
Learning Graph Normalization for Graph Neural Network

LEARNING GRAPH NORMALIZATION FOR
GRAPH NEURAL NETWORKS

Yihao Chen∗, Xin Tang∗ , Xianbiao Qi∗
Visual Computing Group, Ping An Property & Casualty Insurance
o0o@o0oo0o.cc, tangxint@gmail.com, qixianbiao@gmail.com

Chun-Guang Li
School of Artificial Intelligence, Beijing University of Posts and Telecommunications
lichunguang@bupt.edu.cn

Rong Xiao
Visual Computing Group, Ping An Property & Casualty Insurance
xiaorong@gmail.com

ABSTRACT

Graph Neural Networks (GNNs) have attracted considerable attention and have
emerged as a new promising paradigm to process graph-structured data. GNNs
are usually stacked to multiple layers and the node representations in each layer
are computed through propagating and aggregating the neighboring node features
with respect to the graph. By stacking to multiple layers, GNNs are able to cap-
ture the long-range dependencies among the data on the graph and thus bring per-
formance improvements. To train a GNN with multiple layers effectively, some
normalization techniques (e.g., node-wise normalization, batch-wise normaliza-
tion) are necessary. However, the normalization techniques for GNNs are highly
task-relevant and different application tasks prefer to different normalization tech-
niques, which is hard to know in advance. To tackle this deficiency, in this paper,
we propose to learn graph normalization by optimizing a weighted combination
of normalization techniques at four different levels, including node-wise normal-
ization, adjacency-wise normalization, graph-wise normalization, and batch-wise
normalization, in which the adjacency-wise normalization and the graph-wise nor-
malization are newly proposed in this paper to take into account the local struc-
ture and the global structure on the graph, respectively. By learning the optimal
weights, we are able to automatically select a single best or a best combination of
multiple normalizations for a specific task. We conduct extensive experiments on
benchmark datasets for different tasks, including node classification, link predic-
tion, graph classification and graph regression, and confirm that the learned graph
normalization leads to competitive results and that the learned weights suggest the
appropriate normalization techniques for the specific task. Source code is released
here https://github.com/cyh1112/GraphNormalization.

1 INTRODUCTION

Graph Neural Networks (GNNs) have shown great popularity due to their efciency in learning on
graphs for various application areas, such as natural language processing (Yao et al., 2019; Liu et al.,
2019a; Zhang et al., 2018), computer vision (Wang et al., 2018; Li et al., 2020; Cheng et al., 2020),
point cloud (Shi & Rajkumar, 2020; Liu et al., 2019b), drug discovery (Lim et al., 2019), citation
networks (Kipf & Welling, 2016), social networks (Chen et al., 2018) and recommendation (Fan
et al., 2019; Wu et al., 2019). A graph consists of nodes and edges, where nodes represent individual
objects and edges represent relationships among those objects. In the GNN framework, the node or

∗Equal Contribution.

1

ar
X

iv
:2

00
9.

11
74

6v
1

 [
cs

.L
G

]
 2

4
Se

p
20

20

https://github.com/cyh1112/GraphNormalization

Learning Graph Normalization for Graph Neural Network

�

���

��

vk, i��� vk, iN()��� �k��� �k�������
k=1

B
�	�

ek, i�
� ek, iN()��� �k��� �k�������
k=1

B
��

Figure 1: Illustration for four normalization methods on graph. The input node representations are
normalized on four levels. (a) Node-wise. (b) Adjacency-wise. (c) Graph-wise. and (d) Batch-wise.
We also extend these four normalization methods to edge features as shown in (e), (f), (g), and (h).

edge representations are alternately updated by propagating information along the edges of a graph
via non-linear transformation and aggregation functions (Wu et al., 2020; Zhang et al., 2018). GNN
captures long-range node dependencies via stacking multiple message-passing layers, allowing the
information to propagate for multiple-hops (Xu et al., 2018). Then, the node or edge representations
can be used for downstream tasks such as node classification, link prediction, and graph regression
and classification.

In essence, GNN is a new kind of neural networks which exploits neural network operations over
graph structure. Among the numerous kinds of GNNs (Bruna et al., 2014; Defferrard et al., 2016;
Chen et al., 2019; Maron et al., 2019; Xu et al., 2019), message-passing GNNs (Scarselli et al., 2009;
Li et al., 2016; Kipf & Welling, 2016; Velickovic et al., 2018; Bresson & Laurent, 2017) have been
the most widely used due to their ability to leverage the basic building blocks of deep learning such
as batching, normalization and residual connections. To update the feature representation of a node,
Kipf & Welling (2016) proposed a Graph ConvNets (GCN) to employ an averaging operation over
the neighborhood node with the same weight value for each of its neighbors. GraphSage (Hamil-
ton et al., 2017) samples a fixed-size neighborhood of each node and performs mean aggregator or
LSTM-based aggregator over the neighbors. In Graph Attention Networks (GAT) (Velickovic et al.,
2018), an attention mechanism is incorporated into the propagation step. It updates the feature rep-
resentation of each code via a weighted sum of adjacent node representations. Monti et al. (2017)
has present MoNet which designs a Gaussian kernel with learnable parameters to assign different
weights to neighbors. GatedGCN (Bresson & Laurent, 2017) has achieved state-of-art results on
many datasets (Dwivedi et al., 2020). GatedGCN explicitly introduces edge features at each layer
and updates edge features by considering the feature representations of these two connected nodes
of the edge. GatedGCN designs edge gates to assign different weights to different elements of
each neighboring node representation. In addition, GatecGCN uses residual shortcut, batch normal-
ization, and activation function to update the node representations. More details about GNNs are
provided in Appendix A.

