hundreds, which imposes a significant time 
cost on the calculation of cost matrix among predicted tracks 
and corrected detections in fully connected manner. Hence, 
during data association stage, we present the 3DII module to 
efficiently cut useless track-detection connections by trans-
ferring all detections into the multilayered encoding maps.  
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Fig. 3. The encoding and filtering process of 3DII module. 

 As shown in Fig. 3, the input frame with K detections is 
divided into 𝑀𝑀 × 𝑁𝑁 cells, then the K-layered encoding maps 
will be constrained with size of 𝑀𝑀 × 𝑁𝑁 for each layer. Each 
detection corresponds to one layer, the map for this layer is 
initialized with all zeros, and the cells within partial-cover-
ing region of this detection bounding box will be encoded as 
ones. Therefore, the 3D integral image of the K-layered en-
coding maps at location (𝑚𝑚,𝑛𝑛) can be modeled as the sum 
of one-valued cells from (0, 0) to (m, n) for each layer as: 
 𝐼𝐼3𝐷𝐷(𝑚𝑚,𝑛𝑛) = ∑ 𝑓𝑓(𝑚𝑚′,𝑛𝑛′)𝑚𝑚′≤𝑚𝑚,𝑛𝑛′≤𝑛𝑛  (4) 
where 𝐼𝐼3𝐷𝐷  represents the K-dim integral image, and 𝑓𝑓  de-
notes the K-layered encoding maps with binary values. 

 To accelerate the calculation of formula (4), we can sim-
plify its computing process using dynamic programming. 

 𝐼𝐼3𝐷𝐷(𝑚𝑚,𝑛𝑛) = 𝐼𝐼3𝐷𝐷(𝑚𝑚,𝑛𝑛 − 1) + 𝐼𝐼3𝐷𝐷(𝑚𝑚− 1,𝑛𝑛)
−𝐼𝐼3𝐷𝐷(𝑚𝑚− 1,𝑛𝑛 − 1) + 𝑓𝑓(𝑚𝑚,𝑛𝑛)  (5) 

For each coming track, firstly, the diagonal coordinates of 
its bounding box can be mapped to the coordinate system of 
𝑓𝑓 as [𝑥𝑥1, 𝑥𝑥2,𝑦𝑦1,𝑦𝑦2]. Using the above 3D integral image, the 
detections within partial-covering region of this track will 
be obtained directly in nearly constant time cost. 
𝐼𝐼3𝐷𝐷(𝑥𝑥1: 𝑥𝑥2,𝑦𝑦1:𝑦𝑦2) = 𝐼𝐼3𝐷𝐷(𝑥𝑥2,𝑦𝑦2) + 𝐼𝐼3𝐷𝐷(𝑥𝑥1 − 1,𝑦𝑦1 − 1)

−𝐼𝐼3𝐷𝐷(𝑥𝑥1 − 1,𝑦𝑦2) − 𝐼𝐼3𝐷𝐷(𝑥𝑥2,𝑦𝑦1 − 1)  (6) 

where the non-zero value in computed 𝐼𝐼3𝐷𝐷(𝑥𝑥1: 𝑥𝑥2,𝑦𝑦1:𝑦𝑦2) 
denotes the found nearby detection. 

Notice that most of the operations in 3DII are assignment, 
addition and subtraction, so the time cost for filtering useless 
track-detection connections can be dramatically reduced. 
Besides, the 3DII is helpful to enable the temporal-spatial 
constraints at any scale level by just changing the cell size. 

4  Experiments 

4.1 Experiment Setup 
Experiments are conducted on two widely used challenging 
MOT benchmarks: MOT16 and MOT17 (Anton et al. 2016). 
Although both of them contain the same 7 training se-
quences and 7 test sequences, they provide the different pub-
lic detections and different ground truth labels. Such as, 
MOT17 includes DPM (Felzenszwalb et al. 2010), Faster R-
CNN, and SDP (Yang, Choi, and Lin 2016) with increasing 
performance, but MOT16 only includes the DPM detector. 
These benchmarks consist of extensive challenging pedes-
trian tracking and detection with frequent occlusion, and the 
scenes are heavily crowed and vary in the camera poses, ob-
ject scales and frame rates.  