It is well accepted that normalization techniques (Ioffe & Szegedy, 2015; Ba et al., 2016; Wu &
He, 2018; Ulyanov et al., 2016) are the critical ingredients to effectively train deep neural networks.
Batch normalization (BN) (Ioffe & Szegedy, 2015) is widely used in training deep neural networks
(He et al., 2016; Huang et al., 2017; Silver et al., 2017) to perform global normalization along the
batch dimension. Hereafter various normalization methods have been developed from different per-
spectives. For instance, layer normalization (LN) (Ba et al., 2016) and group normalization (Wu &
He, 2018) operate along the channel dimension, and instance normalization (Ulyanov et al., 2016)
performs a BN-like normalization but only for a sample. A detailed introduction of BN and LN
are provide in the Appendix B. In addition, Switchable Normalization (Luo et al., 2019) utilizes
three distinct scopes to compute statistics (means and variances) including a channel, a layer, and
a minibatch. In graph neural networks, (Dwivedi et al., 2020) utilizes BN for each graph propaga-
tion layer to train GNNs. Zhao & Akoglu (2020) introduces a novel normalization layer denoted as
PAIRNORM to mitigate the over-smoothing problem, which prevents all node representations from

2

Learning Graph Normalization for Graph Neural Network

homogenization. PAIRNORM focuses on differentiating the distances between different node pairs.
Unfortunately, it ignore the local neighbor structure and global graph structure. Each normalization
method has its advantages and is suitable for some particular tasks. For instance, BN has achieved
perfect performance in computer vision, however, LN outperforms BN in natural language process-
ing (Vaswani et al., 2017). Moreover, in previous work, only one of the mentioned normalization
methods is selected and it is used in all normalization layers of a neural network. This will limit the
performance of a neural network and it is hard to decide which normalization method is suitable for
a specific task.

In this paper, we investigate four types of graph normalization methods, including node-wise nor-
malization, adjacency-wise normalization, graph-wise normalization and batch-wise normalization,
as illustrated in Figure 1 (a)-(d). The node-wise normalization only considers its own features and
compute the statistics over the elements of its feature vector. Node-wise normalization is equivalent
to layer normalization in nature. According to the adjacent structure, we normalize the node fea-
ture only using the mean and variance of its adjacent neighborhoods. We terms this normalization
method as adjacency-wise normalization, as shown in Figure 1 (b). We also introduce a graph-wise
normalization which normalizes the nodes using the mean and variance computed from each graph
alone as shown in Figure 1 (c). BN computes the statistics (mean and variance) over a mini-batch
and is named as batch-wise normalization (Figure 1 (d)) in this paper. Moreover, we also extend
these normalization methods to handle the edge features as shown in Figure 1 (e)-(h). Then, we
propose to learn graph normalization by optimizing a weighted combination of normalization tech-
niques at four different levels, including node-wise normalization, adjacency-wise normalization,
graph-wise normalization, and batch-wise normalization. By learning the optimal weights, we are
able to automatically select the most suitable normalization or a mixture of multiple normalization
methods for a specific task.

The contributions of the paper can be highlighted as follows.

• According to different statistical levels of mean and variance of graph, we formulate the graph
normalization methods into four levels: node-wise, adjacency-wise, graph-wise, and batch-wise.
To the best of our knowledge, the adjacency-wise normalization and graph-wise normalization
are proposed for training GNNs for the first time.

• We propose a novel framework to learn graph normalization by optimizing a weighted combi-
nation of normalization methods at different levels. By learning the optimal weights, we are
able to automatically select the best normalization method or the best combination of multiple
normalization methods for a specific task. We observe that graph-wise normalization performs
well on some node classification tasks and batch-wise normalization yields better performance on
graph classification and regression tasks, which is consistent with the distribution of the learned
dominant weights in our proposal.

• We conduct extensive experiments on several benchmark datasets with different tasks to quanti-
tatively evaluate the listed four normalization methods and the learned normalization methods in
various scenarios.

2 GRAPH NORMALIZATION

Suppose that we have N graphs G1,G2, ...,GN in a mini-batch. Let Gk = (Vk,Ek) be the k-th
graph, where Vk is the set of nodes and Ek is the set of edges. GNNs propagate information along
the edges E of a graph to update the representation of each node for downstream tasks, such as node
classification, link prediction and graph classification. We denote vk,i as the i-th node of the Gk and
hvk,i

∈ Rd as the corresponding node feature. hjvk,i
represents the jth element of node feature hvk,i

.
N(vk,i) represents the neighbors of node vk,i and vk,i.

2.1 NORMALIZATION METHODS FROM DIFFERENT LEVELS

Currently, most GNNs use BN, which computes statistics over a mini-batch, after the message-
passing layer to normalize feature representation. Note that graph data contains rich structural in-
formation. In this paper, by considering the structure information at different scales, we present and
rewrite several normalization methods for graph-structure data.

3

Learning Graph Normalization for Graph Neural Network

Node-wise Normalization. For the node vk,i, its feature hvk,i
has d elements, as Figure 1 (a). Each

of them may have different distribution and we can normalize them to reduce the ”covariate shift”
problem. Then, according to layer normalization, hvk,i

can be normalized by itself:

ĥ(n)
vk,i

=
hvk,i − µ

(n)
k,i 1

σ
(n)
k,i

µ
(n)
k,i =

1

d

d∑
j=1

hj
vk,i

, σ
(n)
k,i =

√√√√1

d

d∑
j=1

(hj
vk,i − µ

(n)
k,i)

2,

(1)

where µ(n)
k,i and σ

(n)
k,i are the mean and variance along the feature dimension for node vk,i, and

1 ∈ Rd represents a d-dimension vector filled with the scale value 1. If we normalize the edge
features, each edge feature (Figure 1 (e)) is processed individually as Equation (1). Essentially,
node-wise normalization is equivalent to applying LN to each node of a graph.

Adjacent-wise Normalization. Each node in a graph has its own neighbors. However, node-wise
normalization performs normalization on each node alone and ignores the local structure of each
node. For a node vk,i in a graph Gk, we consider its topological structure of its adjacent nodes
N(vk,i), as Figure 1 (b). The number of adjacent nodes |N(vk,i)| varies with the node vk,i. N(vk,i)
may only contain itself. Thus, the statistics (mean and variance) computed over N(vk,i) are un-
stable. Like LN, we can compute mean and variance across over all elements of feature vectors
corresponding adjacent nodes. So, the adjacency-wise normalization for node vk,i is written as:

ĥ(a)
vk,i

=
hvk,i − µ

(a)
k,i1

σ
(a)
k,i

µ
(a)
k,i =

1

|N(vk,i)| × d
∑

j′∈N(vk,i)

d∑
j=1

hj
vk,j′

,

σ
(a)
k,i =

√√√√√ 1

|N(vk,i)| × d
∑

j′∈N(vk,i)

d∑
j=1

(hj
vk,j′ − µ

(a)
k,i)

2,

(2)

where µ(a)
k,i and σ(a)

k,i are two scalars. For the edge ek,i, as Figure 1 (f), the adjacent edges N(ek,i)
are considered.

Graph-wise Normalization. Thirdly, nodes belonging to Gk naturally are composed of a group. In
order to preserve the global structure of a graph, the feature representation of each node is normal-
ized based on the statistics computed over Gk. So, we define graph-wise normalization for node vk,i
as the following Equation (3):

ĥ(g)
vk,i

=
hvk,i − µ

(g)
k

σ
(g)
k

µ
(g)
k = E

v∼Gk
hv =

1

|Gk|
∑

vk,i∈Gk

hvk,i ,

σ
(g)
k =

√
E

v∼Gk
(hv − µ(g)

k)2 =

√√√√ 1

|Gk|
∑

vk,i∈Gk

(hvk,i − µ
(g)
k)2,

(3)

µ
(g)
k and σ(g)

k in Equation (3) are the mean and standard deviation vectors of Gk. Similarly, for
the edges Ek of Graph Gk (Figure 1 (g)), we compute the mean and variance over all edges of Gk.
When the task has only one graph, graph-wise normalization is similar to BN while the later uses a
smoothing average updater but graph-wise normalization does not.

Batch-wise Normlaization. To keep training stable, BN is one of the most critical components. For
a mini-batch, there are N graphs. We can compute the mean and standard deviation across over the
graphs of a mini-batch, then a node feature hvk,i

is normalized by the following equation, which is

4

Learning Graph Normalization for Graph Neural Network

batch-wise normalization (GNb):

ĥ(b)
vk,i

=
hvk,i − µ

(b)

σ(b)

µ(b) = mean{hvk,i |{{vk,i}
Gk
i=1}

N
k=1} =

1

n

N∑
k=1

|Gk|∑
i=1

hvk,i ,

σ(b) = std{hvk,i |{{vk,i}
Gk
i=1}

N
k=1} =

√√√√ 1

n

N∑
k=1

|Gk|∑
i=1

(hvk,i − µ(b))2,

(4)

where n means the total nodes of all N graphs. GNb performs normalization over nodes of all N
graphs in a mini-batch and is the same as BN (Ioffe & Szegedy, 2015) in nature.

The properties of four normalization methods are summarized as follows.

• Node-wise normalization is equivalent as LN in operation. Node-wise normalization only con-
siders each node’s feature alone, but ignores the adjacent and whole graph structures.

• Adjacent-wise normalization takes the adjacent nodes into account. It reflects the difference be-
tween the node and its neighbors.

• Graph-wise normalization takes the features of all nodes in a graph into account. It embodies the
difference of all the nodes in the whole graph. In ideal situation, this method can stand out the
target node from the graph.

• Batch-wise normalization is the same as the standard batch normalization in nature. It expresses
differences among the graphs. When the task only has one graph, then the batch-wise normaliza-
tion is similar with the graph normalization except that momentum average is used in batch-wise
but not in the graph-wise.

2.2 LEARNING AN UNITED GRAPH NORMALIZATION

Although we have defined several normalization methods for the graph-structured data, different
tasks prefer to different normalization methods and for a specific task, it is hard to decide which
normalization method should be used. Moreover, one normalization approach is utilized in all nor-
malization layers of a GNN. This will sacrify

ĥvk,i
= γ(λn � ĥ(n)

vk,i
+ λa � ĥ(a)

vk,i
+ λg � ĥ(g)

vk,i
+ λb � ĥ(b)

vk,i
) + β, (5)

where λn, λa, λg, λb ∈ Rd are defined as the trainable gate parameters with the same dimension
as hvk,i

, γ and β denote the trainable scale and shift, respectively. λn, λa, λg, λb indicate the con-
tribution of the corresponding normalized feature to ĥvk,i

. Thus, we constrain the elements of
λn, λa, λg, λb to be in the range [0, 1] by the following scheme:

λju = clip[0,+∞)(λ
j
u) j ∈ {1, 2, ..., d} and u ∈ {n, a, g, b}

λju =
λju∑

k∈{n,a,g,b} λ
j
k

, j ∈ {1, 2, ..., d} and u ∈ {n, a, g, b}
(6)

{λu}u∈{n,a,g,b} in Equation (5) are important weights used to combine the normalized feature of
each normalizer and they satisfy the summation constraint,

∑
u∈{n,a,g,b} λ

j
u = 1, j ∈ {1, 2, ..., d}.

Thus, in this mechanism, if a normalizer is better for a specific task, its corresponding weights may
be higher than others. In GN, several normalization methods cooperate and compete with each other
to improve the performance of GNNs.

Different normalization methods are suitable for different tasks. In GN, the weights λn, λa, λg, λb
are updated adaptively for a specific task. Usually, the best-performing normalization will have
largest weight in the learnt weight distribution. Thus, GN can be an effective tactic to select one
type of normalization method or a best combination of several normalization approaches for one
specific task.

5

Learning Graph Normalization for Graph Neural Network

3 EXPERIMENTS

As Dwivedi et al. (2020), we evaluate GNn, GNa, GNg, GNb, and the united Graph Normliza-
tion (GN) under three frameworks including Graph Convolution Network (GCN) (Kipf & Welling,
2016), Graph Attention Network (GAT) (Velickovic et al., 2018) and GatedGCN (Bresson & Lau-
rent, 2017). We also assess the performance of GNNs without normalization layer named as “No
Norm”. We use the same experimental setup as Dwivedi et al. (2020). The implementation of GCN,
GAT and GatedGCN are found in GNN benchmarking framwork 1, which uses Deep Graph Library
(Wang et al., 2019) and PyTorch (Paszke et al., 2019).

Experimental datasets consist of three types of tasks including node classification, link prediction,
and graph classification/regression. We use all seven datasets from (Dwivedi et al., 2020), which
are PATTERN, CLUSTER, SROIE, TSP, COLLAB, MNIST, CIFAR10, and ZINC. In addition,
we apply GatedGCN for key information extraction problem and evaluate the affect of different
normalization methods on SROIE (Huang et al., 2019), which is used for extracting key information
from receipt in ICDAR 2019 Challenge (task 3). For more information about the detailed statistics
of the datasets refer to Appendix C.1.