 Evaluation Metrics. Evaluation is carried out according 
to the widely accepted CLEAR MOT metrics (Yang et al. 
2016), including the Multiple Object Tracking Accuracy 
(MOTA), ID F1 Score (IDF1), False Positives (FP), False 
Negatives (FN), Identity Switches (IDS), and Tracker Speed 
(Hz), et al. Among these performance metrics, the MOTA 
and IDS can quantify the main two aspects as trajectory ac-
curacy and purity. 

 Implementation Details. All the experiments are imple-
mented using PyTorch and run on a desktop with a CPU of 
10 cores@2.2GHz and a RTX2080Ti GPU. As for the de-
tector, we re-implement Cascaded RCNN (Cai and 
Vasconcelos 2018) by changing the anchor scales to {32, 64, 
128, 256, 512} and anchor aspects to {1.0, 2.0, 3.0} with 
pre-trained network parameters on COCO datasets (Chen et 
al. 2014). The detector is simply trained on the training da-
taset of MOT17 by taking the samples with label 1 and vis-
ibility above 0.1 as positives, and the others as negatives. 
Random flipping is adopted to realize the data augmentation, 
and all the clip operations for ground truth boxes, anchors, 
and proposals are canceled to obtain complete detections 
even beyond the boundaries. The detector training process 
takes 30000 iterations with the batch size of 8, using an ini-
tial learning rate of 𝑒𝑒−8 and the multi-step SGD optimizer. 
The naive NMS (Dalal and Triggs 2005) is employed with 
the confidence threshold of 0.05 and IoU threshold of 0.5. 
Considering the MAT settings, the simple IoU metric is used 
to calculate the cost matrix of Kuhn-Munkres (KM) algo-
rithm (Kuhn 2010) for motion-based association, the Kal-
man Filter is simplified as a constant velocity model (J. Peng 
et al. 2020), 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 and 𝛼𝛼 in formula (2) are fixed as 120 and 



0.95, the 3DII map size is set as 16×8, and the trajectories 
whose length less than 5 frames are removed for post-pro-
cessing. 

4.2 Ablation Study 
Our ablation study mainly aims to reveal the performance of 
our motion-aware designs, which don’t depend on the train-
ing of ground truth. Therefore, to avoid the possible inter-
ference caused by the quality of detector, we directly com-
pare and evaluate the following implementations on MOT17 
training dataset for convenience. 

 
Method MOTA↑ IDF1↑ FP↓ FN↓ IDS↓ 

Baseline 68.0 69.2 3749 102709 1407 
Baseline+Ego 45.5 41.4 14983 158850 9937 
Baseline+ECC 68.2 69.1 3949 102094 1083 
Baseline+IML 68.7 71.1 3430 101017 850 
Baseline+IML+DW 71.1 74.6 10422 86360 682 
Baseline+IML+DRC 71.5 74.8 9711 85653 701 

Table 1. Ablation study in terms of different motion models and 
motion-based reconnection mechanisms. 

As shown in Table 1, the Baseline represents our re-im-
plemented Detector with Kalman, without any guidance of 
camera motion and dynamic reconnection, which is the sim-
plest version of our MAT. Notice that the Baseline still in-
cludes a simple reconnection mechanism like Tracktor++, 
where the deactivated trajectories can be reconnected within 
a fixed window of 10 frames and filled using inertia predic-
tions. The Baseline+ means to replace some module in Base-
line, such as the motion or reconnection, with other choices. 
For example, Baseline+Ego, Baseline+ECC, Baseline+IML 
replace the Kalman motion with Ego, ECC, and our IML 
respectively, Baseline+IML+DW just replace the fixed win-
dow of Baseline+IML with our dynamic-window (DW) re-
ferring to formula (2), and Baseline+IML+DRC is the non-
accelerated implementation of MAT without 3DII module.  