The hyper-parameters and optimizers of the models and the details of the experimental settings are
the same as GNN bechmarking framework Dwivedi et al. (2020). To evaluate the performance of
GNNs with different depths, we run experiments on CLUSTER and PATTERN datasets with depth
{4, 16} respectively. For the other datasets, we fix the number of GCN layer to 4.

3.1 NODE CLASSIFICATION

For node classification, its goal is to assign each node v ∈ V to a number of classes. Hence, GNNs
predict the label of each node by passing the node representation vector to a MLP. We evaluate the
performance of different normalization approaches on CLUSTER and PATTERN datasets. More-
over, we apply node classification to key information extraction. SROIE consists of 626 receipts for
training and 347 receipts for testing. Each image in the SROIE dataset is annotated with text bound-
ing boxes (bbox) and the transcript of each text bbox. There are four entities to extract (Company,
Date, Address and Total) from a receipt, as shown in Appendix C.2.

3.1.1 CLUSTER AND PATTERN DATASETS

For CLUSTER and PATTREN datasets, the average node-level accuracy weighted with respect to
the class sizes is used to evaluate the performance of all models. For each model, we conduct 4 runs
with different seeds {41, 95, 35, 12} and compute the average test accuracy as shown in Table 1.

Graph-wise normalization (GNg) outperforms batch-wise normalization (GNb) obviousluy in most
situations. For instance, when the depth of GNNs is 4, GatedGCN with GNg achieves 9% improve-
ment over GNb on CLUSTER. Batch-wise normalization computes the statistics over a batch data
and ignores the differences between different graphs. Different from GNb, GNg performs normaliza-
tion only for each graph. Thus, GNg can learn the dedicated information of each graph and normalize
the feature of each graph to a reasonable range. As we known, the performance of the adjacency-
wise normalization (GNa) is similar with that of the node-wise normalization (GNn). Compared
with GNn, GNa consider the neighbors of each node and gets higher accuracies. We can see that GN
gets comparable results for different GNNs. The results of GN are close to the best results in most
scenarios due to its flexibility and adaptability. GN adaptively learns weight combination of those
normalization approaches which better adapt itself to the node classification task.

3.1.2 SROIE DATASET

In this experiment, we test the performance of GatedGCN with several different normalization ap-
proaches for extracting key information from a receipt. For a receipt image, each text bounding box
is label with five classes, which are Total, Date, Address, Company and Other. Thus, for a receipt,
we treat each text bounding box as a node. Feature representation for each node will be supplied by
Appendix C.2. “Company” and “Address” usually consist of multiple text bounding boxes (nodes).

1https://github.com/graphdeeplearning/benchmarking-gnns

6

Learning Graph Normalization for Graph Neural Network

Dataset CLUSTER PATTERN

Network GCN GAT GatedGCN GCN GAT GatedGCN
Train (Acc) Test (Acc) Train (Acc) Test (Acc) Train (Acc) Test (Acc) Train (Acc) Test (Acc) Train (Acc) Test (Acc) Train (Acc) Test (Acc)

L
ay

er
=4

No Norm 54.3±1.9 54.2±1.9 59.7±0.4 59.0±0.3 58.0±2.8 57.4±2.6 61.9±0.2 61.4±0.1 81.8±0.7 81.0±0.8 82.5±3.2 82.5±3.4
GNn 57.2±0.1 57.0±0.1 59.6±0.2 59.0±0.2 61.1±0.9 60.5±0.7 64.9±0.1 64.0±0.1 79.5±0.3 78.7±0.4 82.7±2.7 82.6±2.8
GNa 58.9±0.6 58.7±0.6 68.5±0.5 67.9±0.5 63.5±0.9 63.0±0.9 66.5±1.4 65.3±1.2 82.0±0.4 81.1±0.4 84.3±0.0 84.5±0.0
GNg 68.7±0.3 67.0±0.1 69.5±0.1 68.1±0.1 70.6±0.1 69.3±0.0 80.2±0.1 77.3±0.1 83.6±0.1 79.2±0.2 85.1±0.0 85.1±0.0
GNb 55.1±1.8 54.3±1.5 59.3±0.4 58.6±0.3 61.4±0.2 60.3±0.1 64.8±0.2 63.8±0.1 78.3±1.2 76.3±1.0 84.5±0.1 84.5±0.1
GN 68.3±0.3 67.4±0.2 68.9±0.2 68.2±0.2 69.8±0.3 69.3±0.1 79.0±0.4 76.5±0.4 81.7±0.7 79.2±0.7 85.3±0.3 85.2±0.2

L
ay

er
=1

6 No Norm 85.3±0.5 72.4±0.1 63.6±2.5 63.4±2.3 80.6±1.3 71.2±0.4 82.8±0.4 82.9±0.4 73.4±0.4 69.7±0.2 85.6±0.0 85.7±0.0
GNn 63.6±7.0 63.2±6.9 83.8±0.5 72.2±0.4 84.6±0.8 73.8±0.2 76.7±0.8 71.4±0.3 87.7±0.7 81.8±0.5 85.6±0.0 85.8±0.0
GNa 66.7±1.5 66.0±1.5 85.6±0.6 73.2±0.2 84.7±0.6 74.1±0.3 74.9±1.7 70.7±0.7 84.8±0.3 82.8±0.5 85.6±0.0 85.8±0.0
GNg 87.2±0.4 72.5±0.2 91.9±0.3 73.4±0.1 90.9±0.5 74.5±0.1 98.9±0.1 76.3±0.2 92.8±0.1 81.2±0.2 86.7±0.2 85.3±0.1
GNb 67.6±3.7 65.1±2.6 83.9±0.6 72.2±0.3 88.2±1.0 73.7±0.3 79.0±1.6 72.0±0.3 91.9±0.6 80.2±0.2 86.1±0.2 85.7±0.1
GN 85.8±0.4 73.8±0.2 87.3±2.1 72.6±0.6 88.6±0.4 75.8±0.2 93.6±1.9 77.8±0.3 95.6±0.5 79.2±0.4 87.3±0.3 85.7±0.1

Table 1: Node classification results on the CLUSTER and PATTERN. Results are averaged over
four different random seeds. Red: the best model,Violet: good models.

If and only if all nodes of each entity are classified correctly, this entity is extracted successfully.
We compute the mean accuracies for each text field and the average accuracies for each receipt as
shown in Table 2.

Normalization Method
Text Field No Norm GNn GNa GNg GNb GN

Total 87.5 91.9 74.5 96.8 94.8 94.5
Date 96.5 98.0 95.9 98.8 97.4 97.4

Address 91.6 92.0 80.0 94.5 93.9 93.6
Company 92.2 93.3 87.8 94.5 93.0 94.8
Average 92.0 94.0 84.6 96.2 94.8 95.1

Table 2: Performance (accuracy) comparison of different normalization approaches.

We can observe that GNg achieves the best performance among all compared normalization meth-
ods. In the receipt, there are many nodes with only numeric texts. It is hard to differentiate the
“Total” field from other nodes with numeric text. GNg performs well in this field and outperforms
the second best by 2.0%. We believe that the graph-wise normalization can make the ’Total’ field
stand out from the other bounding boxes with numeric text by aggregating the relevant anchor point
information from its neighbors and removing the mean number information. Similarly, graph-wise
normalization can promote extracting information for the other three key fields. It’s interesting that
the graph of each receipt is special with Neighboring nodes usually belonging to different classes.
Thus, the performance of adjacency-wise normalization is worse than node-wise normalization.

3.2 LINK PREDICTION

Link prediction is to predict whether there is a link between two nodes vi and vj in a graph. Two
node features of vi and vj , at both ends of edge ei,j , are concatenated to make a prediction. Then the
concatenated feature is fed into a MLP for prediction. Experimental results are shown in Table 3.

All the five normalization methods achieve similar performance on TSP dataset. Compared with
other normalization methods, the results of GN are very stable. For each GNN, the result of GN
is comparable with the best result. In addition, GNNs without normalization layer obtains good
performance.

COLAB dataset contains only a graph with 235,868 nodes. When we use adjacency-wise normal-
ization, we encounter out-of-memory problem. Thus, we don’t report the results of GNa and GN.
Compared with GNNs with normalization layer, the results of GNNs without normalization layer
(No Norm) seriously decrease. GNg performs better than GNb. GatedGCN with GNg achieves the
best result.

3.3 GRAPH CLASSIFICATION AND GRAPH REGRESSION

Graph classification is to assign one label to each graph. We conduce experiments on CIFAR10 and
MNIST. Average class accuracies are reported in Table 4. ZINC is a dataset for graph regression.

7

Learning Graph Normalization for Graph Neural Network

Network GCN GAT GatedGCN

Dataset TSP
Train (F1) Test (F1) Train (F1) Test (F1) Train (F1) Test (F1)

No Norm 0.628±0.001 0.627±0.001 0.677±0.002 0.675±0.002 0.805±0.005 0.804±0.005
GNn 0.635±0.001 0.634±0.001 0.663±0.008 0.662±0.008 0.810±0.003 0.808±0.003
GNa 0.633±0.004 0.631±0.004 0.678±0.003 0.676±0.003 0.805±0.005 0.803±0.004
GNg 0.630±0.001 0.629±0.001 0.669±0.003 0.668±0.001 0.890±0.001 0.806±0.001
GNb 0.633±0.001 0.632±0.001 0.673±0.004 0.671±0.004 0.791±0.002 0.789±0.002
GN 0.635±0.001 0.633±0.001 0.673±0.001 0.671±0.001 0.804±0.001 0.802±0.001

Dataset COLAB
Train (Hits) Test (Hits) Train (Hits) Test (Hits) Train (Hits) Test (Hits)

No Norm 73.02±7.03 38.32±4.13 64.19±4.02 32.69±4.48 38.55±8.13 22.60±3.40
GNn 81.81±7.40 45.75±4.14 95.93±0.54 51.76±0.68 91.72±3.40 51.55±1.44
GNg 93.67±0.71 52.27±1.28 97.11±0.65 51.36±1.15 97.50±2.52 52.71±0.36
GNb 91.88±0.04 51.16±0.10 97.11±0.43 51.54±0.90 95.31±3.56 51.87±0.41

Table 3: Link prediction results on the TSP and COLAB. Red: the best model,Violet: good models.

the mean absolute error (MAE) between the predicted value and the ground truth is calculated for
each group. Average MAEs also are reported in Table 4. We can see that GNb outperforms others
in most cases. GNg doesn’t work well on graph classification and regression. Furthermore, GNg
affects the performance of GN. GN integrates the normalized features of GNn, GNa, GNg, and
GNb and adptively pays more attention to GNb due to its outstanding performance. Therefore, its
performance is comparable with GNb.

Network GCN GAT GatedGCN
Train (Acc) Test (Acc) Train (Acc) Test (Acc) Train (Acc) Test (Acc)

Dataset MNIST
No Norm 93.62±0.72 90.10±0.25 100.00±0.00 95.39±0.16 100.00±0.00 96.61±0.09

GNn 96.63±0.91 90.53±0.22 100.00±0.00 95.66±0.14 100.00±0.00 97.23±0.12
GNa 95.65±0.75 89.68±0.20 100.00±0.00 95.41±0.22 100.00±0.00 96.87±0.21
GNg 96.90±0.52 86.18±0.30 100.00±0.00 94.74±0.13 100.00±0.00 96.17±0.16
GNb 97.16±1.06 90.51±0.22 99.99±0.00 95.77±0.19 100.00±0.00 97.47±0.11
GN 97.34±0.66 90.46±0.17 100.00±0.00 95.75±0.22 100.00±0.00 97.41±0.17

Dataset CIFAR10
No Norm 65.87±1.68 54.56±0.53 88.80±1.31 62.13±0.31 82.81±1.15 63.44±0.22

GNn 73.64±1.42 55.77±0.31 87.67±0.81 63.04±0.60 90.14±2.05 67.86±0.65
GNa 71.48±1.27 54.83±0.32 86.80±0.70 62.72±0.26 90.85±0.32 67.21±0.44
GNg 71.75±2.48 46.41±0.29 89.20±0.41 54.44±0.28 81.29±6.37 52.69±3.28
GNb 69.34±2.47 55.14±0.26 89.56±1.41 64.54±0.24 95.75±0.12 67.83±0.68
GN 80.33±3.10 54.73±0.68 94.48±1.58 62.98±0.47 98.80±0.28 66.84±0.16