The results in Table 1 can verify that: 
1) The Ego model cannot handle the motion alignments 

well just like the analysis given in Section 3.1, the ECC 
model can achieve nearly the same performance as Kalman 
Filter with much lower IDS, and our IML model can bring 
the Baseline tracker an overall promotion on all metrics es-
pecially the IDS, which tells the powerful motion pattern 
compatibility of the IML module.  

2) Based on our IML module, it is also demonstrated that 
the further employment of our DW or complete DRC recon-
nection mechanism, can significantly improve the tracking 
performance with great margins on the MOTA, IDF1, FN 
and IDS but little sacrifice of FP. In other words, for motion-
based reconnection, it is essential to design an adaptive in-
dividual window considering the various motion patterns. 
Besides, our proposed cyclic pseudo-observation trajectory 
filling strategy (Baseline+IML+DRC) is proved to be more 

robust than using inertia predictions (Baseline+IML+DW), 
with lower FP, FN and higher MOTA, IDF1. Note that the 
IDS of DW is slightly smaller than DRC since much more 
long-range trajectories are tracked by DRC.  

Dynamic vs. fixed window when both using our cyclic 
pseudo-observation trajectory filling. The above ablation 
experiments (Baseline+IML+DW vs. Baseline+IML) have 
confirmed that our design of dynamic reconnection window 
can obtain great improvement over fixed one even using in-
ertia predictions to fill in the tracking fragments. As shown 
in Fig. 4, this part gives more details about dynamic vs. fixed 
window when using our powerful cyclic pseudo-observation 
trajectory filling under the same maximal length of possible 
reconnection 𝐿𝐿𝑚𝑚𝑎𝑎𝑥𝑥. The curves in Fig. 4 reveal that with the 
increase of 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, the dynamic-window based DRC module 
gradually outperforms the one based on fixed window with 
a higher-level of MOTA, and the peak point is up to 120 
frames to enable the long-range tracking tasks. 
 

 
Fig. 4. Dynamic vs. fixed window motion-based reconnection un-
der the different maximal lengths. 

3DII module. During the data association stage, it is nec-
essary to cut useless track-detection connections to impose 
more temporal-spatial constraints. If a detection has some 
overlap with the extended region of a track’s bounding box, 
then the detection will be assigned as a candidate of the track. 
To verify the acceleration performance of our 3DII module 
to finish this job, we also present an IoU-based fully-con-
nected method to filter the connections without any intersec-
tion, named as IoU-filter for comparison. The speed com-
parison is shown in Fig. 5, where the numbers of tracks and 
detections are simplified as the same when applying track-
detection association. The larger track-detection number de-
notes the denser multi-object scenario. The results in Fig. 5 
demonstrate the significant advantage of our 3DII module in 
acceleration with nearly constant time cost, over the IoU-
filter, especially when there exist a large number of pedes-
trians per frame. Note that our 3DII module can easily ena-
ble the temporal-spatial constraints at any extended scale 
level by just changing the cell size, but the IoU-filter can 
only judge if there is an intersection or not. 
 



 
Fig. 5. Speed comparison using our 3DII module or IoU-filter. 

4.3 Evaluation on Benchmarks 
The performance of our MAT approach has been evaluated 
on both the MOT16 and MOT17 test datasets. We also com-
pare our tracker with other best public and private trackers, 
which have been officially published and peer reviewed in 
these benchmarks. The comparisons are shown in the Table 
2, where both the state-of-the-art offline and online MOT 
methods are included, such as the offline trackers 
MPNTracker (Brasó and Leal-Taixé 2020) and Lif_T 
(Hornakova et. al. 2020), and online trackers (denoted using 
O) like Trackor++, DeepMOT (Y. H. Xu et al. 2020), UMA 
(Yin et. al. 2020), UnsupTrack (Karthik, Prabhu, and 
Gandhi 2020), CenterTrack, JDE (Wang et al. 2020), Fair-
MOT, CTracker, and Tube_TK (Pang et. al. 2020).  