Train (MAE) Test (MAE) Train (MAE) Test (MAE) Train (MAE) Test (MAE)
Dataset ZINC
No Norm 0.368±0.022 0.472±0.005 0.270±0.029 0.490±0.001 0.292±0.003 0.456±0.004

GNn 0.349±0.019 0.455±0.007 0.295±0.014 0.456±0.001 0.260±0.021 0.428±0.005
GNa 0.351±0.013 0.458±0.003 0.291±0.013 0.458±0.001 0.274±0.023 0.437±0.001
GNg 0.263±0.033 0.547±0.029 0.228±0.010 0.519±0.001 0.216±0.019 0.507±0.003
GNb 0.346±0.019 0.465±0.009 0.308±0.028 0.480±0.003 0.280±0.013 0.431±0.007
GN 0.357±0.017 0.486±0.007 0.298±0.018 0.483±0.005 0.275±0.011 0.458±0.003

Table 4: Experimental results on MNIST, CIFAR10 and ZINC. Red: the best model,Violet: good
models.

3.4 ANALYSIS

The above experimental results indicates that GNg outperforms batch normalization on most node
classification tasks. For each single normalization method, it performs very well on some datasets,
while its performance may decrease sharply on other datasets. Meanwhile, our proposed GN, which

8

Learning Graph Normalization for Graph Neural Network

CLUSTER (Acc) PATTERN (Acc) SROIE (Acc) TSP (F1) MNIST (Acc) CIFAR10 (Acc) ZINC (MAE)
GNn − − − 80.83 97.23 67.86 0.4283
GNa 63.02 84.53 − − − − −
GNg 69.31 85.07 96.2 80.61 − − −
GNb − − 94.8 − 97.47 67.83 0.4311
Combine 69.16 84.64 95.4 81.11 97.52 67.88 0.4371

Table 5: Performance of different normalization methods on several datasets. For each dataset, we
give the performance of two best normalization methods and a new normalization method combined
these two best normalizer like Equation (5).

integrates several normalization methods into a framework, achieves competitive results compared
with the best single normalization method on various datasets.

In this part, we analyze the effect of each normalization method on different datasets. GN adaptively
combines the results of several normalization methods and {λu}u∈n,a,g,b in Equation (5) indicate
the importance weight vector of the corresponding normalizer, respectively. We initialize the im-
portant weights {λu}u∈n,a,g,b in each layer to the equal values (i.e. 1/4). In the training phase, the
values of {λu}u∈n,a,g,b changes between 0 and 1. We investigate the averaged weights in different
layers of GatedGCN on several datasets. We get the important weights of each normalizer in each
layer from the optimized model. Since λu ∈ Rd, then the averaged weights of each normalizer is
calculated over all of the d elements of λu. According to Figure 2, the weights of each normalizer
not only are distinct for different datasets, but also vary for different layers. It implies that distinct
layers may have their own preference of normalization methods to achieve good performance. It’s
interesting that the weights of GNg are larger than others on node classification tasks while GNb is
more importance on other tasks. GN has the ability to automatically choose the suitable normalizers
for a specific task.

Furthermore, for each dataset, we select the two best normalizers and integrate them into a new
normalization method like Equation (5). From Table 5, the combined normalizer achieves the com-
parable results with the best normalization method for each dataset. Therefore, these results show
that the important weights indicate whether the corresponding normalization method is suitable for
the current task.

CLUSTER

La
m

bd
a

W
eig

ht

PATTERN

CIFAR10

La
m

bd
a

W
eig

ht

MNIST

Layer Layer Layer

TSP

ZINC

��� ��� ��� ���

Figure 2: Learnt weight distributions of four normalization methods along with layers on different
tasks.

4 CONCLUSION

In this paper we formulate four graph normalization methods, node-wise, adjacent-wise, graph-
wise, and graph-wise according to different statistical levels of mean and variance. Node-wise
normalization only considers its own statistical information. Adjacent-wise and graph-wise takes
local and global graph structures into account. BN computes the statistics in a mini-batch level.

9

Learning Graph Normalization for Graph Neural Network

Different normalization methods perform variously in different tasks. We observe graph-wise and
adjacent-wise normalizations perform well on some node classification tasks, batch-wise normaliza-
tion shows better performance on graph classification and regression tasks. Therefore, we propose
to learn an effective Graph Normalization (GN) by optimizing a weighted combination of node-wise
normalization, adjacency-wise normalization, graph-wise normalization, and batch-wise normaliza-
tion. Through analyzing the distributions of weights, we can select one or a combinations of several
normalization for one specific task.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. 2016.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. CoRR, abs/1711.07553, 2017.
URL http://arxiv.org/abs/1711.07553.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. CoRR, abs/1312.6203, 2014.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:1801.10247, 2018.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. ArXiv, abs/1905.12560, 2019.

Ke Cheng, Yifan Zhang, Xiangyu He, Weihan Chen, Jian Cheng, and Hanqing Lu. Skeleton-based
action recognition with shift graph convolutional network. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 183–192, 2020.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In NIPS, 2016.

Neofytos Dimitriou and Ognjen Arandjelovic. A new look at ghost normalization. arXiv preprint
arXiv:2007.08554, 2020.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks, 2020.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The World Wide Web Conference, pp. 417–426, 2019.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NIPS, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–
778, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks.
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269,
2017.

Zheng Huang, Kai Chen, Jianhua He, Xiang Bai, Dimosthenis Karatzas, Shijian Lu, and CV Jawa-
har. Icdar2019 competition on scanned receipt ocr and information extraction. In 2019 Interna-
tional Conference on Document Analysis and Recognition (ICDAR), pp. 1516–1520. IEEE, 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis Bach and David Blei (eds.), Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pp. 448–456, Lille, France, 07–09 Jul 2015. PMLR. URL http://proceedings.
mlr.press/v37/ioffe15.html.

10

http://arxiv.org/abs/1711.07553
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html

Learning Graph Normalization for Graph Neural Network

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. CoRR, abs/1609.02907, 2016. URL http://arxiv.org/abs/1609.02907.

Xia Li, Yibo Yang, Qijie Zhao, Tiancheng Shen, Zhouchen Lin, and Hong Liu. Spatial pyramid
based graph reasoning for semantic segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8950–8959, 2020.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph sequence neural
networks. CoRR, abs/1511.05493, 2016.

Jaechang Lim, Seongok Ryu, Kyubyong Park, Yo Joong Choe, Jiyeon Ham, and Woo Youn Kim.
Predicting drug–target interaction using a novel graph neural network with 3d structure-embedded
graph representation. Journal of chemical information and modeling, 59(9):3981–3988, 2019.

Xiaojing Liu, Feiyu Gao, Qiong Zhang, and Huasha Zhao. Graph convolution for multimodal infor-
mation extraction from visually rich documents. arXiv preprint arXiv:1903.11279, 2019a.

Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. Relation-shape convolutional neural
network for point cloud analysis. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 8895–8904, 2019b.

Ping Luo, Ruimao Zhang, Jiamin Ren, Zhanglin Peng, and Jingyu Li. Switchable normalization for
learning-to-normalize deep representation. IEEE transactions on pattern analysis and machine
intelligence, 2019.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. In NeurIPS, 2019.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, and Michael M.
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5425–5434, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in neural information processing systems, pp.
8026–8037, 2019.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network
model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Sheng Shen, Zhewei Yao, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer. Powernorm:
Rethinking batch normalization in transformers, 2020.

Weijing Shi and Raj Rajkumar. Point-gnn: Graph neural network for 3d object detection in a point
cloud. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 1711–1719, 2020.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Instance normalization: The missing
ingredient for fast stylization. ArXiv, abs/1607.08022, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.
URL http://arxiv.org/abs/1706.03762.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. ArXiv, abs/1710.10903, 2018.

11

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1706.03762

Learning Graph Normalization for Graph Neural Network

Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,
Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang
Li, Alexander J Smola, and Zheng Zhang. Deep graph library: Towards efficient and scalable
deep learning on graphs. ICLR Workshop on Representation Learning on Graphs and Manifolds,
2019.

Xiaolong Wang, Yufei Ye, and Abhinav Gupta. Zero-shot recognition via semantic embeddings
and knowledge graphs. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 6857–6866, 2018.

Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based rec-
ommendation with graph neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 346–353, 2019.

Yuxin Wu and Kaiming He. Group normalization. In ECCV, 2018.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 2020.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. arXiv preprint
arXiv:1806.03536, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? ArXiv, abs/1810.00826, 2019.

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 7370–7377,
2019.

Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph convolutional networks: Algo-
rithms, applications and open challenges. In International Conference on Computational Social
Networks, pp. 79–91. Springer, 2018.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. ArXiv,
abs/1909.12223, 2020.

A GRAPH NEURAL NETWORKS

Graph neural networks (Kipf & Welling, 2016; Velickovic et al., 2018) are effective in learning
graph representations. For node v, GNNs update its representation by utilizing itself and its adjacent
neighbors. To capture high-order structure information of the graph, GNNs learn a new feature rep-
resentation of each node over multiple layers. In a layer of GNNs, each node v sends a “message”-
its feature representation, to the nodes in N (v); and then the feature representation of v is updated
according to all collected information from the neighborhood N (v). Mathematically, at the `-th
layer, we have,

h`+1
v = ψ`+1(C{h`v,M{φ`+1(h`u)|u ∈ N (v)}}) (7)

where h`u denote the feature vector at layer ` of node u ∈ N (v), ψ and φ are learnable functions,
M is the aggregation function for nodes in N (v), and C is utilized to combine the feature of node
v and its neighbors. Especially, the initial node representation h0v = xv represents the original input
feature vector of node v.

Graph ConvNets(Kipf & Welling, 2016) treats each neighbor node u equally to update the represen-
tation of a node v as:

h`+1
v = ReLU(

1

degv

∑
u∈N (v)

W `h`u), (8)

where W ∈ Rd×d, degv is the in-degree of node v. One graph convolutional layer only considers
immediate neighbors. To use neighbors within K hops, in practice, multiple GCN layers are stacked.
All neighbors contribute equally in the information passing of GCN. One of key issue of the GCN

12

Learning Graph Normalization for Graph Neural Network

is its over-smoothing problem. This issue can be partially eased by residual shortcut across layers.
One effective approach is to use spatial GNNs, such as GAT (Velickovic et al., 2018) and GatedGCN
(Bresson & Laurent, 2017).

GAT (Velickovic et al., 2018) learns to assign different weight to adjacent nodes by adopting atten-
tion mechanism. In GAT, the feature representation of v can be updated by:

h`+1
v = σ(

∑
u∈N (v)

e`u,vW
`h`u), (9)

where e`u,v measures the contribution of node u’s feature to node v:

e`u,v =
exp(g(αT [W `h`u||W `h`v]))∑

k∈N (v) exp(g(α
T [W `h`k||W `h`v]))

, (10)

where g(·) is a LeaklyReLU activation function, α is a weight vector and || is the concatenation
operation. Similar to Vaswani et al. (2017), to expand GAT’s expressive capability and stabilize
the learning process, multi-head attention is employed in GAT. GAT has achieved an impressive
improvement over GCN on node classification tasks. However, as the number of graph convolu-
tional layers increases, nodes representations will converge to the same value. The over-smoothing
problem still exists.

To mitigate the over-smoothing problem, GatedGCN (Bresson & Laurent, 2017) integrates gated
mechanism (Hochreiter & Schmidhuber, 1997), batch normalization (Ioffe & Szegedy, 2015), and
residual connections (He et al., 2016) into the network design. Unlike GCNs which treats all edges
equally, GatedGCN uses an edge gated mechanism to give different weights to different nodes. So,
for node v, the formulation of updating the feature representation is:

h`+1
v = h`v +ReLU(BN(W `h`v +

∑
u∈N (v)

e`vu � U `h`u)), (11)

where W `, U ` ∈ Rd×d, � is the Hadamard product, and the edge gates e`vu are defined as:

e`v,u =
σ(ê`v,u)∑

u′∈N (v) σ(ê
`
v,u′) + ε

,

ê`v,u = ê`−1v,u +ReLU(BN(A`h`−1v +B`h`−1u + C`ê`−1v,u)),

(12)

where σ is the sigmoid function, ε is a small fixed constant, A`, B`, C` ∈ Rd×d. Different from
traditional GNNs, GatedGCN explicitly considers edge feature êv,u at each layer.