As demonstrated in Table 2, our tracker MAT signifi-
cantly outperforms all these existing state-of-the-art MOT 
methods on MOT16 and MOT17 challenging benchmarks 
by a large margin, especially in terms of the MOTA and FN. 
Besides, the metrics of IDF1 and IDS are almost the best for 
our MAT, no matter using the public or private detector. 
Also, our MAT has much lower time cost, as shown in the 
Hz column, compared to most of the online or offline track-
ers. It should be noted that, the main concern of this paper is 
motion-aware designs but not the optimization of detector, 
so the performance of our re-implemented detector may not 
be as good as other compared private detectors in terms of 
accuracy and speed. Even so, our MAT still wins the cham-
pionship on the primary metric MOTA, which reflects the 
overall tracking performance. 

To summarize, our proposed MAT can achieve the supe-
rior tracing performance in MOTA and IDF1 mainly due to 
the powerful motion pattern compatibility of the IML mod-
ule, which guarantees the continuity and purity of trajecto-
ries. Additionally, by further using our proposed DRC mod-
ule, the long-range motion-based tracking and reconnection 
come true with a dramatical decreasing of FN and IDS. Fur-
thermore, in theory our motion-aware tracker can obtain su-
per high tracking speed given a fast detector, and our 3DII 
module can address another speed bottleneck for data asso-
ciation, imposing more temporal-spatial constraints and fil-
tering useless track-detection connections with nearly con-
stant time cost. 

Method MOTA↑ IDF1↑ FP↓ FN↓ IDS↓ Hz↑ 
Public Detection on MOT16 

MPNTracker 58.6 61.7 4949 70252 354 6.5 
Lif_T 61.3 64.7 4844 65401 389 0.5 
Trackor++(O) 54.4 52.5 3280 79149 682 2.0 
DeepMOT(O) 54.8 53.4 2955 78765 645 - 
UMA(O) 50.5 52.8 7587 81924 685 5.0 
UnsupTrack(O) 62.4 58.5 5909 61981 588 1.9 
Ours(O) 67.7 69.6 6337 52234 379 11.5 

Private Detection on MOT16 
JDE(O) 64.4 55.8 - - 1544 18.8 
FairMOT(O) 68.7 70.4 - - 953 25.9 
CTracker(O) 67.6 57.2 8934 48305 1897 34.4 
Tube_TK(O) 66.9 62.2 11544 47502 1236 1.0 
Ours(O) 70.5 63.8 11318 41592 928 9.1 

Public Detection on MOT17 
MPNTracker 58.8 61.7 17413 213594 1185 6.5 
Lif_T 60.5 65.6 14966 206619 1189 0.5 
Trackor++(O) 53.5 52.3 12201 248047 2072 2.0 
CenterTrack(O) 61.4 53.3 15520 196886 5326 - 
DeepMOT(O) 53.7 53.8 11731 247447 1947 - 
UMA(O) 53.1 54.4 22893 239534 2251 5.0 
UnsupTrack(O) 61.7 58.1 16872 197632 1864  
Ours(O) 67.1 69.2 22756 161547 1279 11.5 

Private Detection on MOT17 
FairMOT(O) 67.5 69.8 - - 2868 25.9 
CTracker(O) 66.6 57.4 22284 160491 5529 34.4 
CenterTrack(O) 67.3 59.9 23031 158676 2898 - 
Tube_TK(O) 63.0 58.6 27060 177483 4137 3.0 
Ours(O) 69.5 63.1 30660 138741 2844 9.0 

Table 2. Comparisons of state-of-the-art MOT methods on MOT16 
and MOT17 test datasets. 