B NORMALIZATION METHODS

B.1 BATCH NORMALIZATION

Batch normalization (Ioffe & Szegedy, 2015) (BN) has become one of the critical components in
a deep neural network, which normalizes the features by using the statics computed within a mini-
batch. BN can reduce the internal covariate shift problem and accelerate training. We briefly intro-
duce the formulation of BN. Firstly, H = [h1, h2, ..., hB]

T ∈ RB×d is denoted as the input of a
normalization layer, where B is the batch size and hi represents a sample. Then, µ(B) ∈ Rd and
σ(B) ∈ Rd mean the mean and the variance of H along the batch dimension, respectively. BN
normalizes each dimension of features using µ(B) and σ(B) as:

Ĥ = γ
H − µ(B)

σ(B)
+ β,

µ(B) =
1

B

B∑
i=1

hi, σ(B) =

√√√√ 1

B

B∑
i=1

(hi − µ(B))2,

µ = αµ+ (1− α) ∗ µ(B), σ2 = ασ2 + (1− α)(σB)2

(13)

where γ and β are trainable scale and shift parameters, respectively. In Equation (13), µ and σ
denote the running mean and variance to approximate the mean and the variance of the dataset. So,
during testing, they are used for normalization.

13

Learning Graph Normalization for Graph Neural Network

B.2 LAYER NORMALIZATION

Layer Normalization (LN) (Ba et al., 2016) is widely adopted in Natural Language Processing, spe-
cially Transformer (Vaswani et al., 2017) incorporates LN as a standard normalization scheme. BN
computes a mean and a variance over a mini-batch and the stability of training is highly dependent
on these two statics. Shen et al. (2020) has showed that transformer with BN leads to poor perfor-
mance because of the large fluctuations of batch statistics throughout training. Layer normalization
computes the mean and variance along the feature dimension for each training case. Different from
BN, for each sample hi, LN computes mean µ(L)

i and variance σ(L)
i across the feature dimension.

The normalization equations of LN are as follows:

ĥi = γ � hi − µ(L)
i

σ
(L)
i

+ β,

µ
(L)
i =

1

d

d∑
j=1

hij , σ
(L)
i =

√√√√1

d

d∑
j=1

(hij − µ
(L)
i)2,

(14)

where ĥi = [ĥi1 , ĥi2 , ..., ĥid] is the feature-normalized response. γ and β are parameters with
dimension d.

Overall, there are many normalization approaches (Ulyanov et al., 2016; Wu & He, 2018; Shen
et al., 2020; Dimitriou & Arandjelovic, 2020). Shen et al. (2020) has indicated that BN is suitable
for computer vision tasks, while LN achieves better results on NLP. For a normalization approach, its
performance may vary a lot in different tasks. So, it is very important to investigate the performance
of normalization approaches in GNNs.

C DATASETS AND EXPERIMENTAL DETAILS

C.1 DATASET STATISTICS

Table C.1 summarizes the statistics of the datasets used for our experiments.

Dataset Graphs Nodes Total
Nodes

Edges Total
Edges

Avg
Edges

Task Classes

PATTERN 14K 44-188 166,449 752-14,864 85,099,952 51.1 N.C. 2
CLUSTER 12K 41-190 140,643 488-10,820 51,620,680 36.7 N.C. 6
SROIE 971 18-153 52,183 70-2,031 420,903 8.1 N.C. 5

TSP 12K 50-499 3,309,140 1,250-
12,475

82,728,500 25 E.C. 2

COLLAB 1 235,868 235,868 2,358,104 2,358,104 10 E.C. 2

MNIST 70K 40-75 4,939,668 320-600 39,517,344 8 G.C. 10
CIFAR10 60K 85-150 7,058,005 680-1,200 56,464,040 8 G.C. 10
ZINC 12K 9-37 277,864 16-84 597,970 2.1 G.R. -

Table 6: Summary statistics of datasets used in our experiments. The 7th column (AvgEdges) rep-
resents the average number of edges per node in a graph. N.C., E.C., G.C., G.R. mean node classi-
fication, edge classification, graph classification and graph regression independently.

C.2 SROIE

For a receipt, each text bbox can be viewed as a node of a graph. Its positions, the attributes of
bounding box, and the corresponding text are used as the node feature. To describe the relationships
among all the text bounding boxes of a receipt, we consider the distance between two nodes vi and
vj . If the distance between two nodes is less than a threshold θ, vi and vj are connected by an
edge ei,j . The relative positions of two text bounding boxes are important for node classification,
hence, we encode the relative coordinates of vi and vj to represent the edge eij . This information

14

Learning Graph Normalization for Graph Neural Network

extraction problem can be treated as a node classification problem based on the graph. Our goal is to
label each node (text bounding box) with five different classes, including Company, Date, Address,
Total and Other. Since GatedGCN explicitly exploit edge features and has achieved state-of-the-art
performance on various tasks, for this task, GatedGCN with 8 GCN layers is used.

Company

Address

Total

Date

Company

Address

Date

Total

Company

Address

Date

Total

(a) A receipt image.

Figure 3: Sample images of the SROIE dataset. Four entities are highlighted in different colors.
“Company”, “Address”, “Date”, and “Total” are marked with Red, Blue, Yellow, and Purple indi-
vidually. The “Company” and the “Address” entities usually consist of several text lines.

D ACKNOWLEDGEMENT

We would like to thank Vijay et al. to release their benchmarking code for our research. We also
want to thank the DGL team for their excellent toolbox.

15

	1 Introduction
	2 Graph Normalization
	2.1 Normalization Methods from Different Levels
	2.2 Learning An United Graph Normalization

	3 Experiments
	3.1 Node Classification
	3.1.1 CLUSTER and PATTERN Datasets
	3.1.2 SROIE Dataset

	3.2 Link Prediction
	3.3 Graph Classification and Graph Regression
	3.4 Analysis

	4 Conclusion
	A Graph Neural Networks
	B Normalization methods
	B.1 Batch Normalization
	B.2 Layer Normalization

	C Datasets and experimental details
	C.1 Dataset Statistics
	C.2 SROIE

	D Acknowledgement