5  Conclusion 

In this paper, we propose an enhanced multi-object tracking 
paradigm named as Motion-Aware Tracker (MAT), which 
mainly focus on the aware designs of motion-based predic-
tion, reconnection, and association. It mainly contains three 
modules, namely the Integrated Motion Localization (IML) 
for blending various motion patterns compatibly, Dynamic 
Reconnection Context (DRC) for dynamically window de-
termining and smoothly trajectory filling, and 3D Integral 
Image (3DII) for fast temporal-spatial filtering of useless 
track-detection connections. Extensive experiments are con-
ducted on the widely used MOT16&17 challenging bench-
marks, and all the results demonstrate the superiority of our 
MAT approach in terms of the state-of-the-art accuracy and 
high efficiency. Besides, the architecture of our MAT is very 
simple and general, which can be easily embedded to extend 
any tracking-by-detection tracker or video detector. 
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Abstract 
To facilitate the reproduction and further reveal the superior-
ity of our Motion-Aware Tracker (MAT) approach, this sup-
plementary material adds its structured pseudocode with pub-
lic or private detector first. Besides, more implementation de-
tails of our re-implemented detector in terms of architecture 
and training are included. In addition, we provide some addi-
tional sensitivity analysis experiments about the alpha in for-
mula (2) and backward tracklet length in Fig. 2 of our main 
work. Moreover, we complement some detailed experimental 
results and analysis for each sequence with some typical qual-
itative results, and the visualization of trajectory filling using 
our DRC module. 

1 Detailed Implementation  

In order to successfully reproduce the experimental results 
of our main work, here we further detail the implementation 
of MAT and re-implemented detector. 

1.1 Algorithm Representation of MAT 
As shown in Algorithm 1, we merge the processing logic of 
our MAT approach with public or private detector, and pro-
vide the corresponding pseudocode representation of Fig. 1 
and Section 3 of our main work. 

Notice that, as illustrated in line 9, we employ the sim-
plest IoU metric to evaluate the temporal-spatial similarity 
of candidate track-detection connection. Moreover, based 
on these filtered connections using 3DII module, we can fur-
ther kill some unreliable connections with low IoU, and the 
IoU threshold of valid candidate connection can be set as 0.3 
before carrying out the KM algorithm as line 10. 

1.2 Details of Re-implemented Detector 
Our re-implemented Cascaded RCNN (Cai and Vasconcelos 
2018) detector is built upon the famous Detectron2 frame-
work (Wu et al. 2019) provided by Facebook AI Research, 
which implements a large set of state-of-the-art object de-
tection algorithms. 

Input: Video sequence 𝐼𝐼 = {𝐼𝐼1, 𝐼𝐼2,⋯ , 𝐼𝐼𝑆𝑆} , 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  or 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  detections 
𝒟𝒟 = {𝐷𝐷1,𝐷𝐷2,⋯ ,𝐷𝐷𝑆𝑆}. 
Output: Trajectories 𝒯𝒯. 
1. Initialize trajectories with null that 𝒯𝒯 ← 𝜙𝜙; 
2. ℒ𝑘𝑘: Deactivated length of 𝒯𝒯𝑘𝑘, initialized by 0; 
3. for 𝑡𝑡 = 1,⋯ , 𝑆𝑆 do 
4.  𝑇𝑇𝑡𝑡 ← Obtain tracks by applying IML to 𝒯𝒯 referring to formula (1); 
5.  if 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 then 
6.   𝐵𝐵𝑡𝑡 ← 𝐷𝐷𝑡𝑡; 
7.  else 
8.   𝐵𝐵𝑡𝑡 ← 𝑁𝑁𝑀𝑀𝑀𝑀�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑎𝑎𝑎𝑎𝑎𝑎_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶({𝐷𝐷𝑡𝑡 ,𝑇𝑇𝑡𝑡})�; 
9.  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ← Calculate cost matrix of 3𝐷𝐷𝐷𝐷𝐷𝐷(𝐵𝐵𝑡𝑡 ,𝑇𝑇𝑡𝑡) by IoU metric; 
10. Associate the 𝐵𝐵𝑡𝑡 with 𝑇𝑇𝑡𝑡 using KM algorithm according to 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶; 
11. for 𝒯𝒯𝑘𝑘 ∈ 𝒯𝒯 do 
12.  Update the 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 of  𝒯𝒯𝑘𝑘 referring to formula (2); 
13.   if  𝑇𝑇𝑡𝑡,𝑘𝑘 is associated with 𝐵𝐵𝑡𝑡,𝑖𝑖 then 
14.    𝒯𝒯𝑘𝑘 ← 𝒯𝒯𝑘𝑘 + 𝐵𝐵𝑡𝑡,𝑖𝑖; 
15.    Fill in the tracking fragment of 𝒯𝒯𝑘𝑘 using DRC; 
16.    ℒ𝑘𝑘 = 0; 
17.   else 
18.    if ℒ𝑘𝑘 > 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 then 
19.     Stop further tracking of 𝒯𝒯𝑘𝑘; 
20.    else 
21.     Hold 𝑇𝑇𝑡𝑡,𝑘𝑘 with 𝒯𝒯𝑘𝑘 temporarily for further IML; 
22.     ℒ𝑘𝑘 + +; 
23. for 𝐵𝐵𝑡𝑡,𝑗𝑗 ∈ 𝐵𝐵𝑡𝑡 do 
24.   if  𝐵𝐵𝑡𝑡,𝑗𝑗 is not associated with anyone of 𝑇𝑇𝑡𝑡 then 
25.    𝒯𝒯 ← 𝒯𝒯 + 𝐵𝐵𝑡𝑡,𝑗𝑗; 
26. Remove ultra-short trajectories from 𝒯𝒯 for post-processing. 

Algorithm 1. Tracking process of our MAT approach using public 
or private detector. 

In details, we choose ResNet50 (He et al. 2016) and FPN 
(Lin et al. 2017) as the backbone and neck respectively for 
feature extraction, and the output features of P2-P6 are used 
to generate proposals by RPN (Ren et al. 2015). The predic-
tion head consists of three identical and cascaded RCNN 
(Ren et al. 2015) heads, each RCNN head includes a 



RoIAlign (He et al. 2018) module for feature pooling, and a 
bounding box regression branch and a classification branch. 
For the first two RCNN heads, the output of bounding box 
regression branch is used as the input of RoIAlign of the 
next RCNN head. Finally, the output of the third RCNN 
head is passed into the naive NMS algorithm to obtain the 
final object detection results. In addition, the classification 
branch uses the cross-entropy loss, the regression branch 
employs the smooth L1 loss, and the total loss function is 
the sum of the losses of these three RCNN heads. 

Most training settings refer to the default manners as men-
tioned in Cascaded RCNN and our main work. Except that, 
the first 2000 iterations are used for model warm-up, and 
after 15000 and 25000 iterations, the learning rate decreases 
to the 0.1 and 0.01 of the initial value respectively. 

2 More Experiments  
For the sake of further demonstrating superior performance 
of our MAT approach, here we add more detailed experi-
ments about parameter sensitivity, each sequence, qualita-
tive comparison, and visualization. 

2.1 Parameter Sensitivity Analysis 
According to the experiments in Fig. 4 of our main work, we 
demonstrate that the maximal possible reconnection length 
𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 in formula (2) can be up to 120 frames for better long-
range tracking performance. Here we fix it as 120 and then 
test the performance sensitivity of another parameter 𝛼𝛼 in 
formula (2), as shown in Fig. 1. Notice that the other exper-
imental settings of this section are the same as the ablation 
study of our main work. The results in Fig. 1 reveal that, for 
better MOTA performance, the intensity of camera motion 
should play the main role in determining the dynamic length 
of patient reconnection window when compared with the es-
timated individual Kalman velocity. Nevertheless, directly 
remove |𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵| from the formula (2) and set 𝛼𝛼 as 1 is not the 
best option, and our final MOTA performance is not very 
sensitive with the variation of parameter 𝛼𝛼. Therefore, as il-
lustrated in our main work, 𝛼𝛼 in formula (2) can be fixed as 
0.95 for all the experiments. 
 

 
Fig. 1. Sensitivity analysis experiment of 𝛼𝛼 in formula (2) of our 
main work. 

In addition, when discussing the cyclic pseudo-observa-
tion trajectory filling process in Fig. 2 and Section 3.2 of our 
main work, there is a parameter in the third step for back-
ward IML updating, named as backward tracklet length. The 
backward tracklet consists of several tracks after point B, 
which is used for training a backward IML model. Here we 
test the performance sensitivity of this parameter, the corre-
sponding MOTA results of different backward tracklet 
length are shown in Fig. 2. It is verified that our final MOTA 
performance is almost completely insensitive with the back-
ward tracklet length. Therefore, according to the results of 
Fig. 2, we fix this parameter as 3 for all the experiments. 

 

 
Fig. 2. Sensitivity analysis experiment of backward tracklet length 
in Fig. 2 of our main work. 

2.2 Detailed Experimental Results 
The detailed experimental results of our MAT approach for 
each sequence on MOT16 and MOT17 test datasets, corre-
sponding to the results of Table 2 in our main work, are dis-
played in Table 1 and Table 2 here. These detailed sequence 
results can also be found in the official MOTChallenge web 
page available at https://motchallenge.net/. 
 

Sequence MOTA↑ IDF1↑ FP↓ FN↓ IDS↓ 
Public Detection on MOT16 

01-DPM 51.6 56.8 92 2,995 8 
03-DPM 79.2 77.4 2,444 19,179 75 
06-DPM 56.1 61.8 1,173 3,818 74 
07-DPM 57.8 56.4 800 6,034 60 
08-DPM 45.9 49.7 454 8,547 56 
12-DPM 60.7 68.6 352 2,888 21 
14-DPM 46.5 57.9 1,022 8,773 85 

Private Detection on MOT16 
01-Ours 50.4 44.9 339 2793 43 
03-Ours 86.0 72.5 2556 11,828 244 
06-Ours 62.1 65.2 1049 3,204 123 
07-Ours 54.9 47.6 1,646 5588 134 
08-Ours 43.0 40.1 389 9038 114 
12-Ours 60.0 62.6 440 2834 44 
14-Ours 38.1 49.5 4,899 6,307 226 

Table 1. Detailed sequence results of our MAT approach on 
MOT16 test dataset corresponding to the Table 2 of our main work. 



Sequence MOTA↑ IDF1↑ FP↓ FN↓ IDS↓ 
Public Detection on MOT17 

01-DPM 51.6 56.8 83 3,031 8 
03-DPM 80.1 77.8 1,976 18,825 75 
06-DPM 56.2 61.4 1,101 3,992 73 
07-DPM 55.4 54.9 832 6,625 71 
08-DPM 37.0 42.8 385 12,865 57 
12-DPM 58.7 67.2 327 3,235 21 
14-DPM 46.5 57.9 1,022 8,773 85 
01-FRCNN 48.0 59.5 564 2,781 10 
03-FRCNN 80.1 78.9 1,765 19,021 67 
06-FRCNN 58.8 62.7 1,363 3,407 85 
07-FRCNN 55.8 57.5 893 6,509 66 
08-FRCNN 35.3 43.5 461 13,145 54 
12-FRCNN 52.5 61.7 451 3,649 19 
14-FRCNN 42.6 55.4 2,479 8022 103 
01-SDP 53.6 56.2 369 2,612 15 
03-SDP 85.4 79.4 2,504 12,666 98 
06-SDP 56.9 61.8 1,748 3,227 101 
07-SDP 57.5 58.1 1,045 6,058 74 
08-SDP 37.4 43.8 432 12,745 56 
12-SDP 58.0 66.0 448 3,168 24 
14-SDP 46.9 56.3 2,508 7,191 117 

Private Detection on MOT17 
01-Ours 50.0 44.8 340 2839 43 
03-Ours 87.0 72.8 1997 11388 245 
06-Ours 63.9 65.3 860 3265 127 
07-Ours 54.8 46.8 1492 6005 146 
08-Ours 35.6 35.0 229 13266 117 
12-Ours 58.1 61.3 411 3177 44 
14-Ours 38.2 49.5 4891 6307 226 

Table 2. Detailed sequence results of our MAT approach on 
MOT17 test dataset corresponding to the Table 2 of our main work. 
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Fig. 3. Qualitative comparison of our MAT with Tracktor++ and 
DeepSort in a typical occlusion scenario. The white dotted rectan-
gle indicates the tracking differences of the red target pedestrian. 
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Fig. 4. Visualization of tracking results of our MAT approach using 
SDP detector on MOT17 test dataset. 

The detailed sequence results in Table 1 and Table 2 sug-
gest the same conclusions as our main work. Our main in-
novations are the motion-aware designs but not the optimi-
zation of detector, so the sequence results of our re-imple-
mented detector may not be good enough for all sequences. 
Even so, since sequences 03 and 06 include extensive oc-
cluded pedestrians with fast or camera motion, our MAT can 
work better with the help of proposed IML and DRC mod-
ules. Consequently, the detailed results in Table 1 and Table 
2 also verify the effectiveness and motion-aware ability of 
our MAT design from the side. 



Moreover, as displayed in Fig. 3, we select a typical oc-
clusion scenario to qualitatively compare our MAT with two 
most related trackers, namely the Tracktor++ and DeepSort. 
The tracking results of our MAT and Tracktor++ are based 
on the public SDP detector, and the DeepSort uses its private 
detector. The red target pedestrian in the white dotted rec-
tangle is occluded when walking through the streetlight. It 
can be seen from Fig. 3 that Tracktor++ and DeepSort are 
both unable to accurately track this man, and treat this target 
pedestrian as two different identities before and after being 
occluded, which will obviously cause False Negatives and 
Identity Switches. In contrast, our MAT can solve this prob-
lem effectively through the proposed IML and DRC mod-
ules, and maintain the trajectory accuracy and purity of the 
occluded object. 

Other detailed qualitative results are shown in Fig. 4. All 
of the test sequences are tracked by our MAT with SDP de-
tections as observations. Intuitively, our proposed MAT can 
obtain precise tracking boxes of pedestrians with consistent 
identities. Also, our MAT is robust enough to the irregular 
camera motions (such as the MOT17-06 and MOT17-14), 
crowded scenes (such as MOT17-03), and different camera 
viewpoints (such as MOT17-03 and MOT17-07). Especially 
on the MOT17-14 sequence, which is captured by a fast-
moving camera that is mounted on bus in a busy intersection. 
Our proposed MAT can still be able to track all the pedes-
trians in a stable and persistent way. 

2.3 Visualization of Trajectory Filling 
The above supplementary experiments have reflected the 
overall tracking performance of our MAT approach quanti-
tatively and qualitatively. Here, to further highlight the mo-
tion-aware ability of our proposed IML and DRC modules, 
we give the visualization comparison of different trajectory 
filling strategies using SDP detector in Fig. 5. Just like the 
colors used in Fig. 2 of our main work, the green boxes in-
dicate the ground truth boxes, the blue boxes represent the 
inertia IML predictions, and the yellow boxes are the filled 
tracking fragment by our DRC module. Frame 232 corre-
sponds to the deactivated point A in Fig. 2 of our main work, 
and frame 254 means the reconnection point B. 

The visualization results in Fig. 5 support the discussions 
as in Fig. 2 of our main work vividly and consistently, that 
the filled trajectory using our DRC module is smoother and 
closer to the true trajectory with smaller offset. In contrary, 
if the pedestrian changes the walking direction slightly dur-
ing occlusion similar to the target lady in Fig. 5, the inertia 
IML predictions then become further and further away from 
the ground truth boxes with the tracking goes on from frame 
232 to frame 252, and may produce a saltation when get re-
connected like the non-smooth transition from frame 252 to 
frame 254. 
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Fig. 5. Visualization comparison of trajectory filling by inertia IML 
(blue) or our DRC module (yellow) using SDP detector. The green 
boxes indicate the ground truth boxes. 
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